000133045 001__ 133045
000133045 005__ 20230217124410.0
000133045 0247_ $$2doi$$a10.1103/PhysRevA.87.022117
000133045 0247_ $$2ISSN$$a0556-2791
000133045 0247_ $$2ISSN$$a1094-1622
000133045 0247_ $$2ISSN$$a1050-2947
000133045 0247_ $$2WOS$$aWOS:000315143200002
000133045 0247_ $$2Handle$$a2128/10768
000133045 037__ $$aFZJ-2013-01609
000133045 082__ $$a530
000133045 1001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b0$$eCorresponding author$$ufzj
000133045 245__ $$aQuantum decoherence scaling with bath size: Importance of dynamics, connectivity, and randomness
000133045 260__ $$aCollege Park, Md.$$bAPS$$c2013
000133045 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2013-02-20
000133045 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2013-02-01
000133045 3367_ $$2DRIVER$$aarticle
000133045 3367_ $$2DataCite$$aOutput Types/Journal article
000133045 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1365684971_17250
000133045 3367_ $$2BibTeX$$aARTICLE
000133045 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000133045 3367_ $$00$$2EndNote$$aJournal Article
000133045 520__ $$aWe consider the decoherence of a quantum system S coupled to a quantum environment E. For states chosen uniformly at random from the unit hypersphere in the Hilbert space of the closed system S+E we derive a scaling relationship for the sum of the off-diagonal elements of the reduced density matrix of S as a function of the size DE of the Hilbert space of E. This sum decreases as 1/√DE as long as DE≫1. We test this scaling prediction by performing large-scale simulations which solve the time-dependent Schrödinger equation for a ring of spin-1/2 particles, four of them belonging to S and the others to E, and for this ring with small world bonds added in E and/or between S and E. The spin-1/2 particles experience nearest-neighbor interactions that are identical for the interactions within S and random for the interactions within E and between S and E, or that are all identical. Provided that the time evolution drives the whole system from the initial state toward a scaling state, a state which has similar properties as states belonging to the class of quantum states for which we derived the scaling relationship, the scaling prediction holds. We examine various interaction parameters and initial states for our model system to find whether or not the time evolution reaches the class of states that have the scaling property. For the homogeneous ring we find that the evolution for select initial states does not reach these scaling states. This conclusion is not modified if we add some homogeneous random connections. For a ring we find that some randomness in the interaction parameters is required so that most initial configurations are driven toward the scaling state. Furthermore, if the amount of randomness is small the time required to reach the scaling states may be very large. For the case of all random interactions in E the ring is driven toward the scaling state. Adding small world bonds between S and E with random interaction strengths may decrease the time required to reach the scaling state or may prevent the scaling state from being reached. For the latter case we show that increasing the complexity of the environment by adding extra connections within the environment suffices to observe the predicted scaling behavior.
000133045 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000133045 542__ $$2Crossref$$i2013-02-20$$uhttp://link.aps.org/licenses/aps-default-license
000133045 542__ $$2Crossref$$i2014-02-20$$uhttp://link.aps.org/licenses/aps-default-accepted-manuscript-license
000133045 588__ $$aDataset connected to
000133045 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b1$$ufzj
000133045 7001_ $$0P:(DE-HGF)0$$aNovotny, Mark A.$$b2
000133045 7001_ $$0P:(DE-HGF)0$$aMiyashita, Seiji$$b3
000133045 7001_ $$0P:(DE-HGF)0$$aYuan, Shengjun$$b4
000133045 7001_ $$0P:(DE-HGF)0$$aDe Raedt, Hans$$b5
000133045 77318 $$2Crossref$$3journal-article$$a10.1103/physreva.87.022117$$bAmerican Physical Society (APS)$$d2013-02-20$$n2$$p022117$$tPhysical Review A$$v87$$x1050-2947$$y2013
000133045 773__ $$0PERI:(DE-600)2844156-4$$a10.1103/PhysRevA.87.022117$$gVol. 87, no. 2, p. 022117$$n2$$p022117$$tPhysical review / A$$v87$$x1050-2947$$y2013
000133045 8564_ $$uhttps://juser.fz-juelich.de/record/133045/files/PhysRevA.87.022117.pdf$$yOpenAccess
000133045 8564_ $$uhttps://juser.fz-juelich.de/record/133045/files/PhysRevA.87.022117.gif?subformat=icon$$xicon$$yOpenAccess
000133045 8564_ $$uhttps://juser.fz-juelich.de/record/133045/files/PhysRevA.87.022117.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000133045 8564_ $$uhttps://juser.fz-juelich.de/record/133045/files/PhysRevA.87.022117.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000133045 8564_ $$uhttps://juser.fz-juelich.de/record/133045/files/PhysRevA.87.022117.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000133045 909CO $$ooai:juser.fz-juelich.de:133045$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000133045 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000133045 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000133045 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000133045 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000133045 9141_ $$y2013
000133045 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000133045 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000133045 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000133045 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000133045 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000133045 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000133045 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000133045 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000133045 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000133045 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000133045 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000133045 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000133045 920__ $$lyes
000133045 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000133045 980__ $$ajournal
000133045 980__ $$aVDB
000133045 980__ $$aUNRESTRICTED
000133045 980__ $$aI:(DE-Juel1)JSC-20090406
000133045 9801_ $$aUNRESTRICTED
000133045 9801_ $$aFullTexts
000133045 999C5 $$1R. Kubo$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-642-96701-6$$y1985
000133045 999C5 $$1M. Nielsen$$2Crossref$$oM. Nielsen Quantum Computation and Quantum Information 2000$$tQuantum Computation and Quantum Information$$y2000
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/lapl.201110002
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01339852
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.30.504
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.43.2046
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.80.1373
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.050403
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys444
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.160404
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.79.061103
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/13/5/053009
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/12/5/055027
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.010405
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/98/40011
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.78.094003
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.79.124005
000133045 999C5 $$1H. De Raedt$$2Crossref$$oH. De Raedt Handbook of Theoretical and Computational Nanotechnology 2006$$tHandbook of Theoretical and Computational Nanotechnology$$y2006
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.62.4365
000133045 999C5 $$1J. von Neumann$$2Crossref$$oJ. von Neumann Mathematical Foundations of Quantum Mechanics 1955$$tMathematical Foundations of Quantum Mechanics$$y1955
000133045 999C5 $$1L. E. Ballentine$$2Crossref$$oL. E. Ballentine Quantum Mechanics: A Modern Development 2003$$tQuantum Mechanics: A Modern Development$$y2003
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.448136
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0021-9991(91)90137-A
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.56.1222
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.67.056702
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2006.08.007
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjb/e2006-00407-3
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1134/S0021364006140128
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1166/jctn.2011.1772
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.85.052117
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.110403
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.68.235106
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/10/11/115017
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/402/1/012019
000133045 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.phpro.2012.05.015