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Summary

Good knowledge of the hydraulic properties of the vadose zone is important for understanding water
flow and solute transport processes therein. This can help to promote sustainable use and mitigate
anthropogenic threats to soil and water resources. The use of time-lapse geophysical data to constrain
our understanding of the flow and transport properties of the vadose zone is now well recognised.
Conventional use of geophysical data to estimate the hydraulic properties of the vadose zone is based
on an uncoupled inversion approach including an ill-posed tomograhic inversion step which can lead
to error propagation to the estimated hydraulic properties. One way of improving the accuracy of
estimating soil hydraulic properties is to use a so-called coupled hydrogeophysical inversion
approach. In this inversion approach, the tomograhic inversion step is avoided as geophysical
measurements are directly used in the hydrological inverse problem by coupling a forward model of
the geophysical measurements with a hydrological model describing the hydrologic processes under
investigation. Although the potential benefits of the coupled inversion approach have been illustrated
with synthetic data, there are very few applications of the approach to actual field or laboratory data.
Moreover, most studies using this approach focused on electrical resistivity tomography (ERT) and
ground penetration radar (GPR), and the usefulness of this inversion approach remains to be explored
for a range of other geophysical methods. Although coupled hydrogeophysical inversion frameworks
are flexible enough for the integration of multiple hydrologic and geophysical data types, this data
fusion aspect has also received less attention. Therefore, the aim of this thesis was to develop
inversion frameworks for the estimation of effective subsurface hydraulic parameters from: i) the
fusion of ERT and inflow data obtained under constant head infiltration in a field sandy loam, ii) SP
data acquired during primary drainage of a sandy soil column, and iii) TDR data obtained under
falling head infiltration into an initially dry sandy loam.

Based on synthetic and actual data we showed that it is feasible to estimate three key Mualem-van Genuchten
parameters (a, n and Kj), using the developed coupled hydrogeophysical inversion frameworks for ERT, SP
and TDR. In all cases, the inversion results compared well with independently obtained values. With respect
to the fusion of ERT and inflow data, it was observed that the success of the procedure depends on the choice
of an appropriate objective function. The best results were obtained when an objective function defined as the
sum of the root mean square error of both data types normalized by the standard deviation of the respective
measurements was used. On the other hand, successful inversion of the SP data depended on efficient pre-
treatment of the measured signals prior to inversion and the availability of an adequate model for the voltage
coupling coefficient at partial saturation. By comparing different models for the voltage coupling coefficient
at partial saturation to the experimental data, it was observed that models that relate the voltage coupling
coefficient to the relative permeability of the porous medium in addition to the saturation in water were most
appropriate. In the case of inversion of TDR data, a comparison of the coupled and uncoupled inversion
approaches revealed that the coupled inversion approach is more practical and less uncertain. Particularly it
was observed that coupled hydrogeophysical inversion enables simultaneous monitoring of ponding depth and
water infiltration, which avoids the laborious task of manually measuring the ponding depths and can
thus enable rapid estimation of the soil hydraulic parameters for multiple locations through automatic
measurements of ponded infiltration for multiple rings through TDR multiplexing.

Future studies should focus on using the coupled hydrogeophysical inversion approach to estimate
spatially varying hydraulic properties which are more characteristic of the vadose zone. At the
expense of a higher computational cost, better estimates of parameter uncertainties can be obtained
with the use of MCMC algorithms that provide posterior probability distributions of the inverted
parameters.
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Zusammenfassung

Die genaue Kenntnis der hydraulischen Eigenschaften der ungesittigten Zone ist wichtig fiir das
Verstidndnis deren Wasser- und Stofftransportprozesse. Dies fordert eine nachhaltige Nutzung und
mildert anthropogene Gefahren fiir die Ressourcen Boden und Wasser. Zeitabhingige
geophysikalische Daten sind mittlerweile eine weithin akzeptierte Quelle zur Erweiterung unseres
Wissens um Fluss- und Transporteigenschaften der ungesittigten Zone. Der herkommliche Einsatz
geophysikalischer Daten zur Abschidtzung hydraulischer Eigenschaften der ungesittigten Zone folgt
einem sequentiellen Ansatz, der als ungekoppelte hydrogeophysikalische Inversion bezeichnet wird.
Diese Inversion ist typischerweise unterbestimmt und schlecht konditioniert, und erfordert
Regularisierung zur Stabilisierung des inversen Problems. Ein Weg, um die Genauigkeit der
Abschitzung bodenhydraulischer FEigenschaften zu verbessern ist daher, eine gekoppelte
hydrogeophysikalische Inversion zu entwickeln. In diesem gekoppelten Inversionsansatz werden die
geophysikalischen Messungen sofort im hydrologischen Inversionsproblem eingesetzt, indem das
Vorwirtsmodell der geophysikalischen Messungen an ein hydrologisches Modell zur Beschreibung
der beobachteten hydrologischen Prozesse gekoppelt wird. Obgleich die moglichen Vorteile der
gekoppelten hydrogeophysikalischen Inversion an synthetischen Daten demonstriert wurden, gibt es
bislang nur wenige Anwendungen der Methode auf reale Feld- oder Labordaten. Aulerdem
konzentrieren sich die meisten Studien, die den gekoppelten hydrogeophysikalischen
Inversionsansatz einsetzen auf elektrische Widerstands-Tomographie (electrical resistivity
tomography, ERT) und Bodenradar (ground penetrating radar, GPR). Die Moglichkeiten dieses
Inversionsansatzes sollten fiir eine groBBere Vielfalt geophysikalischer Methoden untersucht werden.
Obwohl gekoppelte hydrogeophysikalische Inversionssysteme flexibel genug sind, um mehrere
hydrologische und geophysikalische Datentypen zu integrieren, hat dieser Aspekt der
Datenverschmelzung bislang wenig Aufmerksamkeit erhalten. Daher war das Ziel dieser
Dissertation, gekoppelte hydrogeophysikalische Inversionssysteme fiir die Abschdtzung von
effektiven hydraulischen Parametern zu entwickeln, mit Hilfe: i) einer Fusion von ERT und
Zuflussdaten, die unter konstantem Druckbedingungen am Rand im Feld gemessen wurden, ii) der
Beobachtung des Stromungspotentials (SP), und iii) der Zeitbereichsreflektometrie (time domain
reflectometry, TDR).

Anhand von synthetischen und realen Daten wurde gezeigt, dass die Schitzung von drei Mualem-van
Genuchten Parametern (o, n und K) mit dem gekoppelten hydrogeophysikalischen Inversionsansatz
fir ERT, SP und TDR moglich ist. In allen Fillen zeigten die Inversionsergebnisse signifikante
Ubereinstimmungen mit unabhingigen Daten. Bei der Fusion von ERT und Zuflussdaten wurde
beobachtet, dass der Erfolg des Ansatzes von der Wahl einer addquaten Zielfunktion abhingt. Die
besten Ergebnisse wurden erzielt, wenn die Zielfunktion als Summe des mittleren quadratischen
Fehlers beider Datentypen definiert wurde, normalisiert durch die Standardabweichung der
jeweiligen Messungen. Im Falle der Stromungspotenzialmessungen hingt der Erfolg des Ansatzes
davon ab, ob das gemessene Stromungspotentialsignal effizient vor der Inversion vorbehandelt wird
und von der Verfiigbarkeit eines angemessenen Modells des elektrokinetischen
Kopplungskoeffizienten bei teilweiser Séttigung. Im Vergleich verschiedener Modelle fiir diesen
Koeffizienten mit den Daten des Experimentes konnte beobachtet werden, dass diejenigen Modelle
am erfolgreichsten waren, die den Kopplungskoeffizient zusitzlich zur Wassersittigung mit der
relativen Permeabilitit des porosen Mediums verbinden. Im Vergleich zur ungekoppelten Inversion
ist die gekoppelte Inversion bei Einsatz von TDR genauer und besser fiir den praktischen Einsatz
geeignet, unter anderem da der Wasserstand auf dem Boden nicht gemessen werden muss.

Zukiinftige Untersuchungen sollten die gekoppelte hydrogeophysikalische Inversion verwenden, um
rdaumlich variable hydraulische Parameter abzuschitzen, die typisch fiir die meisten Feldbedingungen
sind
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1. General introduction

1.1. Background and state of the art

Water is perhaps the most vital resource that makes life possible on earth, besides air. Although the
total amount of fresh water on earth measures almost 35 million km”, this represents less than 3% of
the total amount of water on earth (Wetzel, 2001). Global fresh water consumption has increased
dramatically with explosion in human population due to increases in municipal water supply, water
need for agriculture, industry and urban development. Pearce (1992) predicted that access to
sufficient water of good quality will be one of the major problems humanity will face in the 21%
century. Presently, this finite and vital resource is frequently under threat by pollution, groundwater
depletion and soil erosion.

As a transition zone between the atmosphere and the groundwater reservoirs, the vadose zone
determines the quality and quantity of fresh water resources through the separation of precipitation
into infiltration, evapotranspiration and runoff. Processes like plant growth, the exchange of energy
between the earth’s surface and the atmosphere, the aerobic degradation of solutes and nutrients,
groundwater recharge, contaminant transport and river discharge are linked to the physico-chemical,
biological and hydrological properties of the vadose zone.

For efficient soil and water resources management including the design of appropriate groundwater
use, pollution control and remediation strategies, it is important to understand the flow and transport
properties of the vadose zone. The flow and transport properties of the vadose zone are traditionally
estimated with hydrological models by solving the equation of Richards (1931). To solve the
Richards’ equation, information on the retention and hydraulic conductivity functions characterising
the vadose zone need to be provided. The soil water retention function expresses the relation between
volumetric soil water content and matric potential. Similarly, the hydraulic conductivity function
expresses the soil hydraulic conductivity as a function of matric potential. Constitutive relationships
have been developed over the past decades to predict hydraulic conductivity and water retention
functions (e.g. Burdine, 1953; Brooks and Corey, 1964; Mualem, 1976; van Genuchten, 1980).
Conventionally these functions are determined either from time-consuming and costly direct
measurement methods (Klute and Dirksen, 1986) or indirectly based on inverse modelling with
hydrologic data. Examples of inverse modelling with hydrologic data for the estimation of hydraulic
conductivity and water retention functions include the use cumulative outflow and/or pressure head
measurements from multi-step drainage on undisturbed soil cores (e.g. Toorman et al., 1992; Eching
and Hopmans, 1993; van Dam et al., 1994; Simunek et al., 1998). Similarly, matric head data from
tensiometry (e.g. Timlin and Pachepsky, 1998; Sisson et al., 2002) , cumulative infiltration from
pressure ring (e.g. Vauclin et al., 1994; Gérald-Marchant et al., 1997; Mertens et al., 2002), tension
disc infiltrometry (Simunek and van Genuchten, 1996; Simunek et al., 1998a; Wang et al., 1998),
and water content from time domain reflectrometry (TDR; Parkin et al., 1995; Zhang et al., 2000)
has been used in inverse modelling to estimate these soil properties. Although some of these methods
are very precise (e.g multi-step drainage on undisturbed soil cores) they all have the disadvantage of
sampling a small (<dm®) support volume. Due to variations in soil texture and structure (e.g. Ersahin
and Brohi, 2006), topography (e.g., Brocca et al., 2007), vegetation cover (e.g., Hupet and
Vanclooster, 2002), temperature (e.g., Behaegel et al., 2007), soil hydraulic properties also vary in
space. To satisfactorily describe hydrological processes at scales like agricultural land and small
catchments which are relevant for efficient soil and water management using the above-mentioned
methods, numerous sampling locations are necessary to capture the spatial variability of hydraulic
properties. The labor-intensive, invasive, time consuming and expensive nature of these conventional
methods for field scale sampling has led to a continued quest for alternative methods.
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Due to their ability to provide good views of the subsurface, geophysical methods (e.g. seismic, self-
potential, induced polarization, nuclear magnetic resonance, electrical resistivity tomography,
electromagnetic induction, ground penetration radar, etc.) are used to probe the earth for mineral and
oil exploration and many other scientific disciplines (e.g. National academy of sciences, 2000). With
the establishment of suitable petrophysical relations (e.g. Archie, 1942; Waxman and Smits, 1968;
Rhoades et al., 1976; Topp et al., 1980) that link geophysical properties (e.g., electrical conductivity,
dielectric permittivity, seismic wave velocity) to hydrogeological properties (e.g water content,
porosity, permeability, solute masses), the applications of geophysical methods now span from
geological to hydrogeological characterization (and therewith the emergence of the field of
hydrogeophysics).

