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Propulsion by cilia is a fascinating and universal mechanism in
biological organisms to generate fluid motion on the cellular level.
Cilia are hair-like organelles, which are found in many different
tissues and many uni- and multicellular organisms. Assembled in
large fields, cilia beat neither randomly nor completely synchro-
nously—instead they display a striking self-organization in the
form of metachronal waves (MCWs). It was speculated early on
that hydrodynamic interactions provide the physical mechanism
for the synchronization of cilia motion. Theory and simulations
of physical model systems, ranging from arrays of highly simpli-
fied actuated particles to a few cilia or cilia chains, support this
hypothesis. The main questions are how the individual cilia inter-
act with the flow field generated by their neighbors and synchro-
nize their beats for the metachronal wave to emerge and how the
properties of the metachronal wave are determined by the geomet-
rical arrangement of the cilia, like cilia spacing and beat direction.
Here, we address these issues by large-scale computer simulations
of a mesoscopic model of 2D cilia arrays in a 3D fluid medium. We
show that hydrodynamic interactions are indeed sufficient to ex-
plain the self-organization of MCWs and study beat patterns, sta-
bility, energy expenditure, and transport properties. We find that
the MCW can increase propulsion velocity more than 3-fold and
efficiency almost 10-fold—compared with cilia all beating in phase.
This can be a vital advantage for ciliated organisms and may be
interesting to guide biological experiments as well as the design
of efficient microfluidic devices and artificial microswimmers.
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Fluid transport and locomotion due to motile cilia are ubiqui-
tous phenomena in biological organisms on the cellular level

(1, 2). Motile cilia are found in many different tissues—from the
brain (3) to the lung and the oviduct—and in many uni- and
multicellular organisms—from Clamydomonas (4) and Volvox
(5, 6) algae to Paramecium. Motile cilia on the surface of a cell
perform an active whip-like motion, which propels the fluid along
the surface of cells and tissues. In motile cilia, the beat consists
of a fast power stroke in which the cilium has an elongated shape
and a slower recovery stroke in which the cilium is curved and
closer to the cell surface (Fig. 1A). Due to their typical size in the
range of 5–20 μm length and 0.25–1.0 μm thickness, the dynamics
of cilia in a fluid are dominated by the balance of force generated
by motor proteins (7, 8) and fluid viscosity and are thus charac-
terized by small-Reynolds-number hydrodynamics (9). Cilia some-
times act together in pairs, such as in the breast-stroke–like motion
of Clamydomonas (4), but much more often in large arrays, such
as on the surface of Paramecium and Opalina or the tissue lining
the airways of the lung. In all these cases, the beat of different
cilia is not random, but strongly synchronized. For many cilia
arrays, a wave-like pattern has been found and described, which
is called a metachronal wave (MCW) (10). Biomimetic systems
of externally actuated semiflexible strings, like chains of magnetic
beads, have been proposed to use the cilia propulsion mechanism
in artificial nanomachines and microfluidic devices (11–17).
Theoretical approaches to investigate hydrodynamic interactions

between cilia and the formation of metachronal waves fall into
three categories: (i) highly simplified model systems, designed to
elucidate the mechanism of hydrodynamic synchronization of many
active agents (18–23); (ii) models of an actively driven semiflexible

filament, which mimic the beat of a real cilium (24–27); and
(iii) models of a filament, with a beat shape obtained from
maximizing the pumping efficiency (28, 29).
The first class of models consists either of rotors—spheres

orbiting on quasi-elliptical trajectories near a wall (19–22)—or
rowers—spheres that oscillate on a line with different hydrody-
namic radii in the two directions of motion (18, 23)—in both
cases under a constant driving force. Two rotors have been found
to show asynchronous dynamics—taken as an indication for meta-
chronal coordination—if their distance is close enough or their
relative orientation is perpendicular to the beat direction (19).
One-dimensional chains of such rotors (with their rotation planes
parallel to the surfaces) show metachronal waves, when each rotor
is given some flexibility in its motion around the anchoring point
(20). One-dimensional chains of rowers also show metachronal
waves under special conditions (18, 23).
The second class of models consists of semiflexible filaments,

