001     133045
005     20230217124410.0
024 7 _ |a 10.1103/PhysRevA.87.022117
|2 doi
024 7 _ |a 0556-2791
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a WOS:000315143200002
|2 WOS
024 7 _ |a 2128/10768
|2 Handle
037 _ _ |a FZJ-2013-01609
082 _ _ |a 530
100 1 _ |a Jin, Fengping
|0 P:(DE-Juel1)144355
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Quantum decoherence scaling with bath size: Importance of dynamics, connectivity, and randomness
260 _ _ |a College Park, Md.
|c 2013
|b APS
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 2013-02-20
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 2013-02-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1365684971_17250
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We consider the decoherence of a quantum system S coupled to a quantum environment E. For states chosen uniformly at random from the unit hypersphere in the Hilbert space of the closed system S+E we derive a scaling relationship for the sum of the off-diagonal elements of the reduced density matrix of S as a function of the size DE of the Hilbert space of E. This sum decreases as 1/√DE as long as DE≫1. We test this scaling prediction by performing large-scale simulations which solve the time-dependent Schrödinger equation for a ring of spin-1/2 particles, four of them belonging to S and the others to E, and for this ring with small world bonds added in E and/or between S and E. The spin-1/2 particles experience nearest-neighbor interactions that are identical for the interactions within S and random for the interactions within E and between S and E, or that are all identical. Provided that the time evolution drives the whole system from the initial state toward a scaling state, a state which has similar properties as states belonging to the class of quantum states for which we derived the scaling relationship, the scaling prediction holds. We examine various interaction parameters and initial states for our model system to find whether or not the time evolution reaches the class of states that have the scaling property. For the homogeneous ring we find that the evolution for select initial states does not reach these scaling states. This conclusion is not modified if we add some homogeneous random connections. For a ring we find that some randomness in the interaction parameters is required so that most initial configurations are driven toward the scaling state. Furthermore, if the amount of randomness is small the time required to reach the scaling states may be very large. For the case of all random interactions in E the ring is driven toward the scaling state. Adding small world bonds between S and E with random interaction strengths may decrease the time required to reach the scaling state or may prevent the scaling state from being reached. For the latter case we show that increasing the complexity of the environment by adding extra connections within the environment suffices to observe the predicted scaling behavior.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 0
542 _ _ |i 2013-02-20
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
542 _ _ |i 2014-02-20
|2 Crossref
|u http://link.aps.org/licenses/aps-default-accepted-manuscript-license
588 _ _ |a Dataset connected to
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 1
|u fzj
700 1 _ |a Novotny, Mark A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Miyashita, Seiji
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Yuan, Shengjun
|0 P:(DE-HGF)0
|b 4
700 1 _ |a De Raedt, Hans
|0 P:(DE-HGF)0
|b 5
773 1 8 |a 10.1103/physreva.87.022117
|b American Physical Society (APS)
|d 2013-02-20
|n 2
|p 022117
|3 journal-article
|2 Crossref
|t Physical Review A
|v 87
|y 2013
|x 1050-2947
773 _ _ |a 10.1103/PhysRevA.87.022117
|g Vol. 87, no. 2, p. 022117
|0 PERI:(DE-600)2844156-4
|n 2
|p 022117
|t Physical review / A
|v 87
|y 2013
|x 1050-2947
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/133045/files/PhysRevA.87.022117.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/133045/files/PhysRevA.87.022117.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/133045/files/PhysRevA.87.022117.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-700
|u https://juser.fz-juelich.de/record/133045/files/PhysRevA.87.022117.jpg?subformat=icon-700
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/133045/files/PhysRevA.87.022117.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:133045
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144355
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)138295
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1007/978-3-642-96701-6
|1 R. Kubo
|2 Crossref
|9 -- missing cx lookup --
|y 1985
999 C 5 |1 M. Nielsen
|y 2000
|2 Crossref
|t Quantum Computation and Quantum Information
|o M. Nielsen Quantum Computation and Quantum Information 2000
999 C 5 |a 10.1002/lapl.201110002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF01339852
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.30.504
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.43.2046
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.80.1373
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.050403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys444
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.99.160404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.79.061103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/13/5/053009
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/12/5/055027
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.106.010405
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/0295-5075/98/40011
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.78.094003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.79.124005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 H. De Raedt
|y 2006
|2 Crossref
|t Handbook of Theoretical and Computational Nanotechnology
|o H. De Raedt Handbook of Theoretical and Computational Nanotechnology 2006
999 C 5 |a 10.1103/PhysRevE.62.4365
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. von Neumann
|y 1955
|2 Crossref
|t Mathematical Foundations of Quantum Mechanics
|o J. von Neumann Mathematical Foundations of Quantum Mechanics 1955
999 C 5 |1 L. E. Ballentine
|y 2003
|2 Crossref
|t Quantum Mechanics: A Modern Development
|o L. E. Ballentine Quantum Mechanics: A Modern Development 2003
999 C 5 |a 10.1063/1.448136
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0021-9991(91)90137-A
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.56.1222
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.67.056702
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cpc.2006.08.007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epjb/e2006-00407-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1134/S0021364006140128
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1166/jctn.2011.1772
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.85.052117
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.102.110403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.68.235106
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/10/11/115017
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1742-6596/402/1/012019
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.phpro.2012.05.015
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21