The advantages of geophysical measurement techniques like Electrical Resistivity Tomography
(ERT), Ground Penetration Radar (GPR), Electromagnetic Induction (EMI) and Self-Potential (SP)
monitoring over conventional measurement techniques like Time Domain Reflectometry (TDR), soil
coring, and tensiometry for the acquisition of data necessary for the calibration of vadose zone flow
and transport models is increasingly being recognised (Hubbard et al., 1999; Chen et al., 2001; Linde
et al., 2006a). For instance, GPR (e.g. Binley and Beven, 2003; Cassiani and Binley, 2005; Looms et
al., 2008; Jadoon et al., 2010) data can be used to determine the subsurface dielectric permittivity
distribution while the subsurface electrical conductivity distribution can be determined from ERT
(e.g. Daily et al., 1992; Deiana et al., 2007; Batlle-Aguilar et al., 2009), or EMI (e.g. Sheets and
Hendrickx, 1995; Reedy and Scanlon, 2003; Martinez et al., 2009). The dielectric permittivity (e.g
Topp et al., 1980) or the electrical conductivity (e.g., Archie, 1942) of the vadose zone can be
converted into state variables like water content or solute masses using petrophysical relations. The
distribution of subsurface water fluxes can be obtained from SP data (e.g., Jardani et al., 2007).
Geophysical techniques can therefore be used to map subsurface hydrologic variables like water
content, solute masses and water fluxes at intermediate scales between the small scale measurements
such as core samples and TDR and the large scale remotely sensed variable like satellite imagery.
This gives geophysical methods the ability to alleviate the cost and difficulty involved in acquiring
direct hydrological data at these scales. Furthermore, the geophysical measurement techniques are
typically non-invasive and therefore can provide information in regions where conventional
techniques cannot sample.

Due to the advantages mentioned above, geophysical measurements are increasingly being used in
vadose zone hydrology (e.g., Hubbard and Rubin, 2000; Vereecken et al., 2004). In most studies,
geophysical results have been used for qualitative interpretations (e.g., observation of flow and
transport patterns) of flow and transport processes (e.g., Binley et al., 1996a; Slater et al., 2000,
2002; Srayeddin and Doussan, 2009; Clément et al., 2010). Much less studies have attempted to
obtain relevant quantitative information on hydraulic and transport properties from geophysical
measurements. Conventional use of geophysical measurements to derive quantitative estimates of
flow and transport properties from vadose zone flow and transport models follows a three-step
sequential approach:

1) Geophysical data obtained during a monitored flow or transport process in the vadose zone
are inverted to estimate subsurface images of the geophysical property of interest.

2) The obtained geophysical properties of interest are converted into subsurface images of
vadose zone hydrologic state variables (e.g., water content or solute mass) using a
petrophysical relation (e.g., Archie, 1942; Topp et al., 1980)

3) The estimated state variable distributions are either used independently or in combination
with other measured hydrologic states to calibrate a flow or transport model for the
estimation of flow or transport properties.
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This three-step sequential approach is now referred to as uncoupled hydrogeophysical inversion
(Ferre et al., 2009; Hinnell et al., 2010).

There are numerous applications of the uncoupled hydrogeophysical inversion approach. Rubin et al.
(1992) used the approach to map the permeability of a heterogeneous aquifer from seismic wave
velocities and hydraulic head data. Cassiani and Medina (1997) combined vertical electrical
soundings and direct well data within a co-kriging framework to estimate parameters of the
transmissivity and transverse formation factor random fields of an aquifer using the uncoupled
hydrogeophysical inversion approach. Similarly, Gloaguen et al. (2001) used the approach to
combine GPR and hydrostratigrahic data within a cokriging framework to estimate the hydraulic
conductivity of an unconfined aquifer. From the first and second moments of water content changes
inferred from 2D and 3D cross-bore hole ERT and GPR profiles, Binley et al. (2002a) applied the
uncoupled hydrogeophysical inversion approach to estimate the effective hydraulic conductivity of a
sandstone aquifer. Chen et al. (2004) used the approach to estimate sediment geochemical parameters
from GPR. From time-lapse monitoring of natural infiltration from precipitation into a consolidated
sandstone vadose zone with cross-hole zero-offset GPR, Cassiani and Binley (2005) attempted to
retrieve subsurface hydraulic properties. Despite these and many other successful case studies, a
number of shortcomings have been identified with the uncoupled hydrogeophysical inversion
approach:

1) Artificial smoothing of tomograms from regularized geophysical inversion

The independent inversion of the geophysical data to subsurface tomographic images of the
geophysical property of interest is generally ill-posed and underdetermined due to the spatial
discretisation necessary to capture complex distributions of the property. To condition and stabilize
the inverse problem, a regularization constraint (e.g. smoothness) is often applied. This
regularization introduces an artificial smoothing of the images and this can lead to highly uncertain
estimates of hydraulic and transport parameters when such tomograms are used for calibrating water
flow and solute transport models (Day-Lewis et al., 2005, Slater et al., 2007). Besides the type and
strength of regularization, the spatial variability of the geophysical property of interest observed
within the tomograhic images strongly depends on the prescribed data noise level (LaBrecque et al.,
1996; Slater et al., 2000). Overestimation of errors leads to an over-smooth image while
underestimation of errors will lead to rough images. While a good assessment of the data noise level
is possible with ERT using reciprocal measurements, the estimation of errors in the meaning of “how
well can I fit the data” still remains problematic with other geophysical methods.

2) Spatially varying resolution of tomograms

Tomograms obtained from inversion of geophysical data have a spatially varying resolution. This
variable resolution is often directly linked to the measurement physics, and in combination with the
use of regularization constraints, areas with low resolution might be plagued by inversion artefacts.
These artefacts are directly propagated to the estimated hydraulic or transport properties when such
tomograms are used in the uncoupled hydrogeophysical inversion approach. For example in borehole
GPR tomography, objects located in the middle between the borehole are well resolved, whereas in
borehole ERT objects close to the borehole are well resolved, but objects in the middle between
boreholes are poorly resolved (Day-Lewis et al., 2005). In a synthetic two well pumping injection
experiment, Singha and Gorelick (2005, 2006a) used ERT to monitor the migration of a saline tracer.
Although the tomograms provided valuable insights into field scale tracer migration, the standard
tomographic inversion resulted in an underestimate of the tracer mass and an overestimation of the
effective dispersion coefficient. The authors showed that the tracer mass recovered with ERT
measurements can deviate more than 40% from the applied tracer mass and attributed this to the
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effects of the varying spatial resolution and spatial smoothing (regularization) within the inversion.
The tracer mass recovery was even lower for actual ERT measurements.

3) Lack of hydrologic constraints on geophysical inversion.

An obvious problem is that hydrological information is not used when the geophysical survey data
are converted to geophysical properties, although information sharing will most likely improve the
results. For example, when ERT measurements are used to monitor the development of a tracer
plume during an injection experiment, the total applied mass of solute is not used to constrain the
inversion problem of obtaining the spatial distribution of electrical conductivity from ERT
measurements.

Much recent research has evolved around the improvement of the uncoupled hydrogeophysical
inversion approach. The reviews of Day-Lewis et al. (2005), Looms et al. (2008) and Hinnell et al.
(2010) classifty the proposed methods into the following categories:

1) Temporal relaxation techniques

The ill-posedness of classical geophysical inversion can be reduced by limiting the number of free
parameters through time-lapse inversion approaches (e.g. Oldenborger et al., 2007; Clément et al.,
2009; Wilkinson et al., 2010) which allow for simultaneous treating of several spatio-temporal
images.

2) Application of spatially variably petrohysical relations

As shown by Day-Lewis et al. (2005), Moysey et al. (2006) and Singha and Gorelick (2006b), one
way of mitigating the effects of spatially varying resolution of tomograms is to derive field-scale or
apparent petrophysical relationships that vary spatially. Although the tracer mass recovery in an
injection experiment improved with these apparent relationships, the derivation of these relationships
is cumbersome as they strongly rely on a priori information on field site hydrogeology (e.g. porosity
and hydraulic conductivity).

3) Joint inversion approaches

Another method of counteracting resolution artefacts is to construct tomograms from two or more
geophysical methods that compliment each other (e.g. Gallardo and Meju, 2003; Musil et al., 2003;
Linde et al., 2006). Apart from this complimentary advantage, some joint inversion approaches allow
for simultaneous determination of distributions of the geophysical property of interest and
petrophysical relations (Hyndman et al., 1994; Hyndman and Gorelick, 1996; Chen et al., 2006;
Linde et al., 2006b).

4) Stochastic inversion approaches

Due to the inherent uncertainty associated with the geophysical imaging step of uncoupled
hydrogeophysical inversion, stochastic or geostatistical inversion approaches have been developed to
estimate hydraulic property distributions based on statistical correlations (e.g correlation lengths)
present in the tomographic images and to quantify the uncertainty on the estimated distributions
(Cassiani et al., 1998; Hubbard et al., 1999; Yeh et al., 2002; Hansen et al., 2008). The inversion is
mainly performed within Bayesian or co-kriging frameworks (e.g. McKenna and Poeter, 1995;
Cassiani et al., 1998; Hubbard et al., 2001).

An alternative approach to uncoupled hydrogeophysical inversion which does not involve an
intermediate geophysical imaging step was recently proposed (Kowalsky et al., 2004; Lambot et al.,
2006; Hinnell et al., 2010; Huisman et al., 2010; Rings et al., 2010). This approach is now referred to
as coupled hydrogeophysical inversion (Ferre et al., 2009; Hinnell et al., 2010). In the coupled
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hydrogeophysical inversion approach, geophysical measurements are directly used in the
hydrological inverse problem by coupling a forward model of the geophysical measurements with a
hydrological model describing a hydrologic process under investigation. Figure 1.1 shows a flow
chart of the coupled hydrogeophysical inversion approach applied to the estimation of subsurface
hydraulic parameters from geophysical response data G, and hydrologic response data I (e.g.,
cumulative inflow measurements). Firstly, by perturbing the hydraulic parameters in the hydrologic
model, distributions of hydrologic responses (e.g water content, water fluxes, and cumulative
infiltration) are simulated and converted into distributions of the geophysical properties Gp* (e.g
dielectric permittivity, electrical conductivity) of interest using a suitable petrophysical relationship.
Secondly, the simulated geophysical properties of interest are fed into the forward geophysical model
to simulate geophysical data (e.g. electrical resistances, GPR travel times or waveforms, streaming
potentials) that honour the hydraulic parameter set used for generating the distributions of hydrologic
responses. Thirdly, as in classical non-linear inverse modelling, an objective function which
expresses the misfit between the simulated geophysical measurements and the corresponding
measurements is evaluated. The whole process is repeated with updates of hydraulic parameters sets
using an optimization algorithm until a hydraulic parameter set for which there is a close fit between
the simulated and the measured geophysical data is found.
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Figure 1.1: Workflow of coupled hydrogeophysical inversion approach applied to geophysical response data (G,)
and hydrological response data (I) and their corresponding simulations (G,* and I*). G, is a geophysical property
of interest from which the geophysical responses are simulated and W; and W are inversion weights. Although
coupled inversion is illustrated for a single geophysical method here, it can easily be extended to consider multiple
geophysical methods

As the coupled hydrogeophysical inversion approach does not require an intermediate tomograhic
imaging step, it can avoid errors emanating from smoothing and resolution artefacts common to the
uncoupled hydrogeophysical inversion approach. Most geophysical methods are sensitive to the
spatial distribution of hydrologic states (Ferré et al., 1996; Furman et al., 2003). This implies that
reliable core-scale petrophysical relations are sufficient to ensure a coupling between the hydrologic
and the geophysical model. Consequently, there is no need to derive field-scale or apparent
petrophysical relationships that vary spatially. Furthermore, because hydraulic information retrieval
from geophysical measurements is directly constrained by the hydrologic model, the coupled
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hydrogeophysical inversion approach provides a better means of assessing the consistency of the
hydrologic model based on the geophysical measurements.