which are deformed actively by internal forces to reproduce the
power and recovery strokes of real cilia and can react to the flow
field generated by their neighbors (24–27, 30). The studies of
such models have been restricted so far to effectively one-di-
mensional chains of cilia (24–27) or to 2D arrays of a small
number (5 × 5) of cilia (30). They provide an indication of
metachronal coordination, but the systems are too small or
the time evolution too short to allow any prediction of MCW
properties.
The third class of models also considers cilia as filaments,

which are described by a chain of beads, similar to the previous
case; however, the beat shape and the metachronal coordination
are now determined by optimizing the pumping efficiency (28,
29). This has been done for a single cilium (29) or an array of
12 × 12 cilia (28). Under this assumption of maximum efficiency,
MCW properties like wave direction and efficiency gain have
been predicted.
Here, we present a model of independently beating cilia, which

allows us to address the following questions: What is the stability
of MCWs in the presence of internal or external noise? Is the
wave perfect, or are irregularities and domains abundant? What
are the transport properties and the efficiency gain of self-
organized MCWs? How do the MCW properties depend on
power-stroke direction and cilia spacing?

Model
The goal of our study is to elucidate the formation and stability
of metachronal waves in large 2D cilia arrays, in which each
cilium beats autonomously and is subject to internal or external
noise. Thus, three aspects of ciliary beating are of fundamental
importance for the construction of our computational cilium
model. First, hydrodynamic interactions between cilia are the
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likely cause of synchronization and therefore have to be fully
and consistently taken into account. Second, there are plentiful
sources of noise in biological systems—ranging from thermal
noise to noise in the activity of molecular motors (4, 31)—which
oppose synchronization. Third, a cilium has to be able to react
to the hydrodynamic forces exerted on it by its neighbors, by
modifying the duration of power and recovery strokes depending
on the instantaneous, local flow velocity.
We model cilia as semiflexible rods with active bending forces.

For the beat pattern, we use the beat of paramecium to guide the
construction of the temporal and spatial dependence of the cur-
vature forces. The switching between power and recovery strokes
and vice versa is geometry controlled, similar to the “geometric
clutch hypothesis” used previously in theoretical investigations of
the beat pattern of individual cilia and flagella (32). The resulting
beat pattern is shown in Fig. 1 A and B.
To describe the dynamics of the surrounding fluid, we use the

multiparticle collision dynamics (MPC) approach, a particle-
based mesoscale hydrodynamic simulation technique that
naturally includes thermal fluctuations (33, 34). We use the ef-
fective temperature inherent to our fluid-dynamics model to
mimic the noise present in any biological system. In this way,
we also demonstrate the robustness of our predictions to random
perturbations.
Thus, in our model all cilia beat independently, with their beat

reacting only to the fluid flow around them. As we impose forces,
and not time-dependent cilia shapes, the beat period τb increases
with the viscosity η. Hundreds to thousands of these model cilia
are grafted on a no-slip wall, arranged in a square lattice with
lattice constant dc. The direction of the power stroke is set at an
angle Θ with respect to one of the main lattice directions. A
second no-slip wall closes the system two cilia lengths above. In
the lateral directions we use periodic boundary conditions for
the fluid motion. Alternatively, we use only a single cilium in
a small box of size dc with periodic boundary conditions to rep-
resent an infinite array of synchronously beating cilia—allowing us
to identify effects of metachronal coordination. For details see
Materials and Methods and SI Materials and Methods, in particular
Figs. S1–S3.

Emergence of MCWs
The fundamental result of our numerical study is that all in-
vestigated cilia arrays show metachronal coordination (Fig. 1C
and Movie S2). We initialize the system with all cilia in the same
conformation. After a few beating cycles, the synchrony is quickly

lost and is replaced by an essentially uncorrelated behavior.
Clearly, the noise plays an important role in this quick loss of
synchrony. Then metachronal coordination slowly emerges, as can
be seen from the increasing size of correlated regions with time.
In small arrays of 20 × 20 cilia, the correlation is in many cases so
strong that the correlation length exceeds the system size. Such
long-ranged correlations, despite the presence of the strong
noise, demonstrate the stability of the metachronal wave. Be-
cause no other interactions (chemical or electrostatic) are pres-
ent in our simulations, and neighboring cilia hardly ever come
into spatial contact, hydrodynamics interaction must be the es-
sential mechanism of synchronization.
To investigate the formation and the properties of MCWs

quantitatively, we use a scalar variable to characterize the beat-
ing state of a single cilium; here, we use the projected distance of
the tip from the base in the basal plane (Materials and Methods).
Fig. 2 A and B displays snapshots of the MCW in this

