000013318 001__ 13318
000013318 005__ 20240619090940.0
000013318 0247_ $$2DOI$$a10.1021/jp107281v
000013318 0247_ $$2WOS$$aWOS:000284455200051
000013318 0247_ $$2MLZ$$aBlanchardRMJKSBLJWHFV2010
000013318 037__ $$aPreJuSER-13318
000013318 041__ $$aeng
000013318 082__ $$a540
000013318 084__ $$2WoS$$aChemistry, Physical
000013318 084__ $$2WoS$$aNanoscience & Nanotechnology
000013318 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000013318 1001_ $$0P:(DE-HGF)0$$aBlanchard, D.$$b0
000013318 245__ $$aHydrogen Rotational and Translational Diffusion in Calcium Borohydride from Quasielastic Neutron Scattering and DFT Calculations
000013318 260__ $$aWashington, DC$$bSoc.$$c2010
000013318 300__ $$a20249 - 20257
000013318 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000013318 3367_ $$2DataCite$$aOutput Types/Journal article
000013318 3367_ $$00$$2EndNote$$aJournal Article
000013318 3367_ $$2BibTeX$$aARTICLE
000013318 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000013318 3367_ $$2DRIVER$$aarticle
000013318 440_0 $$016841$$aJournal of Physical Chemistry C$$v114$$x1932-7447$$y47
000013318 500__ $$aThis work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institute, Villigen, Switzerland and at FRMII, JCNS Garching, Germany. The authors would like to acknowledge the European Graduate School for Sustainable Energy Technology and the Nordic Center for Excellence on Hydrogen Storage Materials. The Danish Center for Scientific Computing is acknowledged for super-computer access. The Center for Atomic Materials Design (CAMD) is supported by the Lundbeck Fondation. Financial support by EU-IP NESSHY (Contract #518271) and the ERA-NET project Hy-CO is also gratefully acknowledged.
000013318 520__ $$aHydrogen dynamics in crystalline calcium borohydride can be initiated by long-range diffusion or localized motion such as rotations, librations, and vibrations. Herein, the rotational and translational diffusion were studied by quasielastic neutron scattering (QENS) by using two instruments with different time scales in combination with density functional theory (DFT) calculations. Two thermally activated reorientational motions were observed, mound the 2-fold (C-2) and 3-fold (C-3) axes of the BH4- units, at temperature from 95 to 280K. The experimental energy barriers (Ea(C2) = 0.14 eV and Ea(C3) = 0.10 eV) and mean residence times are comparable with those obtained from DFT calculations. Long-range diffusion events, with an energy barrier Of E-aD = 0.12 eV and an effective jump length of similar to 2.5 angstrom were observed at 224 and 260 K. Three vacancy-mediated diffusion events, H jumps between two neighboring BH4-, and diffusion of BH4- and BH3 groups were calculated and finally discarded because of their very high formation energies and diffusion barriers. Three interstitial diffusion processes (H, H-2, and H2O) were also calculated. The H interstitial was found to be highly unstable, whereas the H-2 interstitial has a low energy of formation (0.40 eV) and diffusion barrier (0.09 eV) with a jump length (2.1 angstrom) that corresponds well with the experimental values. H2O interstitial has an energy of formation of -0.05 eV, and two different diffusion pathways were found. The first gives a H jump distance of 2.45 angstrom with a diffusion barrier of 0.68 eV, the second one, more favorable, exhibits a H jump distance of 1.08 angstrom with a barrier of 0.40 eV. The correlation between the QENS and DFT calculations indicates that, most probably, it is the diffusion of interstitial H-2 that was observed. The origin of the interstitial H-2 might come from the synthesis of the compound or a side reaction with trapped synthesis residue leading to the partial oxidation of the compound and hydrogen release.
000013318 536__ $$0G:(DE-Juel1)FUEK415$$2G:(DE-HGF)$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x0
000013318 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x1
000013318 588__ $$aDataset connected to Web of Science
000013318 650_7 $$2WoSType$$aJ
000013318 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eSPHERES: Backscattering spectrometer$$fNL6S$$x0
000013318 7001_ $$0P:(DE-HGF)0$$aRiktor, M.$$b1
000013318 7001_ $$0P:(DE-HGF)0$$aMaronsson, J.$$b2
000013318 7001_ $$0P:(DE-HGF)0$$aJacobsen, H.$$b3
000013318 7001_ $$0P:(DE-HGF)0$$aKehres, J.$$b4
000013318 7001_ $$0P:(DE-HGF)0$$aSveinbjörnsson, D.$$b5
000013318 7001_ $$0P:(DE-HGF)0$$aBardaji, E.$$b6
000013318 7001_ $$0P:(DE-HGF)0$$aLéon, A.$$b7
000013318 7001_ $$0P:(DE-HGF)0$$aJuranyi, F.$$b8
000013318 7001_ $$0P:(DE-Juel1)131044$$aWuttke, J.$$b9$$uFZJ
000013318 7001_ $$0P:(DE-HGF)0$$aHauback, B.$$b10
000013318 7001_ $$0P:(DE-HGF)0$$aFichtner, M.$$b11
000013318 7001_ $$0P:(DE-HGF)0$$aVegge, T.$$b12
000013318 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/jp107281v$$gVol. 114, p. 20249 - 20257$$p20249 - 20257$$q114<20249 - 20257$$tThe @journal of physical chemistry <Washington, DC> / C$$v114$$x1932-7447$$y2010
000013318 8567_ $$uhttp://dx.doi.org/10.1021/jp107281v
000013318 909CO $$ooai:juser.fz-juelich.de:13318$$pVDB
000013318 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000013318 9141_ $$y2010
000013318 9131_ $$0G:(DE-Juel1)FUEK415$$aDE-HGF$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x0
000013318 9131_ $$0G:(DE-Juel1)FUEK505$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x1
000013318 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0
000013318 9201_ $$0I:(DE-Juel1)VDB784$$d31.12.2010$$gIFF$$kIFF-4$$lStreumethoden$$x0
000013318 9201_ $$0I:(DE-Juel1)JCNS-20121112$$kJülich Centre for Neutron Science JCNS (JCNS) ; JCNS$$lJCNS$$x1
000013318 970__ $$aVDB:(DE-Juel1)125218
000013318 980__ $$aVDB
000013318 980__ $$aConvertedRecord
000013318 980__ $$ajournal
000013318 980__ $$aI:(DE-Juel1)PGI-4-20110106
000013318 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000013318 980__ $$aUNRESTRICTED
000013318 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000013318 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000013318 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128
000013318 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000013318 981__ $$aI:(DE-Juel1)PGI-4-20110106
000013318 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000013318 981__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000013318 981__ $$aI:(DE-Juel1)JCNS-ILL-20110128