1.2. Problem statement

Recent research on the usefulness and applicability of the coupled hydrogeophysical inversion
approach clearly illustrates the potential advantages of the method (Kowalsky et al., 2004; Rucker
and Ferré, 2004; Lambot et al., 2006; Hinnell et al., 2010). However, very few studies have used the
approach on actual field or laboratory data (Kowalsky et al., 2005; Looms et al., 2008; Huisman et
al., 2010; Rings et al., 2010). Different geophysical methods differ in their sensitivity to different
hydrologic states or soil types. For instance, GPR and ERT are more sensitive to water content while
SP is also sensitive to water fluxes. On the other hand, GPR performs best on coarse grained soils,
while methods like ERT, EMI and SP can be used in both fined-grained and coarse grained soils.
Despites these observations, most studies focus on the use of GPR or ERT. There is clearly a need to
develop and test the applicability of the coupled hydrogeophysical inversion approach on
geophysical methods other than ERT and GPR. While coupled hydrogeophysical inversion
frameworks potentially provide a suitable platform for the fusion of multiple geophysical and
hydrological data sets, this has received even less attention (e.g. Kowalsky et al., 2005, Looms et al.,
2008b).

1.3. Scientific objectives and thesis outline

The aim of this research project is to develop coupled hydrogeophysical inversion frameworks for
ERT, streaming potential monitoring, and TDR, and to investigate the feasibility of retrieving
subsurface hydraulic parameters from the developed frameworks using actual field or laboratory
data. To achieve this aim, the following hydrologic experiments were designed:

1. A constant head infiltration experiment in the field was monitored with ERT. A coupled
hydrogeophysical inversion framework was developed to estimate topsoil hydraulic
parameters from the fusion of electrical resistances and cumulative inflow data. The objective
was to investigate different methods for fusing ERT data and cumulative inflow within the
coupled hydrogeophysical inversion scheme for the estimation of soil hydraulic parameters.
The results from the coupled hydrogeophysical data fusion were benchmarked with hydraulic
parameters from a multi-step outflow experiment on an undisturbed soil core from the
experimental site. The results of this study are presented in chapter 2 and have been published
in Near Surface Geophysics under the title “Coupled hydrogeophysical inversion of electrical
resistances and inflow measurements for topsoil hydraulic properties under constant head
infiltration” ( Mboh et al., 2012 a)

2. A column scale drainage experiment on a sandy soil was monitored with the Self Potential
(SP) method and tensiometers. Two objectives were envisaged for this experiment. The
primary objective of this experiment was to use the streaming potential component of the SP
measurements to estimate the hydraulic properties of the sandy soil using the coupled
hydrogeophysical inversion approach. In order to so, an adequate model for the behavior of
the voltage coupling coefficient at partial saturation is required. The voltage coupling
coefficient links the measured streaming potentials to the hydraulic potential gradient. As the
behaviour of this coefficient at partial saturation is still a subject of current debate, a
secondary objective was to compare different models for the voltage coupling coefficient at
partial saturation with the experimental data. The coupled hydrogeophysical inversion results
are benchmarked with hydraulic properties obtained from inverse modeling of matric
potential data obtained using tensiometers. The findings from this experiment are presented in
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chapter 3 and have been published in the Vadose Zone Journal under the title “Coupled
hydrogeophysical inversion of streaming potential signals for unsaturated soil hydraulic
properties”. ( Mboh et al., 2012 b)

3. A falling head infiltration experiment into initially dry loamy sand in a laboratory column
was monitored with a vertically inserted TDR probe. The primary objective of this
experiment was to investigate the feasibility of both the uncoupled and coupled
hydrogeophysical inversion approaches to infer the hydraulic properties of the soil material
using TDR data. A secondary objective was to examine the influence of initial conditions on
the uncoupled and coupled inversion approaches developed for this experiment. The results
were benchmarked with hydraulic parameters from a multi-step outflow experiment
performed with a packed soil column. Because Time Domain Reflectometry (TDR) is
frequently used to provide ground truth information when using other geophysical methods
that easily enable field scale sampling (e.g. ERT, GPR, EMI), the findings provided a non-
invasive way of acquiring local estimates of soil hydraulic properties which can be used for
benchmarking spatially variable estimates of soil hydraulic parameters obtained using other
geophysical methods. The results of this experiment are presented in chapter 4 and have been
published in Soil Science Society of America Journal (Mboh et al., 2011).

Each chapter deals with the development of a separate coupled hydrogeophysical inversion
framework. Therefore, each chapter is structured according to the classical presentation of research
findings with an introduction including a formulation of the objectives, materials and methods, and
the corresponding results, discussion and conclusions. After the research findings are presented in
chapters 2 to chapter 4, a synthesis is presented in chapter 5 which summarises the general
conclusions from the three research papers and provides an outlook on future research.
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2. Coupled hydrogeophysical inversion of electrical resistances and
inflow measurements for topsoil hydraulic properties under constant

head infiltration’

Abstract

Accurate estimation of top soil hydraulic properties is important for understanding water flow and
solute transport in the vadose zone. Coupled hydrogeophysical inversion schemes that enable the use
of multiple geophysical and hydrologic data for the estimation of soil hydraulic properties have
recently been proposed. In these coupled inversion schemes, a hydrologic model describing the
process under investigation is coupled to a forward geophysical model and hydraulic parameters are
directly estimated from geophysical measurements. While these schemes provide a suitable platform
for the integration of multiple geophysical and hydrologic data, efficient methods to combine these
data types for improved parameter estimation still warrant investigation. In this study, we
investigated the feasibility of estimating three topsoil Mualem-van Genuchten parameters (a, n and
K,) from the fusion of inflow and electrical resistance measurements obtained under constant head
infiltration. In addition to using only inflow or electrical resistances, we investigated three methods
of combing these data for improved estimation of topsoil hydraulic parameters. Our results show that
using inflow alone does not provide a unique solution to the inverse problem. Better results are
obtained with the additional use of electrical resistances. We show that successful data fusion within
the coupled hydrogeophysical inversion framework depends on the choice of an appropriate
objective function. We obtained the best data fusion results when an objective function defined as the
sum of the root mean square error of both data types normalized by the standard deviation of the
respective measurements was used. In this case, the inverted hydraulic parameters were very
comparable to reference values obtained from a multi-step outflow experiment carried out with
undisturbed soil cores from the experimental site. It is concluded that the coupled hydrogeophysical
inversion framework is a promising tool for non-invasive near surface hydrological investigations.

! Adapted from: Mboh, C.M., J.A. Huisman, N. Van Gaelen, J. Rings, and H. Vereecken. 2012. 9
Coupled hydrogeophysical inversion of electrical resistances and inflow measurements for

topsoil hydraulic properties under constant head infiltration. Near Surface Geophysics, 10: 413-

426
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2.1. Introduction

Accurate estimation of top soil hydraulic properties is important for understanding water flow and
solute transport in the vadose zone, which affect many environmentally relevant processes like
groundwater recharge and quality, flood generation and contaminant transport amongst many others.
Consequently, sustainable ground water abstraction, mitigation of groundwater pollution and
efficient irrigation and drainage strategies depend on good knowledge of top soil hydraulic
properties.

Conventionally, in-situ topsoil hydraulic properties have been estimated from infiltrometry
(Reynolds et al., 2002) or by inverting matric potential or soil water content measurements obtained
from invasive techniques like tensiometry (Hendrickx et al., 1994; Faybishenko, 2000) and time
domain reflectometry (TDR; Parkin et al., 1995; Huisman et al., 2002; Schwartz and Evett, 2002)
during infiltration events. Although the water content and matric potential of the vadose zone can
exhibit large spatial variation in the horizontal and vertical direction (e.g. Flury et al., 1994),
tensiometry and TDR only provide limited spatial coverage (0.01 - 1 dm®), requiring time-consuming
measurements at many locations for field scale sampling. Geophysical methods like ground
penetration radar (GPR; Binley and Beven, 2003; Cassiani and Binley, 2005; Looms et al., 2008a;
Jadoon et al., 2010), electrical resistivity tomography (ERT; Daily et al., 1992; Deiana et al., 2007;
Batlle-Aguilar et al., 2009), magnetic resonance imaging (Amin et al., 1993; Roy and Lubcynski,
2005; Vouillamoz et al., 2011) and electromagnetic induction (Sheets and Hendrickx, 1995; Reedy
and Scanlon, 2003; Martinez et al., 2009) are increasingly being used for monitoring changes of
water content and solute transport in the vadose zone. Unlike tensiometry and TDR, subsurface
changes in water content and solute transport at larger scales like farm fields and small catchments
can be quickly and non-invasively monitored with these geophysical methods. In this study, we focus
on the use of ERT for non-invasive characterization of top soil hydraulic properties.

Despite the considerable promise of geophysical data in general and ERT in particular, interpretation
of such data in a hydrological context is far from straightforward. Traditionally, ERT data (i.e.
electrical resistances) are inverted into resistivity tomograms that provide qualitative insights into
subsurface structure and the hydrological and transport processes therein. Based on resistivity
tomograms, Binley et al. (1996) observed saturated flow paths in an undisturbed soil core. Slater et
al. (2000, 2002) monitored a controlled saline tracer injection experiment in an experimental tank
with ERT and gained valuable insights into the spatial variability of solute transport as they could
visualize tracer accumulation, density-driven spill of tracer and preferential flow. The spatial
variability of sorghum and maize root water uptake (Srayeddin and Doussan, 2009) and leachate
recirculation in waste landfills (Clément et al., 2010) have also been successfully studied using
qualitative interpretation of electrical resistivity tomograms.

Electrical resistivity tomograms are increasingly being converted into quantitative estimates of water
content or solute mass using petrophysical relationships. These converted tomograms are then used
for the calibration of subsurface flow and transport models (e.g. White, 1988; Daily et al., 1992;
Binley et al., 2002; French et al., 2002; Kemna et al., 2002; Singha and Gorelick, 2005; Miiller et al.,
2010). This sequential approach in which resistivity tomograms are converted to hydrologic state
variables (e.g. water content or solute concentration) which are then used for the estimation of soil
hydraulic and transport properties in flow and transport models is referred to as uncoupled
hydrogeophysical inversion (Ferre et al., 2009; Hinnell et al., 2010). A number of shortcomings have
been identified with the quantitative use of tomographic images for the calibration of subsurface flow
and transport models in the uncoupled hydrogeophysical inversion approach. The independent
geophysical inversion from electrical resistances to subsurface electrical resistivity tomograms is
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generally ill-posed and underdetermined. To condition and stabilize the inverse problem, a
regularization constraint (e.g. smoothness) is applied. This regularization introduces artifacts that can
lead to highly uncertain estimates of hydraulic and transport parameters when such tomograms are
used for calibrating water flow and solute transport models (Day-Lewis et al., 2005, Slater et al.,
2007). For example, Rings et al. (2008) observed that in the presence of strong resistivity contrasts,
especially low sensitivity areas can often be plagued by inversion artifacts. Besides artifacts linked to
the type and strength of regularization, electrical resistivity tomograms also have a spatially variable
resolution. Targets closer to the high sensitivity areas near the electrodes are more resolved than
those in the low sensitivity areas further away from the electrodes (Singha and Gorelick, 2005). In
cross-borehole ERT surveys, Singha and Gorelick (2006) associated a tracer mass balance error of
about 75% to the poor resolution of the electrical resistivity tomogram in the inter well region.

As a consequence of these shortcomings, vadose zone flow and transport properties obtained using
the uncoupled hydrogeophysical inversion approach maybe very uncertain. Much recent research has
evolved around the improvement of the uncoupled hydrogeophysical inversion approach. Time-lapse
geophysical inversion approaches (Oldenborger et al., 2007; Clément et al., 2009; Wilkinson et al.,
2010) now allow for simultaneous treatment of several spatio-temporal subsurface images, which
limits some of the artifacts common to classical sequential geophysical inversion. Another approach
to limit artifacts due to the spatially varying resolution of electrical resistivity tomograms is the use
of spatially variable apparent petrophysical relations (Day-Lewis et al., 2005; Singha and Moysey,
2006; Singha and Gorelick, 2006a). Finally, joint inversion approaches (Gallardo and Meju, 2004;
Linde et al., 2006) have been developed to construct tomograms from multiple geophysical methods
that compliment each other and lessen the effect of varying spatial resolution.