Fig. 1. (A and B) Side (A) and top (B) views of the beat pattern of the computational cilia model. Subsequent conformations are equally spaced in time. The
simulated beat pattern is, for example, very similar to the beat pattern of rabbit tracheal cilia in culture medium (39). The fast, planar power stroke (frames 1–5)
continues until a positive curvature threshold in the lower part of the cilium is reached. The cilium then switches to a slow, out-of-plane recovery stroke
(frames 6–17), which ends when a negative curvature threshold is exceeded. See also Movie S1. A more detailed description is provided in Materials and
Methods and in SI Materials andMethods. (C) Simulation snapshot of an array of 40 × 40 beating cilia. Cilia are placed on a square lattice, with lattice constant dc.
The metachronal wave can be easily recognized by the lines of fully extended cilia during the power stroke. See also Movie S2.
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Fig. 2. (A and B) Phase-field representations of a metachronal wave, for an
array of 60 × 60 cilia, at two times separated by about 40 beats. The color
denotes the projected displacement of the tip of a cilium from its base in the
direction of the power stroke. (C) Time dependence of a selected line of cilia
along the x axis. As a function of time, defects in the metachronal wave
pattern appear and disappear.

Elgeti and Gompper PNAS | March 19, 2013 | vol. 110 | no. 12 | 4471

A
PP

LI
ED

PH
YS

IC
A
L

SC
IE
N
CE

S
BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1218869110/-/DCSupplemental/pnas.201218869SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1218869110/-/DCSupplemental/pnas.201218869SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1218869110/-/DCSupplemental/pnas.201218869SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1218869110/-/DCSupplemental/sm02.mov
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1218869110/-/DCSupplemental/sm01.mov
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1218869110/-/DCSupplemental/pnas.201218869SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1218869110/-/DCSupplemental/sm02.mov


representation at fixed time and demonstrates that the wave is not
perfect,but contains domains of significantly different wave lengths
and propagation directions. Domains extend over several wave
lengths, both parallel and perpendicular to the MCW direction.
The boundary between domains shows defects similar to those of
grain boundaries in imperfect crystals. Fig. 2C shows the temporal
evolution along one spatial direction and highlights not only the
persistence of domain boundaries at the same position while the
MCW passes over them, but also the formation and healing of
defects in the wave structure. The properties of MCWs can then
be analyzed by a correlation function Gc(r, t) of displacement of
two cilia at a relative distance r with time lag t. Gc(r, t) is found to
oscillate in space and time and simultaneously to display a spatial
decay (Materials and Methods and SI Materials and Methods, in
particular Figs. S4–S5). In this way, many features of the meta-
chronal wave can be extracted, such as the characteristic wave
length λ, the propagation direction, the beat period τb, two cor-
relation lengths ξ1 and ξ2, and the main correlation direction
(compare Fig. 3).
For the investigation of MCW properties, we focus on the

dependence on the cilia spacing dc and the power-stroke direction
(determined by the angleΘ). We find that the wave length is about
two cilia lengths, λ ’ 2Lc, depending only weakly on both dc and
Θ. This agrees well with experiments on frog esophagus (35). It
is important to realize that the propagation direction of the
MCW does not have to be the same as the power-stroke di-
rection. In our cilia model, the metachronal wave propagates

typically 30°–50° to the right of the power-stroke direction, nearly
independent of the cilia spacing and power-stroke direction (Fig.
3). This wave direction is thus somewhere between symplectic (in
the direction of the power stroke) and laeoplectic (perpendicular
to the power-stroke direction) metachronism (10). An exception
is the simulation with the power stroke parallel to the lattice. In
this case we find antiplectic metachronism (i.e., the wave travels
opposite to the power-stroke direction). We expect that the prop-
agation direction depends significantly on the aplanarity of the
beat pattern (Fig. 1A).
The main correlation direction is determined by the direction

of slowest decay of the correlation function Gc(r, t). In the
simulations, it is found to be roughly parallel to the power-
stroke direction, see Fig. 3, in agreement with observations
for frog esophagus (35). The main correlation direction de-
pends very weakly on cilia spacing; some small systematic de-
viation can be seen in Fig. 3, which we attribute to interplay of the
metachronal wave with the high-symmetry directions of the square
lattice.