An alternative approach that does not require intermediate geophysical tomograms for the estimation
of subsurface flow and transport properties called coupled hydrogeophysical inversion was recently
proposed (Kowalsky et al., 2004; Lambot et al., 2006; Hinnell et al., 2010; Huisman et al., 2010;
Rings et al., 2010). Figure 2.1 shows the work flow of the coupled hydrogeophysical inversion
approach applied to the use of electrical resistance (R) and cumulative inflow (I) measurements for
the estimation of soil hydraulic properties. First, a forward geophysical model is coupled to a
hydrologic model with the use of a suitable petrophysical relation. This allows the simulation of
hydrologic state variables (e.g. water content distributions, 6*) that can be converted into simulated
geophysical properties (e.g. bulk electrical conductivity distributions, 6,) using the petrophysical
model. The simulated geophysical properties are then used to simulate geophysical data (e.g.
electrical resistances, R*) using the forward geophysical model. By perturbing the hydrological
model parameters using a suitable optimization algorithm, the simulated geophysical measurements
are compared with the measured geophysical data (e.g. electrical resistances, R) until a close fit is
found. As the geophysical data are not inverted into resistivity tomograms, the coupled
hydrogeophysical inversion approach has potential to overcome the shortcomings associated with the
direct use of electrical resistivity tomograms.

Despite the potential advantages of coupled hydrogeophysical inversion, relatively few studies have
used this approach for the estimation of subsurface flow and transport properties from actual data
(e.g. Kowalsky et al., 2005, Looms et al., 2008b; Lambot et al., 2009; Huisman et al., 2010; Rings et
al., 2010; Mboh et al., 2011). While coupled hydrogeophysical inversion frameworks potentially
provide a suitable platform for the fusion of multiple geophysical and hydrological data sets, this has
received even less attention (e.g. Kowalsky et al., 2005, Looms et al., 2008b). In this study, we use
surface  ERT to monitor a constant head infiltration experiment and apply the coupled
hydrogeophysical inversion approach on electrical resistances and inflow data for the estimation of
topsoil hydraulic properties. We aim to compare three coupled hydrogeophysical data fusion
techniques using inflow and electrical resistance measurements. The inversion results are
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benchmarked by comparing the hydraulic parameter estimates with independently obtained
parameters from a multi-step outflow laboratory experiment performed on undisturbed soil cores

from the experimental site.
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Figure 2.1: Workflow of coupled hydrogeophysical inversion approach applied to electrical resistances (R) and

cumulative inflow measurements (I) and their corresponding simulations (R* and I*). Wy and Wggy are weights
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2.2. Materials and Methods

2.2.1. Measurements

We used ERT to monitor constant head infiltration of water with an electrical conductivity of 194.7
uS cm™ and a temperature of 18.3 °C into an auger hole in a field plot in Geel in the north-east of
Belgium (Figure 2.2). The upper 1 m of soil of this site is sandy loam (73% sand, 23% silt and 4%
clay) underlain by a sandy soil with lower silt content but a slightly higher clay content (92% sand, 2
% silt and 6% clay). The auger hole had a depth of 40 cm and a diameter of about 10.4 cm. The
upper half of the hole was sealed with a polyvinylchloride (PVC) pipe. Twenty-six stainless steel
electrodes with a length of 30 cm and a diameter of 1.2 cm spaced 16 cm apart where vertically
inserted into the soil to a depth of about 5 cm below the soil surface. The augered hole was at the
center of the electrode lay-out between electrode 13 and 14. A marriote reservoir was used to
maintain a constant water head of about 54.4 cm above the bottom of the augered hole during
infiltration.

Figure 2.2: Field experimental set up. The black container is the mariotte reservoir and the gray box is the multi-
electrode resistivity meter.

A multi-electrode resistivity meter (Syscal Pro, IRIS Instruments, France) was used to acquire
electrical resistance measurements at 30 minutes intervals for 3 hours. Each time lapse measurement
consisted of 420 electrical resistance values based on multi-gradient electrode arrays (Table 2.1).
Apart from its suitability for multi-channel data acquisition in fast transient experiments like this,
Dahlin and Zhou (2004) observed that the use of multi-gradient electrode arrays provides a better
resolution than the commonly used Wenner arrays. Each of the 420 electrical resistance values was
the average of an automated measurement cycle of up to 5 subsequent measurements. As an
indication of measurement quality, the resistivity meter also reports the relative variation within each
measurement cycle. This varies from 0.2% to 0.4% with an average of about 0.3%.
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Table 2.1: Multi-gradient surface electrode arrays

Injection Injection Potential (M-N)

Spacing (m) (A-B) spacing =0.16 m Spacing =0.32 m
1-11 2-3, 34, 4-5... 9-10 2-4,3-5,4-6, ... 8-10
3-13 4-5,5-6, 6-7, ... 11-12 4-6, 5-7, 6-8, ... 10-12
5-15 6-7,7-8, 8-9, ... 13-14 6-8, 7-9, 8-10, ... 12-14

1.6 7-17 8-9, 9-10, 10-11, ... 15-16 8-10, 9-11, 10-12, ... 14-16
9-19 10-11, 11-12, 12-13, ... 17-18 10-12, 11-13, 12-14, ... 16-18
11-21 12-13, 13-14, 14-15, ... 19-20 12-14, 13-15, 14-16, ... 18-20
13-23 14-15, 15-16, 16-17, ... 21-22 14-16, 15-17, 16-18, ... 20-22
15-25 15-16, 16-17, 17-18, ... 23-24 16-18, 17-19, 18-20, ... 22-24
1-16 2-3,3-4,4-5, ... 14-15 2-4,3-5,4-6 ...13-15
3-18 4-5,5-6, 6-7, ... 16-17 4-6, 5-7, 6-8, ... 15-17
5-20 6-7,7-8, 8-9, ... 18-19 6-8, 7-9, 8-10, ... 17-19

24 7-22 8-9,9-10, 10-11, ... 20-21 8-10, 9-11, 10-12, ... 19-21
9-24 10-11, 11-12, 12-13, ... 22-23 10-12, 11-13, 12-14, ... 21-23
11-26 12-13, 13-14, 14-15, ... 24-25 12-14, 13-15, 14-16, ... 23-25
1-21 2-3,3-4,4-5, ... 19-20 2-4, 3-5, 4-6, ... 18-20

3.2 3-23 4-5, 5-6, 6-7, ... 21-22 4-6, 5-7, 6-8, ... 20-22
5-25 6-7,7-8, 8-9, ... 23-24 6-8, 7-9, 8-10, ... 22-24

4 1-26 2-3,3-4,4-5, ... 24-25 2-4, 3-5, 4-6, ... 23-25

Apart from the electrical resistance data, time-lapse cumulative inflow measurements were also taken
using a balance beneath the mariotte reservoir (Figure 2.2). Cumulative inflow for each time was
determined from the weight loss of the marriotte reservoir relative to its initial weight. Prior to
infiltration, several TDR measurements taken in the topsoil in the vicinity of the imaged plane
showed a marginal water content variation from 0.281 cm’em™ to 0.283 cm’cm™ with and an
average of 0.282 cm’cm™. Water content measurements obtained from oven-drying of core samples
taken from the augered hole showed the same variation with a similar estimate of the average initial
water content. Information from soil cores also indicate that the bulk density of the site marginally
varies between 1.50 gcm'3 to 1.51 gcm'3, which implies a saturated water content of about 0.38

cm’em™.

2.2.2. Forward Hydrologic Model

The Parallel Soil Water Modeling and Simulation model (PARSWMS, Hardelauf et al., 2007) was
used to simulate the constant head infiltration experiment. A flow domain of 6 x 4 x 2 m (length x
width x depth) was discretized into 4632 nodal points and 24052 tetrahedral elements. At the center
of the flow domain, the cylindrical auger hole was included. A no flow boundary condition was
imposed along the upper 0.2 m of the hole to represent the PVC pipe used to seal the upper section of
the augered hole. A variable head boundary condition was used for the lower section of the hole. A
free drainage boundary condition was used at the bottom of the flow domain while all other
boundaries of the flow domain (i.e. the sides and the top) were imposed a no flow boundary
condition. PARSWMS was used to simulate cumulative infiltration and water content distributions at
a constant head of 54.4 cm above the bottom of the hole during the experimental period of 3 hours.
We assumed a homogeneous top soil with an average initial water content of 0.282 cm’cm™ derived
from in-situ TDR measurements.
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PARSWMS numerically solves the 3D Richards’ equation for variably saturated flow in a
homogenous rigid porous medium:

-l i) 2w )

where 7 is the elevation (depth) coordinate, x are y are coordinates in the length and width directions
of the flow domain, ¢ is time, @ is the volumetric water content, & is the pressure head, 6(h) is the
water retention function, K(h) is the hydraulic conductivity function, and S is a sink term
representing root water uptake. With estimated evapotranspiration levels less than 1% of the total
cumulative inflow, the sink term was ignored in the simulations. It is assumed that the retention and
conductivity functions that describe the hydraulic properties of the soil can be represented by the
Mualem-van Genuchten model (MVG, Mualem, 1976; van Genuchten, 1980):

6(h)=0 +(6 -6, )[1 +|oh } 2.2)

1"’2

K(h):Ks(e_e’j - 1—(0_0’ jm 2.3)

6. -6,

where 6r and 6s are the residual and saturated water content respectively, o and n are empirical
parameters which are respectively related to the air entry pressure value and the width of the pore
size distribution, m is restricted by the Mualem condition m = 1 — 1/n with n > 1, K is the saturated
hydraulic conductivity, and [/ is a factor that accounts for pore tortuosity. A total of six MVG
parameters (6,, 05, a, n, K;and [) are therefore necessary to describe the soil hydraulic properties. The
parameter [ is commonly fixed to a value of 0.5 based on the recommendations of Mualem (1976).
Theoretically considered as the soil water content for an infinitely large suction, 6, is empirical and is
sometimes fixed to a value of zero (Nimmo, 1991; Fuentes et al., 1992). Water content
measurements in very dry field conditions or air-dried soil samples can provide a practical estimate
of 6,. Similarly, water content measurements in very wet field conditions or water-saturated
undisturbed soil cores provide a direct estimate of #;. Based on water content measurements of air-
dried and water-saturated undisturbed soil cores, 6, and 6, are fixed to 0.031 cm’em™ and 0.380
cm’cm”, respectively. We also fixed the tortuosity factor [ to a value of 0.5. Based on these
assumptions, three MVG parameters (o, n, K;) remain to be estimated by inverse modeling. The
model runs with PARSWMS used four processors in parallel, which enables rapid forward runs of
the hydrological model with an average run time of about one minute. This is important for rapid
estimation of the hydraulic parameters as inverse problems of this type typically require thousands of
model runs to converge to the global minimum.

2.2.3. Forward Geophysical Model

Assuming a 3D distribution of isotropic conductivity, the forward model for ERT is defined by the
Poisson equation that governs the behavior of electric current as:

i[(, 3_Vj 3( aV] a( a—VJ:—I§(x—xs)5(y—ys)5(z—zs) (2.4)

ox\ " ox +8_y O-bg +a—z % oz
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where g, is the bulk soil electrical conductivity, V is the electric potential, I is a point current source
located at (x;, ys, zs), and 0 is a Dirac delta function. The electrical flow domain encloses the
hydrologic domain and has a depth of about 2 m. To avoid boundary condition effects, the limits of
the electrical flow domain in the length and width directions were set sufficiently far away (500 m)
from the electrode domain. The electrical flow domain was discretized into 42000 tetrahedral
elements with smaller elements near the surface and closer to the electrodes than at greater depths
and regions further away from the electrodes. A no flow (Neumann) boundary condition was
imposed at the surface and at the sides of the electrical flow domain, while a mixed type boundary
condition was imposed at the bottom of the domain. Boundless Electrical Resistivity Tomography,
BERT 2.0 (Riicker et al., 2006) was used to simulate time-lapse electrical resistances corresponding
to the measurement arrays given in Table 1. The precision of the forward simulations was assessed
by comparing an analytical solution for electrical resistances in a homogenous half space to that
simulated by BERT. BERT simulated the electrical resistances with a numerical error less than 1%.
As illustrated in Figure 2.1, the conductivity distributions required for BERT were derived from the
water content distribution simulated by PARSWMS.

To gain further insights into the subsurface structure, resistivity tomograms were also obtained from
a time-lapse inversion of the measured electrical resistances using BERT 2.0. BERT 2.0 handles the
inversion for the resistivity distribution as a regularized least squares problem using a smoothness
constraint and uses a Gauss-Newton method with inexact line search (DeGroot-Hedlin and
Constable, 1990; Loke and Dahlin, 2002; Giinther et al., 2006). A regularization parameter is used to
find an appropriate compromise between data misfit and model roughness and the automated L-curve
approach of BERT 2.0 was used here.

2.2.4. Petrophysical Model

The link between the forward hydrological and the geophysical model in the coupled
hydrogeophysical inversion framework is a petrophysical relation which transforms simulated water
content distributions into the corresponding electrical conductivity distributions. There are several
petrophysical models of varying complexity to convert water content into electrical conductivity (e.g.
Archie, 1942; Waxman and Smits, 1968; Rhoades et al., 1976; Mualem and Friedman, 1991). These
petrophysical relations require site-specific calibration for any practical application. In this paper, we
used the model of Jougnot et al. (2010) based on Revil et al. (2007) for variably saturated conditions:

wow

, = %( S™ +(F-1o,) (2.5)

where g, is the bulk electrical conductivity of the soil, g, is the pore water conductivity, oy is the
surface conductivity associated with the electrical double layer surrounding the soil particles, S,, is
the saturation defined as 0@ where @ is the porosity of the soil, F is the formation factor, and n, is
an empirical constant called the saturation exponent. While an average value of 2 is most often used
for the saturation index of sandy soils (e.g. Friedman, 2005; Béinninger et al., 2009), values ranging
between 1.1 and 2.7 for unconsolidated sands have been reported by Ulrich and Slater (2004). The
pore water conductivity oy, was assumed equal to the electrical conductivity of the water used for
infiltration (0.0195 Sm™"). The porosity, @, was assumed equal to the saturated water content of the
soil (0.380 cm’cm™ ). The parameters F, n,, and o, were estimated in the laboratory from TDR-
measured electrical conductivity in soil cores saturated to different levels. Water of three different
conductivities (0.112 Sm™, 0.249 Sm™ and 0.481 Sm™) was used for saturating three sets of the cores
samples to different levels of saturation. For fully saturated core samples, eqn. 2.5 can be written as:
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o (F-1)
sat :_+ GS
F F

(2.6)

where oy, is the conductivity of the soil at saturation. By fitting a straight line to a plot between
solution conductivity (oy) and corresponding saturated bulk conductivity (os), F and o were
determined. These parameters were then fixed while fitting the saturation exponent, n,, to bulk
electrical conductivity measurements made on unsaturated core samples.

2.2.5. Objective Functions and Optimization

In optimization, an objective function which expresses a misfit between observations and predictions
based on the inversion parameters is minimized. Generally, the parameters are perturbed within
reasonably wide bounds (Table 2.2) and the generated predictions are compared to the corresponding
observations until a close fit is found. In this paper, 5 scenarios were used for the inversion for the
three hydraulic parameters (a, n, K) using objective functions based on the root mean square error
(RMSE) between time-lapse predictions and the corresponding measurements. In the first scenario,
the objective function was computed as the RMSE between K time-lapse cumulative infiltration (/)
measurements and the corresponding predictions (/*) from the hydrological model:

1 2
OFlz\/KZ(I 1 (i) 2.7)

i=1

In the second scenario, the coupled hydrogeophysical inversion approach was applied to M time-
lapse electrical resistance (R) measurements and the objective function was similarly defined as:

OF, = Jﬁf(& ~ R (wni)) (2.8)

i=1

where R* are predictions of electrical resistance measurements from the forward geophysical model
coupled to the hydrological model.

In the last three scenarios, coupled hydrogeophysical inversion was used to estimate the hydraulic
parameters (a, n, Ky) by fusing multiple data types, namely time-lapse cumulative infiltration and
electrical resistance measurements. In this case, definition of the objective function requires the
normalization of the RMSE for individual data types. Here, we explore three different normalization
strategies: normalization with the standard deviation of measurements, the range of the
measurements or the average of the measurements:
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where ¢z and ¢; are respectively the standard deviation of the measurements for electrical resistances
and cumulative infiltration, A and A; are respectively the range (i.e. the difference between the
maximum and the minimum value) of the electrical resistance and cumulative infiltration

measurements, and R and I are respectively the average of the electrical resistance and cumulative
inflow measurements. As these objective functions are highly non-linear, they are minimized using a
global optimizer. In this paper we used the Shuffled Complex Evolution optimization algorithm
(SCE-UA, Duan et al., 1993). SCE-UA is a genetic global optimizer which combines probabilistic
and deterministic approaches with clustering and systematic evolution to randomly sample a
population of parameter combinations from predefined parameter spaces of sufficiently wide ranges
and evolve them to a global optimum. In this study, the SCE-UA was set to a convergence criterion
in which an optimum was assumed to be reached when in 10 successive evolution loops, the
objective function did not improve by more than 0.01%. To compare the accuracy of the different
optimization scenarios, confidence intervals were computed around the optimum parameters based
on a first order approximation (Kool and Parker, 1998).

Table 2.2: Inversion bounds for hydraulic parameters

Parameter Maximum value Minimum value

o [m'] 1.0 14.5
n[-] 1.2 3.2
K, [ms'] 1.0e-6 1.0e-4

2.2.6. Numerical Experiments

Numerical investigations were carried out to gain further insight into the feasibility of obtaining
plausible parameter estimates from the inversion of inflow and electrical resistance measurements
obtained during constant head infiltration. For these simulations, a sandy loam soil with typical
hydraulic parameters according to Carsel and Parish (1988) was considered (6, = 0.41 cm3cm'3, 0,=
0.065 cm3cm'3, a=0.075 cm'l, n=1.89, K,=4.421 cmh and [ = 0.5). For the petrophysical model
(Eq. 2.5), we assumed the following parameters: a,, = 0.02 Sm'l, o, = 0.0003 Sm'l, ®=041, F =
5.949, and n, = 2. Using the forward models and the associated initial and boundary conditions,
cumulative inflow and electrical resistance measurements corresponding to the measurement times of
the constant head infiltration experiment were simulated. Gaussian noise with a standard deviation of
0.0001 m® and a mean of zero was added to the synthetic cumulative infiltration, while 3% relative
random noise was added to the simulated electrical resistances. The simulations with noise were used
as measurements and the feasibility of the five inversion scenarios was investigated. In each of the
inversion scenarios, ,, 6, [ and the petrophysical parameters were assumed to be known and were
kept constant at their ‘true’ values while 2D objective function response surfaces in the a-n, a-K; and
n-K parameter planes were constructed for the other three hydraulic parameters by additionally
fixing one of them and systematically varying two others within the inversion bounds given in table
2. For each parameter, the range was divided in 50 equidistant parts, which means that a single
response surface consists of 2601 objective function evaluations.
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2.2.7. Multi-Step Outflow Experiment

Independent estimates of the hydraulic parameters were obtained using a multi-step outflow (MSO)
experiment. An undisturbed soil sample with a height of 10 cm and a diameter of 8.5 cm was
obtained from the experimental site using a stainless steel cylinder. The sample was saturated to a
water content of 0.380 m’m™ and six pressure increments were applied over a period of 483 hours
while outflow and matric potential readings were recorded at 30 second intervals using two
tensiometers located at 3 cm and 7 cm above the bottom of the sample. The outflow and matric head
readings were filtered and used for the estimation of the hydraulic parameters (o, n and K;) using the
HYDRUSI1D model (Simunek et al., 2008) and the SCE-UA optimization algorithm.

2.3. Results and Discussion

2.3.1. Numerical Experiments

Figure 2.3 shows the 2D objective function response surfaces in the a-K;, a-n and n-K; parameter
planes for each of the five inversion scenarios. In the first inversion scenario (OF1) where only
cumulative infiltration is used, it can be observed in the a-K; and n-K; parameter planes that the
objective function minimum is constrained in a flat space in the K, direction. This theoretically
indicates that cumulative infiltration obtained using a constant head well permeameter has enough
information to constrain the inversion for K;. On the other hand, the a-n parameter plane for OF1
shows a strong positive correlation between a and n when K is fixed. This implies that a and n
cannot be simultaneously estimated from cumulative inflow measurements in a sandy loam soil.

In scenario OF2 where only electrical resistances are used, the a-K; parameter plane also shows a
greater sensitivity towards K;. However, the a-K; and n-K; parameter planes show a reduction in the
uncertainty associated with a and n for a given K,. This implies that information on the spatio-
temporal evolution of the water content provided by the electrical resistances helps to further
constrain the inversion for these parameters. Unlike the case of scenario OF1, no correlation is
observed between o and n in the a-n parameter plane.

Scenarios OF3 to OF5 show the response surfaces obtained through the fusion of electrical
resistances and cumulative inflow within the coupled hydrogeophysical inversion scheme. In
scenario OF3 where the standard deviation of the measurements is used for normalization, a well
defined objective function minimum is observed in the a-n parameter plane while the a-K; and n-K;
parameter planes indicate that an adequate estimate of Kj is also possible from the inversion strategy.
Scenarios OF4 and OF5 exhibit similar objective function response surfaces with a well defined
minimum in the n-K; parameter plane. Compared to scenarios OF1 and OF2, the a-n parameter plane
shows more reduction in the uncertainty associated with the estimation of a and » when inflow and
resistance measurements are simultaneously considered during inversion.

These numerical experiments show that the data fusion strategy to be adopted will therefore depend
on the availability of reliable prior information on K or a. Within the coupled hydrogeophysical
inversion scheme, the prior information can be provided in the form of ranges in which these
parameters vary. Where there is reliable prior information on K, scenario OF3 is preferred to
scenarios OF4 and OF5. Where there is reliable prior information on a, scenarios OF4 or OF5 are
preferable. This makes scenario OF3 particularly attractive as it is easier to independently obtain
estimates of K, than a. Scenarios 3 to 5 clearly illustrate the data fusion power of the coupled
hydrogeophysical inversion scheme. Theoretically this implies that the fusion of electrical resistance
and cumulative inflow measurements obtained under a constant head well permeameter can provide
enough information to constrain the inversion for a, n and K.

19



Chapter 2. Coupled hydrogeophysical fusion of ERT and inflow data

14 _d
—_ —_ 5
E — 11 L
ot E et -
> o s 5 )
o ¥ s oF 55 -6
= 10gy OF1)E 5 109, 4(OF1)
4217 22 27 32 12 17 22 27 32
N n
14 _d
E 1 B 45 s
) = °0 ks SR 07
= -] =
E‘r 5 L :qr -5.5 08
2 Iﬂg1EI DFZ) -6 log, ,(OF2)
12 17 22 27 32 12 17 22 27 32
" n
- -4 1]
w
% = E -4.5 a_ 05
g L=H e
E =
s = o E 1
= ¥ KK ‘
= A log, -(OF3)= _ | 0OF3
- 2 0 5 o
2 s & n a4 PelOF 12 17 22 27 32 90(0F3) 12 17 22 27 32 510(0F3)
w [1/m] ® n
14 o 1
— w
: n : [E )
= | E 5 =
) 16 O & o = 16
= 18 H S 55 -13
5 off
:qF N = A ;—
. lo OF4 2 log, - (OF4 - lo QF4
2 5 8 11 14 B10(OF4) 12 17 22 27 32 90(0F4) 12 17 22 27 32 “80(OFY
« [L/m] n n
04 14 -4 -02
- 08 = -0.4
E s = 11 g s x s
g 1 g Sl A
= 1z ¥ . B 55 12
= =
. lo JF5 log, - (OF5 K lo QOF5
2 5 8 11 14 B10(0F) 4217 22 27 32 %00F9) 12 17 22 27 32 Bp(0F3)
& (L/im) 2 #

Figure 2.3: Objective function response surfaces for the 5 inversion scenarios. White spaces indicate parameter
combinations for which the hydraulic model did not converge, while the white markers (+) indicate the objective
function minimum

2.3.2. Laboratory and Field Experiments

Table 2.3 presents the optimization results from the MSO experiment. In addition to the optimized
parameters (a, n and K;) and the fixed parameters (6,, 6, and [), the 95% confidence intervals of the
optimized parameters are also reported. Figure 2.4 compares the measured and modeled outflow and
matric potential. Clearly, the fit between the measured and predicted outflow is excellent while an
appreciably good fit is also observed between the measured and the predicted matric potential.
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reference in the remainder of this study.