Transport
Transport and Beating Period. We now turn our attention to fluid
transport, the main function of cilia. Because the beat period τb is
the dominant timescale, the transport velocity can be expected to
scale with the beat frequency. This has been shown experimentally
for mucus-propelling cilia (36). We thus first discuss the beat
period in more detail (Fig. 4A). The simulations show that
τb of synchronously beating cilia decreases with decreasing
cilia spacing, whereas τb of cilia in metachronal coordination
increases. With increasing cilia distance, the difference be-
tween beat frequencies with and without metachronal co-
ordination decreases, until τb is independent of metachronal
coordination for large distances dc/Lc ≳ 1.0. Furthermore, we
note that the SD of the period is by far smaller for synchro-
nously beating cilia then for cilia in metachronal coordination
(Fig. 4). The physical origin of these behaviors is discussed in
the Interpretation section.

Transport Velocity.A simple picture of an array of periodic rowers
would now suggest that the transport velocity is proportional to
the beat frequency and the cilia density. The observed fluid
transport velocities, shown in Fig. 4B, come thus as a surprise,
because they show a much larger velocity for MCWs compared
with synchronous beating although the beat frequency in
MCWs is reduced. The metachronal gain, the increase of fluid
transport velocity due to metachronal coordination, would thus
be even larger if the same beat frequency were maintained. The
transport velocity is essentially independent of metachronal
coordination for “large” cilia separations dc ’ Lc. For cilia that
are packed more closely, fluid transport is faster, as expected.
However, this effect is much stronger for metachronally co-
ordinated cilia. This results in an enhancement of almost
a factor of 3 in fluid velocity between metachronal and syn-
chronous beating cilia for the smallest investigated cilia spacing
of dc/Lc = 0.3. The data in Fig. 4B for the dependence of the
transport velocity v on the cilia distance dc are well described by
a power-law decay,

v∼ d−αc : [1]

Fits of this dependence to the simulation data in the range
0.3 ≤ dc/Lc ≤ 1.0 yield α = 1.4 for MCWs in arrays of 20 × 20 cilia
and α = 0.6 for synchronously beating cilia.

Transport Efficiency. The reduced beat frequency and increased
fluid velocity imply a markedly enhanced transport efficiency of
cilia with metachronal coordination. We define a dimensionless
efficiency e as the ratio of the cilia energy consumption Pc per
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unit time and the power required to obtain the same average
velocity with a constant driving-force density in a film of the
thickness Lc as the cilia length, at a (single) no-slip wall in a
semiinfinite system. This implies that

e=
16
3
ηv2d2c
LcPc

[2]

(details in SI Materials and Methods, in particular Fig. S6), in
agreement with the functional form of the efficiency used in
refs. 28 and 29. As the energy consumption per cilium per beat,
ΔE, is roughly independent of cilia spacing, we obtain approx-
imately Pc ’ ΔE/τb. The efficiency as a function of cilia spacing
is shown in Fig. 4C. Because cilia in MCWs beat slower, and
propel the fluid faster, the efficiency increases up to 10-fold
through metachronal coordination. The optimal efficiency is
found at a cilia spacing of about 0.5Lc for metachronally co-
ordinated cilia. In the limit of large dc, the efficiency is expected
to be independent of the cilia coordination.

Interpretation.Next we discuss the physical origin of the observed
behavior of MCWs. The increasing transport velocity with de-
creasing cilia spacing can be understood from simple scaling
arguments. As a strongly simplified model, we consider again
Poiseuille-like flow, which is driven by a constant force density g
(per unit volume) in a layer of thickness Lc near a no-slip wall.
This model yields an average transport velocity v= gL2

c=ð4ηÞ and
power consumption per unit area Pc=d2c = g2L3

c=ð3ηÞ (SI Materials
and Methods). To proceed, we need to relate the cilia action to
the driving force in the Poiseuille-like flow. A reasonable assump-
tion is that each cilium generates a constant total pushing force
Fc, which is homogeneously distributed over the volume d2cLc,
which implies

v∼ ðFcLc=ηÞd−2c : [3]