Table 2.3: Optimized MVG parameters for MSO and the five inversion scenarios (OF1 - OF5)

Method Parameters + 95% confidence limits!

O, i O, T a n K, I

[cm’ems]  [em’em™] [em™] [-] [cmh™] [-]
MSO 0.031 0.380 0.023 £0.002 1.503 £0.005 1.660%0.031 0.5
OF1 0.031 0380 0061 £0.011 1552 £1.236 1.039%0.007 0.5
OF2 0.031 0.380  0.030 £0.009 2983 £0.104 0.837%0.067 0.5
OF3 0.031 0.380  0.025 £0.006 1.652 £0.416 0.945%0.047 0.5
OF4 0.031 0.380 0014 £0.025 2232 +0.628 0.809% 0052 05
OF5 0.031 0.380 0.022 £0.010 2.998 £0.567 0.869% 0.050 0.5

19 is residual water content; 0, is saturated water content; o, n and K, are Mualem van Genuchten
hydraulic parameters. The values in brackets are 95% confidence intervals on the associated
parameters. " fixed during optimization
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Figure 2.4: Measured versus predicted cumulative outflow and (b) Measured versus predicted matric potential
from the multi-step outflow experiment.

Figure 2.5(a) shows the initial or background electrical resistivity distribution across the imaged
plane obtained by inverting the ERT data and Figure 2.5(b) shows the resistivity distribution after
three hours of infiltration. As can be seen from Figure 2.5, the soil is composed of two layers. The
first layer has an average resistivity of 500 Qm and extends from the surface to a depth of about
0.75 m and it is underlain by a second layer with an average resistivity of about 375 Q m. Although
approximately 23 litres of water was infiltrated into the soil in three hours, the resulting infiltration
bulb is not very perceptible from from Figure 2.5(b). Nevertheless, Figure 2.5(b) shows lower
resistvity values below the borehole at the point of inflow compared to Figure 2.5(a). To track
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changes to the initial resistivity and to obtain a better understanding of the infiltration process, a
relative difference between the final and the initial electrical resistivity distribution is presented in

Figure 2.6. This relative difference was calculated as 1_A_p , where p, is the initial resistivity and

Ap is the absolute difference between the initial and the final resistivity distribution. The relative
difference varies between approximately 1.00-0.74 corresponding to water content changes between
approximately 0.28-0.38 cm’em™. It is worth noticing in Figure 2.6 that the infiltration plume
extends to a depth of about 0.60 m below the soil surface within the first horizon. The infiltration is
almost symmetric around the augered hole and the infiltration bulb has an approximate height and
width of 0.60 m by 0.60 m. These tomograms (Figures 2.5 and 2.6) are only of qualitative
importance to this study as they give us an appraisal of the subsurface structure and the possible size
of the infiltration bulb. They were not used in the inversion for soil hydraulic parameters.

The petrophysical relation between water content and bulk electrical conductivity was derived in the
laboratory by fitting the petrophysical model (eqn. 2.5) to bulk electrical conductivity and water
content measurements made in the laboratory (Figure 2.7). The fitted empirical parameters are F =
5.858, n, = 1.94 and o, = 0.00084 Sm™" Considering the conductivity of the water used for infiltration
(0.0195 Sm'l), the porosity of the soil (0.38 cm’em” ), and the initial average water content of the
topsoil (0.282 cm’cm™), the determined petrophysical model gives us an initial conductivity of the
topsoil of about 0.0026 Sm™. This compares well with conductivity of the topsoil estimated from the
resistivity tomogram (Figure 2.5), which is about 0.002 Sm™. This suggests that the derived
petrophysical model can be considered as a satisfactory link between the forward hydrologic and
geophysical models within the coupled hydrogeophysical inversion framework.
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Figure 2.5: a) Background resistivity distribution and b) resistivity distribution after three hours of infiltration.
Results are presented as slices through 3D tomograms directly below and in the direction of the electrode array.

22



Chapter 2. Coupled hydrogeophysical fusion of ERT and inflow data

0.0 1.0 X (cm] 20 3.0 40
chmm NN o .
03 0.9 1.0 1.1

Figure 2.6: Extent of infiltration into the imaged plane. The outermost contour indicates the most probable extent of the
infiltration plume.

Table 2.3 summarizes the inversion results for the five scenarios considered here. For scenario OF1
where only inflow measurements are used, n and K; compare well with the MSO results (Table 2.3).
However, the optimum « value for this scenario overestimates the value obtained with MSO.
Therefore, the constant head cumulative inflow measurements seem to contain information on only
two of the three MVG parameters (n and K;). Similar results have been reported by Russo et al.
(1991), Simunek and van Genuchten (1996), and Mboh et al. (2011) for infiltration measurements
only. Despite the non-unique solution to the inverse problem, a good fit between the measured and
modeled cumulative inflow is obtained (Figure 2.8). Clearly, a good fit does not imply that the
hydraulic parameters are uniquely estimated.
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Figure 2.7: Plot of bulk electrical conductivity of a saturated sample against pore water conductivity. Intercept

F—
provides the surface conductivity (TO-S =0.0007 Sm™) and the slope is related to the formation factor

(F™' =0.1707 ); (b) measured (M) and fitted (E) Archie’s law for three water conductivities o, (0.48 Sm™, 0.246
Sm™, 0.112 Sm™).
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In scenario OF2 where only electrical resistances are used, K and o values that correspond well with
those of MSO are obtained (Table 2.3). The value of n is overestimated compared to that of MSO. In
scenario OF2, a is estimated with a narrower confidence interval than in the case of scenario OF1.
Therefore, an inversion considering both data sources simultaneously is a logical next step. The
results from scenario OF3 clearly illustrate the power of data fusion in coupled hydrogeophysical
inversion. The optimum values for a, n and K, all correspond well with those of the MSO
experiment. As examined by Hinnell et al. (2010), such good estimates are only possible when the
hydrologic model represents the main features of the hydrological process being monitored. Hence,
we interpret this good match as a confirmation of the plausibility of the applied boundary and initial
conditions and the assumptions used for setting up the hydrologic model (e.g. homogeneous top soil
layer). In scenario OF4, a is underestimated compared to the MSO value but is still within a
comparable range. There is an overestimation of n while K is close to the reference value from
MSO. In scenario OF5, a and K; are well estimated but n is overestimated compared to the value
from MSO.

0.03
e
3
3 0.02-
£
g
® 0.01 - Predicted
=
g e measured
(&)
0 T T T T

0 50 100 150 200 250

Time [mins]

Figure 2.8: Comparison of measured and predicted cumulative inflow with the optimized parameters of scenario
OF1.

The different results for scenarios OF3 to OF5 are a consequence of different weights for the
objective function leading to trade-offs in fitting the inflow and electrical resistance measurements.
The estimated hydraulic parameters for each of the 5 inversion scenarios were used to calculate the
root mean square errors (RMSE) based on the ERT and the cumulative inflow data. A plot of RMSE
associated with ERT and inflow for all five inversion scenarios (Figure 2.9) provides a Pareto front
(e.g. Vrugt and Robinson, 2007) which illustrates the trade-off in fitting both measurement types.
The extreme ends of the Pareto front represent the inversion results for scenarios OF1 and OF2 in
which only a single data type was used for optimization. Scenarios OF3 to OF5 represent various
compromise solutions along the Pareto front. In scenarios OF4 and OFS, there is a better fit to the
ERT measurements than in scenario OF3, but a relatively poor fit to the inflow measurements. The
Pareto front also shows that scenario OF3 is an almost equitable compromise between fitting the
inflow and the ERT measurements. While it is not a general rule that this equitable scenario is the
best, in this case scenario OF3 also produced hydraulic parameter estimates which are the closest to
our MSO benchmark.

Figure 2.10 compares the water retention and hydraulic conductivity functions of the 5 inversion
scenarios to those from the MSO experiment. Based on the coefficient of determination (R%) which
established the correlation between the MSO results and the other inversion scenarios, it can be
observed from Figure 2.10(a) that the hydraulic function from scenario OF2 (R2 =0.92) is the closest
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to that of MSO followed by scenario OF3, OF4 and OF5 which have similar R? values (R2 =0.87).
The hydraulic conductivity function from scenario OF1 (R* = 0.6) is the least correlated to that from

Chapter 2. Coupled hydrogeophysical fusion of ERT and inflow data

MSO. None of the five inversion scenarios predict a hydraulic conductivity function close to that
from MSO at pF = 0. It is common to find differences in hydraulic parameters obtained using
laboratory and field methods. Despite this observation, the K value predicted from the five inversion
scenarios are all in the same order of magnitude as the K obtained from the MSO experiment (Table
2.3). Compared to the MSO method (Figure 2.10(b), the water retention functions from scenarios

OF3 (R2 = 0.98), and OF4 (R2 = 0.94) are the best, followed by those from scanarios OF1 (R2 =
0.91), OF5 (R2 = 0.82) and OF2 (R2 = 0.75). Therefore we conclude that the fusion of cumulative

inflow and electrical resistances within the coupled hydrogeophysical inversion framework using
scenario OF3 allowed the retrieval of plausible a , n and K comparable with those from an MSO

experiment
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Figure 2.9: Pareto front showing the Root Mean Square Error (RMSE) between measured and predicted inflow
and resistance measurements for the 5 inversion scenarios
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Figure 2.10: Comparison of (a) hydraulic conductivity and (b) water retention functions from optimized
parameters of the MSO method and the five inversion scenarios (OF1 - OFS5).
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2.6. Conclusions

We have developed a coupled hydrogeophysical inversion framework for fast and accurate
estimation of three key Mualem-van Genuchten (MVG) parameters (a, n and K;) from electrical
resistances and inflow measurements obtained under a constant head infiltration. Using synthetic
data, we numerically investigated the feasibility of 5 inversion scenarios to estimate three MVG
parameters (a, n and K;) namely: (i) OF1, where only inflow measurements are used within the
objective function ; (ii) OF2, where only electrical resistances are used within the objective function;
(iii) OF3 where inflow and electrical resistances are used within an objective function normalized by
the standard deviation of the resistance and inflow measurements; (iv) OF4, where inflow and
electrical resistances are used in an objective function normalized by the range of the measurements,
and (v) OF5, where both inflow and electrical resistance measurements are used within an objective
function normalized by the mean of the measurements. The numerical experiment indicated that all
the five inversion scenarios can enable reasonably good estimates of K;. However, using inflow
measurements alone does not provide a unique solution to the inverse problem due to a positive
correlation between a and n. The results also showed that using only electrical resistance can provide
reasonably good constraints on the estimation of a and » in addition to K.

By applying the coupled hydrogeophysical inversion procedure to real inflow and electrical
resistances measured during a constant head infiltration experiment, and comparing the results with
those from a MSO experiment carried out with undisturbed soil from the site of investigation, we
observed that all 5 scenarios enable reasonably good estimates of K. The use of inflow data only
enabled plausible estimates of n and K; while reasonably good estimates of a and K; were obtained
using electrical data only. In scenario OF3, estimates of a, n and K closer to those obtained from
MSO were retrieved. Fairly good estimates of o and n were possible with scenario OF4, while a and
K could be appreciably estimated with scenario OF5. Hence, scenario OF3 was the best inversion
method.