Alternatively, we can assume that each cilium works at a con-
stant total power output ePc. Because P ∼ Fv, this implies that at
higher velocities, the cilia exert a lower force. For the Poiseuille-
like case, this yields

v∼ ðPcLc=ηÞ1=2d−1c : [4]

Because the simulation results are reasonably well described
by the exponents α = 1.4 and α = 0.6 for systems with and without
MCWs, respectively, we conclude that cilia in MCWs are more
able to exert their full force on the fluid than synchronously
beating cilia. The exponent α > 1 for MCWs indicates that the
cilia actually create (on average) a larger power output the closer
they are packed, in contrast to synchronously beating cilia.
Why are cilia in metachronal coordination more able to exert

their full force than synchronously beating cilia? Clearly this is an
effect of correlations. When the distance between cilia is large,
hydrodynamic interactions (HI) become unimportant, so that
the beat period and transport are independent of metachronal
coordination. As dc decreases, the effect of HI on synchronously
beating cilia is different from the effect on cilia in metachronal
coordination. Synchronously beating cilia facilitate the beat of
their neighbors through hydrodynamic interactions, because the
flow field they generate points in the same direction as the beat.
Although this results in faster movement—explaining the ob-
served decrease of the beat period (Fig. 4A)—it also implies that
only a fraction of the force can be converted into forward fluid
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Fig. 5. Schematic view of metachronal beating to explain the origin of metachronal gain.
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motion. Like a cyclist in too low gear, pedaling is fast, but in-
efficient. Furthermore, a large part of the fluid is just moving
back and forth. This causes larger local shear rates and thus
more energy dissipation.
On the other hand, a cilium in metachronal coordination feels

an opposing flow of its neighbors, slowing down the beat (Fig. 5
shows a schematic view). During both power and recovery strokes,
the cilia feel an opposing flow generated by the neighboring cilia.
First, this implies that cilia beat slows down with decreasing dc,
consistent with the increase in beat period (Fig. 4A) (the increased
SD of the beat period τb in MCWs can be traced back to the
significant modification of the beat pattern of individual cilia
within an MCW, whereas the beat pattern of synchronously
beating cilia is stabilized by the identical beat of the neighbors).
Second, working against the opposing flow of their neighbors,
cilia in MCWs are able to exert a large force on the fluid, which
implies a better velocity scaling; compare Eq. 3. These argu-
ments qualitatively explain the observed beat frequencies, fluid
velocities, and transport efficiency.

Discussion
It is now interesting to compare the results of our self-organized
MCWmodel with the results of the “optimized-efficiency”model
of ref. 28. We stress that the model of ref. 28 is based on the very
strong assumption that the shape and time dependence of the
cilia beat are governed by the search for optimum efficiency. In
contrast, our approach starts from a self-generated beat of a single
cilium, which then adapts to the fluid-mediated forces by the
other cilia. We address three points. First, the dependence of
the average fluid velocity on the cilia spacing can be extracted from
the efficiency data presented in ref. 28; here, a fit to an effective
power law yields e ∼ (dc/Lc)

−1.25, which corresponds to a velocity
v∼

ffiffiffi

e
p

Lc=dc ∼ d−1:6c (obtained from Eq. 2 for constant Pc). Some-
what surprisingly, this is quite comparable to our velocity decay
v∼ d−1:4c . Second, a comparison of the absolute efficiency shows
that the efficiency of our model is at least an order of magnitude
smaller than that of the model of ref. 28. Several factors con-
tribute to the reduction of efficiency, such as (i) the internal
dissipation of our cilia, (ii) the not efficiency-optimized beat of
our cilia, in particular the larger distance of the flagellum from
the wall during the recovery stroke, (iii) some slip of the fluid on
the cilia, (iv) defects in the MCW (Fig. 2), and (v) the presence
of a second wall at distance 2Lc (whereas a semiinfinite fluid was
considered in ref. 28). However, when the efficiency gain is
compared for dc/Lc = 1 (the only cilia distance where this in-
formation is available in ref. 28), we find a quite similar factor of
2.0 for our model to 3.5 for the optimized-efficiency model.
Third, and finally, for the case of flow direction equaling lattice
direction studied in ref. 28, the MCW is predicted to be anti-
plectic, in agreement with our results for Θ = 0. However, the
data for our model presented in Fig. 3 show that Θ = 0 is a rather
special case, because for all other cases we find a wave that is
between symplectic and laeoplectic. It is interesting to note that
the results of the optimized-efficiency model for Θ = 0 indicate
that symplectic waves are nearly as efficient as antiplectic waves.
It would be interesting to see whether symplectic waves can also
be obtained in the optimized-efficiency model for flow directions
differing from the main lattice direction.