The results showed that the coupled hydrogeophysical inversion framework is a fast and efficient
way of estimating unknown model parameters from geophysical data. The ability for data fusion of
the developed coupled hydrogeophysical inversion scheme was also clearly shown. The joint
interpretation of inflow and resistance measurements resulted in hydraulic parameter estimates that
were more appropriate than the parameters obtained from the individual data. In the fusion of data
sources, the choice of an appropriate objective function is a prerequisite and the multi-objective
interpretation using the Pareto front indicated that the compromise solution that simultaneously fitted
the inflow and the resistances also resulted in the most plausible hydraulic parameters. In future
studies, it will be interesting to investigate the applicability of the method to estimate spatially
varying soil hydraulic parameters.
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3. Coupled hydrogeophysical inversion of streaming potential signals
for unsaturated soil hydraulic properties *

Abstract

Streaming potential (SP;) is the electric potential generated by fluid flow in a charged porous
medium. SP; signals are related to pore water velocity, bulk electrical conductivity, excess of charge
in pore water and soil porosity. Several studies have estimated hydraulic properties of the saturated
zone from SP; signals but there are much less studies that attempt to infer hydraulic properties from
SP; signals obtained under variably saturated flow conditions. In this study, we aim to investigate the
feasibility of inferring three key Mualem-van Genuchten hydraulic parameters (a, n, Ks) and the
Archie’s saturation exponent (n,) from SP; measurements obtained during a falling head infiltration
experiment followed by primary drainage using a coupled hydrogeophysical inversion approach.
Numerical and laboratory experiments were performed in which infiltration and subsequent drainage
was monitored with non-polarizable Ag/AgCl electrodes and tensiometers. The synthetic case study
showed that SP, data obtained under variably saturated flow conditions can provide good information
on the hydraulic parameters (o, n, and K;) and n,. In addition to a reasonably good estimate of n,,
coupled hydrogeophysical inversion of actual SPy measurements during drainage of a sandy soil
column provided estimates of @, n and K; which were comparable to those obtained from an
independent inversion of the tensiometric data (matric heads). It was concluded that coupled
hydrogeophysical inversion of time-lapse SPg signals is a promising method for hydraulic
characterization of the vadose zone. Accurate modeling of SPg signals is essential for reliable
inversion results, but there still is debate about the appropriate model for the voltage coupling
coefficient at partial saturation. Our experimental data showed a non-linear and monotonous decrease
of the absolute voltage coupling coefficient with decreasing saturation. A comparison of several
available models with our experimental data showed that models that consider the relative
permeability and the relative electrical conductivity in addition to the saturated coupling coefficient
and water saturation were most appropriate.

2Adapted from: Mboh, C.M., J.A. Huisman, E. Zimmermann, and H. Vereecken. 2012. Coupled 28
hydrogeophysical inversion of streaming potential signals for unsaturated soil hydraulic
properties. Vadose Zone Journal, 11(2). doi:10.2136/vzj2011.0115.
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3.1. Introduction

Self-potential (SP) monitoring is a geophysical method based on the passive measurement of natural
electrical potential fields on the surface or in the subsurface of the earth. Many processes cause
spatio-temporal variations in these passively measured electric fields, including thermoelectric,
electrochemical and electrokinetic processes (e.g., Marshall and Madden, 1959; Sato and Mooney,
1960), and often observed SP signals have more than one contributing effect. Nevertheless, SP
signals have been used to delineate the lateral extent of hydrothermal zones associated with volcano
activity (e.g., Ishido et al., 1997; Lénat et al., 2000; Finizola et al., 2002) or to image organic-rich
contaminant plumes (Naudet et al., 2003, 2004; Linde and Revil, 2007), to name but a few of the
potential applications. A dominant contribution to SP signals observed in many subsurface
hydrological and hydrothermal processes is the so-called streaming potential, which is associated
with fluid flow in charged porous medium (e.g., Zablocki, 1978; Ishido and Mizutani, 1981; Sill,
1983).

Streaming potential (SP,) signals are related to the presence of an electrical double layer at the
typically negatively charged interface of the solid phase in porous media (e.g., Stern, 1924;
Overbeek, 1952; Dukhin and Derjaguin, 1974), which results in an excess of charge at the mineral-
water interface. The drag on the excess of charge by the flow of water generates a macroscopic
electric potential that can be measured. Because SP; signals are proportional to water flow rates, they
have found widespread applications in subsurface hydrological investigations. Most of these
applications are limited to the saturated zone and include among others: monitoring of groundwater
flow and determination of the location, nature, and geometry of electrokinetic sources from wavelet
analysis and streaming potential inversion (Patella, 1997; Gibert and Pessel, 2001; Sailhac and
Marquis, 2001; Rizzo et al., 2004); determination of the pattern of groundwater or subglacial water
flow (Kulessa et al., 2003; Richards et al., 2010); detection of water leakages through dams
(Bogoslovsky and Ogilvy, 1973; Al-Saigh et al., 1994; Panthulu et al., 2001; Boleve et al., 2009);
and estimation of aquifer hydraulic properties from the inversion of surface SP; anomalies (Darnet et
al., 2003).

There are much less studies focusing at SP signals in variably saturated porous media. Some of the
earliest experimental studies were carried out by Antraygues and Aubert (1993) and Sprunt et al.
(1994). Recent research has focused on the development of models to predict SPg for partially
saturated conditions. Generally, these methods rely on the governing equations that apply to the
saturated zone, but with a modification of the relationship between saturation and the voltage
coupling coefficient that relates the driving pore pressure to the induced macroscopic potential.
Several expressions have been proposed for this voltage coupling coefficient at partial saturation, but
no consensus has been reached yet on what is the most appropriate model (e.g., Revil et al., 1999;
Perrier and Morat, 2000; Guichet et al., 2003; Darnet and Marquis, 2004; Revil and Cerepi, 2004;
Linde et al., 2007; Revil et al., 2007; Jackson 2008, 2010; Allegre et al., 2010).

Despite differences in the approaches for modeling streaming potential in unsaturated porous media,
many studies have indicated that SP; signals can provide information on the subsurface pore water
velocity. This makes the SP method different from other geophysical methods (e.g., electrical
resistivity tomography, ground penetrating radar, electromagnetic induction) that use changes in
geophysical properties (e.g., electrical conductivity, dielectric permittivity) as proxies for changes in
state variables, such as soil water content or solute concentration (e.g., Huisman et al., 2003;
Samouelian et al., 2005; Robinson et al., 2008). In this context, an interesting research topic that
remains vastly unexplored is the determination of subsurface unsaturated hydraulic properties from
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SP; signals. Theoretically, this can be achieved using two approaches. In the first approach,
tomographic inversion is used to convert time-lapse SP; signals into Darcy velocities (e.g., Jardani et
al., 2006; Jardani et al., 2007; Minsley et al., 2007; Boleve et al., 2009), and these Darcy velocities
are subsequently used to calibrate a hydrologic model. This process requires independent
geophysical inversions for the subsurface streaming current density and electrical conductivity
distributions at each measurement time. In the second approach, SP; signals are directly used in
model inversion without a prior inversion to Darcy velocities. These approaches are respectively
referred to as uncoupled and coupled hydrogeophysical inversion approaches (Ferre et al., 2009;
Hinnell et al., 2010).

Tomograhic inversion of SPg signals for Darcy velocities is typically underdetermined and
regularization with a smoothness constraint is applied to stabilize the inverse problem (e.g., Jardani
et al., 2007). As has been observed with other geophysical methods like ground penetrating radar and
electrical resistivity tomography (e.g., Day-Lewis et al., 2005), regularization can lead to errors on
the Darcy velocity tomograms that will propagate to the estimated hydraulic properties when an
uncoupled hydrogeophysical inversion approach is used. As the coupled hydrogeophysical inversion
approach does not involve an intermediate tomographic inversion step, it has the advantage that this
error propagation is avoided. Several other advantages of this inversion approach are discussed in
Hinnell et al. (2010).

The coupled hydrogeophysical inversion approach has been successfully applied for the estimation
of subsurface unsaturated hydraulic properties from ground penetrating radar (Kowalsky et al., 2005;
Looms et al., 2008; Lambot et al., 2009), electrical resistivity tomography (Huisman et al., 2010;
Rings et al., 2010) and time domain reflectometry (Mboh et al., 2011) data. In this study, we aim to
investigate the feasibility of estimating soil hydraulic properties from SP; signals obtained under
variably saturated flow conditions using a coupled hydrogeophysical inversion approach. In
particular, we analyze time-lapse SP; signals made during falling head infiltration of water into a
saturated sandy soil column followed by primary drainage similar to the experiments presented by
Linde et al. (2007) and Allegre et al. (2010). This is one of the few attempts to use time-lapse SP;
signals to constrain the inversion for soil unsaturated hydraulic properties. Earlier attempts include
Sailhac et al. (2004) who presented an approach to estimate unsaturated hydraulic properties based
on analytical solutions for two-dimensional infiltration from a line source at steady state. As the
behavior of the voltage coupling coefficient under unsaturated conditions is still under debate, our
experimental results will also be used to compare the performance of several models for the voltage
coupling coefficient at partial saturation.

3.2. Streaming potential theory

The distribution of streaming potentials (¢ [V]) in porous media can be determined from the Poisson
equation:

V.-oVp=V-j (3.1)

where j; [A m™] and o [S m'] are the streaming current density and electrical conductivity
distributions of the porous medium, respectively. Eq. 3.1 results from the combination of the

generalized Ohm’s law J=—0V@+]; which expresses the total electrical current density j [A m™?] at

the quasi-static limit of Maxwell equations, and the conservation equationv'j: 0. From Eq. 3.1, it
is evident that streaming potentials are created by electrokinetic sources that are characterized by a
non-zero divergence of the streaming current density. As noted by Linde at al. (2007), such sources
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may correspond to water tables and capillary fringes, geological boundaries or the confines of
infiltration plumes in natural systems.

Linde et al. (2007) and Revil et al. (2007) proposed a model to relate the streaming current density
(js) to the Darcy velocity or flux u [m s'], the saturation S,, [-] and the excess of charge at saturation
Qv,sat [C m-3]:

u

v,sat

J = R (3.2)

w

The saturation S,, is defined as @', where 0 [cm3 cm'3] is the water content and @ [-] is the porosity
of the medium, which we assumed to be equal to the saturated water content 6. The excess of charge
at saturation Qs 1s related to electrical conductivity at saturation ogy [S m'l], the permeability of the
medium k [m?], the dynamic viscosity of water u [Pa s], and the voltage coupling coefficient at
saturation Cy, [V Pa'l] according to (Revil and Leroy, 2004):

-C 0 sar
O, s =+ (3.3)
The permeability (k) is related to the saturated hydraulic conductivity of a water-filled porous
medium by
k — KJ#W
P8
where p [kg m™], and g [m s] are the density of water and the gravitational constant, respectively. If
surface conduction is negligible, Csy 1s defined by the Helmholtz-Smoluchowski relation
(Smoluchowski, 1905) as:
¢
f
Cour = ©(35)
N0

where €/ [F m™] is the dielectric permittivity of the fluid, 77y [Pa s] is the fluid dynamic viscosity,

(3.4)

O[S m'l] is the fluid electrical conductivity and ¢ [V] is the zeta potential, which is defined as the
electrical potential inside the electrical double layer (EDL) at the shear plane. The shear plane is a
hypothetical slip plane slightly above a positively charged layer (Stern layer) in the EDL. Cj, can be
determined experimentally by measuring the potential difference across a saturated sample with a
known pressure gradient and assuming 1D flow conditions.

The model of Linde et al. (2007) and Revil et al. (2007) can be rearranged to obtain the following
expression for the voltage coupling coefficient at partial saturation, C(S,,) [V Pa™]:
C k

C(8,) =g r (3.6)

w r

where o, [-] is the relative electrical conductivity of the porous medium defined as O, = Swn" , and n,
[-] is the saturation exponent of Archie (1942). More details and extensions regarding the underlying
equations leading to the proposed model of Linde et al. (2007) are examined in Revil et al. (2007).
Several alternative models have been presented for C(S,,). For example, Revil et al. (1999) presented
the following model:

Csat

5" (1 N 2(1’ _ 1) GEJ 3.7)
Senn Se

where the effective saturation, S. [-], is defined as:

c(s,)=
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J— e - 07' — SW B SWr
‘ eS - 0}" 1 - SWr
and F [-] is the electrical formation factor, 4 [-] is the ratio between mineral surface and pore fluid

electrical conductivity, and S, is the residual saturation defined as 6,/6, with 6, 6, and 6, being the
actual, residual and saturated volumetric water contents, respectively. Assuming that the surface

S

(3.8)

electrical conductivity is negligible for silica dominated porous materials (i.e. ¢ tends to Zero),
Darnet and Marquis (2004) simplified Eq. 3.7 to:

Cvat
C(S,)= g (3.9)

e

Guichet et al. (2003) presented a voltage coupling coefficient which is linearly dependent on the
effective saturation Se:
C(S,)=CyS, (3.10)
Perrier and Morat (2000) used a model similar to Linde et al. (2007) where the voltage coupling
coefficient also depends on the relative permeability of the porous medium:

C,k

C(SW)=$ (3.11)

Based on a bundle of capillary tubes model and assuming that the excess of charge is independent of
saturation, Jackson (2008) also proposed Eq. 3.11 for the behavior of the voltage coupling coefficient
at partial saturation. Commenting on Jackson (2008), Linde (2009) acknowledged that using a bundle
of capillary tubes model can enable the development of a more accurate relation than the model of
Linde et al. (2007) based on a representative elementary volume concept because the relative
contribution of each capillary to the overall permeability can be determined. Linde (2009) however
showed that the assumption of Jackson (2008) that excess of charge is independent of saturation is
not physically plausible and proposed a correction in which the numerator of Eq. 3.11 is multiplied
by the relative excess charge of the wetting phase. By assuming that the surface charge is constant in
capillaries occupied by a given phase, Jackson (2010) investigated the impact of fluid and charge
distribution on multiphase electrokinetic coupling. Again using a bundle of capillary tubes model,
Jackson (2010) showed that the excess of charge at partial saturation depends on the pore scale
distribution of fluid and charge, which is controlled by the thickness of the electrical double layers
relative to the capillary radius, the capillary size distribution and the wettability. Relying on these
results, he postulated that the excess of charge in real geologic media will also depend on these
factors and argued that the model of Linde et al. (2007) should be considered as a first-order
approximation because of the simplified assumption that the excess of charge at partial saturation
scales inversely with water saturation. Notwithstanding these differences, Jackson (2008, 2010)
equally acknowledges that a bundle of capillary tubes is not a good representation of the pore space
of most geologic media.