Conclusions and Outlook
In summary, our results provide insight into the mechanism of
cilia-driven transport. The modeling framework presented here
can be extended in the future to understand other cilia-related
transport phenomena and swimming of ciliated microorganisms.
It can also be used to study and understand the cellular origins of
cilia-dysfunction–related diseases (37). In particular, we hope
that our results will stimulate biological experiments to study the
dependence of MCW properties on cilia spacing. In systems of

artificial cilia (11–14, 16, 17), the main obstacle so far for the
self-organized formation of MCWs is the need for an internal
feedback of the cilia beat on the local flow conditions. We hope
that our results will contribute to the design of new autonomous
cilia-like rowers, which have this important property.

Materials and Methods
A detailed description of the model, methods, and results is given in SI
Materials and Methods. A brief summary is given below.

Model.Weuseamechanistic, 3Dmodel of a cilium,which is designed to capture
the active beat and the hydrodynamics of interacting cilia arrays. Each cilium is
represented by a bundle of three parallel semiflexible filaments, each of which
consists of a linear chain of beads and springs (Fig. 6); the filaments are inter-
connected by a second type of spring to keep them approximately at a fixed
distance from each other (38). For activity, a dynamic spontaneous curvature is
created by locally varying the lengths of springs of one of the three filaments.
This mechanism is inspired by the connecting dynein motors moving along ad-
jacent microtubules in the axoneme—including the effect of a stall force.
During the power stroke, the force distribution along the cilium is adjusted
such that a nearly straight, extended conformation is achieved. In the re-
covery stroke, the force distribution is constructed such that a strongly
curved part travels from the anchoring part of the cilium to its free end. For
MCWs to develop, a feedback between the hydrodynamic flow and the
beat pattern is essential. Motivated by the “geometric clutch hypothesis”
(32), we assume that switching between power and recovery strokes is
controlled by curvature thresholds of the individual cilium; i.e., no external
clock is used to determine the beat pattern. The power-stroke direction
(PSD) forms an angle Θ with the main lattice direction, as illustrated in Fig. 6.

Correlation Function. To characterize MCWs, we define the phase of the beat
of an individual cilium by B = cos(Θ)Δx + sin(Θ)Δy, where Δx = x(tip) − x(base)
and Δy = y(tip) − y(base) are the projected displacements of the tip of the
cilium from its base, and Θ is the power-stroke direction. This defines the
phase field B(r, t), where r is

Gcðr; tÞ= ÆδBðr0; t0ÞδBðr0 + r; t0 + tÞæ0=ÆδBðr0; t0Þ2æ; [5]

where δB(r0, t0) = B(r0, t0) − B(r0, t0), and the average is taken over all lattice
positions r0 and over a time interval of about 10 beat periods. After some
initial time interval, correlations are verywell describedby the functional form

Gcðr; tÞ= cosðk · r −ωtÞ½ð1− c1Þexpð− ffiffiffiffiffiffiffi

rχr
p Þ+ c1�: [6]

The fitted parameters are the wave vector k, the correlation matrix χ (where

PSD

x

y

z

cd

θ

Fig. 6. Each cilium is modeled by three semiflexible filaments consisting of
chains of monomers that are connected by harmonic springs of length

b (nearest neighbors) and c (next-nearest neighbors) to form a crane-like
structure. Bond lengths are varied to induce a preferred curvature. The bond
lengths of the “red” filament are varied to create the power and recovery
strokes. In addition, the preferred bond lengths of the seven bonds at the
base of the “green” filament are stretched by 10% to generate aplanarity
during the recovery stroke. The power-stroke direction (PSD) is rotated by an
angle Θ with respect to the main lattice direction.
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χ is a 2 × 2 matrix, with the two eigenvalues 1=ξ21 and 1=ξ22), the beat fre-
quency ω, and a long-range order parameter c1. These quantities allow

a detailed characterization of the metachronal wave. This scheme should
also be well suited for the analysis of experimental data.
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