3.3. Materials and Methods

3.3.1 Laboratory experiment

A falling head infiltration experiment followed by primary drainage was performed in a plexiglass
tube with a length of 217.5 cm and an internal diameter of 5 cm. Quartz sand (F36, Quartzwerk
Frechen GmBH, Germany) was evenly packed to a bulk density of about 1.5 g cm™ and a height of
117.5 cm. According to the provider specifications, the material contains about 99% of sand with a
mean grain size of 0.16 mm and is predominantly made of silica (99.3%). The sand column was
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gradually saturated starting from the bottom for several hours to avoid air entrapment. At the start of
the experiment, 56 cm of tap water with an electrical conductivity of 0.041 Sm™ and a room
temperature of 20.1 °C was ponded on top of the saturated sand column. The bottom of the column
was closed for 22 minutes to obtain measurements under no flow conditions. Next, the bottom of the
column was opened and a Marriotte reservoir was used to maintain a constant water level of 51 cm
above the soil surface for 38 minutes. Finally, the Marriotte reservoir was closed to allow for falling
head infiltration and subsequent drainage of the column until the end of the experimental period of

10 hours.

Ten custom-made non-polarizable Ag/AgCl electrodes and six TS5 tensiometers (UMS GmbH,
Munich, Germany) were horizontally installed in the soil column (Figure 3.1). The non-polarizable
electrodes consist of plastic tubing of 50 mm length with a porous cylindrical ceramic tip of 25mm
length and a diameter of 6 mm. The tubing was filled with the water used in the experiments and
contained a silver wire partly coated with AgCl. Relative to a reference electrode at 5 cm, SP
measurements were carried out for electrodes installed at 13.5, 25.5, 37.5, 49.5, 61.5, 73.5, 85.5,
97.5, and 109.5 cm from the bottom of the column. Tensiometers were installed at 10, 45, 65, 85, and
105 cm from the bottom of the column. SP measurements and tensiometric data were acquired using
an Electrical Impedance Tomography (EIT) imaging system described in Zimmerman et al. (2008),
which uses NI 4472 cards from National Instruments (www.ni.com) and amplifiers with very high
input resistance (500 G€2). The SP and tensiometric data were simultaneously acquired at a sampling
frequency of 1 KHz and averaged to give signals every second. Next, the SP and tensiometric signals
were filtered by calculating the median over six second intervals. This was done to reduce
instrumental noise and improve the signal-to-noise ratio of the measurements. Even under well
controlled laboratory conditions, interpretation of SP measurements can be challenging because apart
from the streaming potential (SPs) contribution, electrode responses can also vary due to drift terms
that are related to the electrode design and age (Petiau and Dupis, 1980). Therefore, pre-processing
of the SP measurements is required. By assuming that the drift is linear over time and that water flow
is insignificant at the end of the experiment, we shifted the signals to give a zero voltage at the end
while ensuring that signals at the beginning of drainage correspond to values directly determined
based on the measured voltage coupling coefficient at saturation. The processed signals during
drainage were sampled at 3.6 minute intervals and used for coupled hydrogeophysical inversion.

Marriotte reservoir - SP electrode

\ Tensiometer

51 em

£

water

117.5 em
Sand

AN,

Figure 3.1: Illustration of the experimental setup. SP signals are measured relative to a reference electrode at Scm
from the bottom of the 117.5 cm sand column
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Chapter 3. Coupled hydrogeophysical inversion of SP data

The type of experimental set-up used here can be used to directly estimate the voltage coupling
coefficient at partial saturation (Allegre et al., 2010). In order to do so, measured SP and tensiometric
data were interpolated to obtain streaming potential and pressure head estimates at 45, 55, 65, 75, 85,
95, and 105 cm from the bottom of the column. From the interpolated streaming potentials ¢ [mV]

and matric potentials 4 [m] at positions (X;, X»), the voltage coupling coefficient C. ., [mV m'] for
each data pair was calculated using:

c %% _ PO
e an, Xy (hxz + 'x2)_ (hxl + 'xl)

(3.12)

Based on Eq. 12 the voltage coupling coefficients were computed between successive electrode pairs
in the unsaturated part of the column, that is, C45,55cm, C55,650m’ C65,750m, C75,85cm, C85,95(:m’ C95,105cm. To
investigate the variation of the voltage coupling with saturation, the average water content between
these successive electrode pairs was calculated. It is important to note here that this method is only
valid when water flow is strictly 1D.

The experimental set up can also be used for the direct estimation of the saturated hydraulic
conductivity K [ms™'] using the falling head method as described by Klute and Dirksen (1986):

% _ L bp+L
T My (3.13)

where L [m] is the length of the saturated sandy soil column, and #, [s] is the time it takes for a
ponding water column of height by [m] to fall to another height »; [m].

3.3.2. Coupled hydrogeophysical inversion

Figure 3.2 illustrates the coupled hydrogeophysical inversion approach for the estimation of soil
hydraulic properties from time-lapse SPg signals. A forward hydrologic model is coupled to a
forward model for SP,. Using a suitable optimization algorithm, varying sets of hydraulic parameters
from predefined ranges are systematically fed into the hydrologic model, which provides simulations
of Darcy velocity and water content distributions. The simulated Darcy velocity and water content
distributions are converted into streaming currents and electrical conductivity distributions using the
voltage coupling coefficient and a suitable petrophysical relation. Finally, the simulated streaming
current and electrical conductivity distributions are fed into the geophysical model which predicts the
corresponding streaming potentials associated with the set of hydraulic parameters being evaluated.
The simulated streaming potential distributions are compared to the corresponding measurements by
computing an objective function which expresses their misfit. The whole process is repeated until a
hydraulic parameter set is found for which there is a close fit between measurements and
simulations. The inversion of SPs; measurements for subsurface hydraulic parameters therefore
requires petrophysical parameters and the voltage coupling coefficient at saturation. These can either
be measured independently, or in some cases they can be included as additional inversion parameters
in the coupled inversion approach. Maineult et al. (2005, 2006) used a similar approach to estimate
the transport properties of salt fronts in saturated sand by manually fitting the Darcy velocity and the
dispersion coefficient until the predicted and measured SP data fit together.
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Figure 3.2: Work flow of coupled hydrogeophysical inversion of time-lapse streaming potentials (¢) to soil
hydraulic properties p. F and n, are respectively the formation factor and saturation exponent of the law of
Archie (1942). Cyy, o, and @ are the voltage coupling coefficient at saturation, the saturated electrical
conductivity, and the porosity of the soil while p and g are the density of water and the gravitational constant. j;*
and o,* are simulated streaming current density and electrical conductivity distributions required to solve for the
streaming potential distribution (¢*).

3.3.3. Forward hydrologic model

We modeled falling head infiltration and drainage using HYDRUS 1D (Simunek et al., 2008). The
simulations were started with an atmospheric upper boundary condition and a measured ponding
depth of 48 cm above the initially saturated soil column of 117.5 cm. A seepage face was applied as
the bottom boundary condition. The 117.5 cm long soil column was discretized into 235 elements
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with a thickness of 0.5 cm. HYDRUS 1D numerically solves the one-dimensional Richards’ equation
for variably saturated flow in rigid porous media:

6 d oh
= :g{l{(h)(g+lﬂ (3.14)

where K(h) is the unsaturated hydraulic conductivity [cm d']. We assumed that the material
properties can be described by the classical Mualem-van Genuchten hydraulic model (Mualem,
1976; van Genuchten, 1980):

s, =1+l (3.15)

K=Kk :Kssj[1—(1—se“'")”]2 (3.16)

where k; [-] is the relative permeability, S, [-] is the effective saturation as defined in Eq. 8 while a
[cm™'] and 7 [-] are empirical parameters which are respectively related to the air entry pressure value
(i.e the minimum pressure to overcome before drainage starts) and the width of the pore size
distribution, m is restricted by the Mualem condition m = 1 - 1/n with n > 1, K is the saturated
hydraulic conductivity [cm d'], and [ [-] is a factor that accounts for pore tortuosity. Of the six
Mualem van Genuchten (MVG) parameters (6;, 6, o, n, K and /), we fixed [ to its average value of
0.5 (Mualem, 1976) while 6, and 6, were respectively fixed to 0.05 cm’em™ and 0.41 cm’cm™ based
on TDR measurements in air-dried and water saturated samples of the material. Therefore, there are
three hydraulic parameters (a, n and Kj) that remain to be estimated by inverse modeling.

3.3.4. Forward geophysical model for streaming potentials

We implemented the SPy model outlined by Linde et al. (2007) in MATLAB (see section 3.2). The
Darcy velocity distribution u and saturation S,, required to compute Eq. 3.2 and solve Eq. 3.1 are
obtained from a forward hydrologic model run. The voltage coupling coefficient at saturation was

estimated independently with a short sand column and the measurement set-up described by Suski et
al. (2006) based on the relationship

dg
C, ==
[aHl_o (3.17)

where 99 is the steady state difference of the streaming potential recorded between two electrodes
in the sample and OH s the imposed hydraulic head difference between the two electrodes.
Generally, the experiment is repeated using different hydraulic heads to obtain several pairs of g
and 9H between the pair of electrodes in the sample. A plot of dg against oH gives a graph with a

linear trend whose slope is equal to C... An estimate of o5 Was obtained by measuring the bulk
conductivity of a sample packed to the same bulk density as the sand in the column and saturated
with the same water (o= 0.041 S m" at 20 °C) with TDR (Huisman et al., 2008).

The electrical conductivity distribution o required to simulate SP signals was obtained by converting
the simulated water content distributions using the model of Archie (1942):

oc=0,F'S"“=z0_ S (3.18)

sat~ w
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where F' [-] is the electrical formation factor and n, [-] is the saturation exponent. Ulrich and Slater
(2004) reported values for n, varying between 1.1 and 2.7 from measurements made on
unconsolidated sands. Glover (2009) also reports a similar range (1.5-2.5) for n,. The exponent n,
was determined by fitting Eq. 3.18 to TDR-measured conductivities and saturations from samples
variably saturated with the same water, and packed to a similar bulk density as in the laboratory
experiment earlier described.

3.3.5. Objective function and inversion scenarios

Using the coupled hydrogeophysical inversion approach, the parameter set p is estimated by
minimizing an objective function OF(p) expressed as the root mean square error between N time-
lapse simulated streaming potential distributions ¢*(t,p) and the corresponding observations ¢(t):

=\/Z((pi(t)—(p*i t.p)) /N (3.19)

As vadose zone dynamics are non-linear, the objective function is expected to be non-linear and may
be characterized by many local minima. To avoid the inversion from converging to a local minimum,
we used a global search algorithm to minimize the objective function. For this purpose, the Shuffled
Complex Evolution optimization algorithm SCE-UA (Duan et al.,, 1993) was used. This global
optimizer from the family of genetic algorithms combines concepts of clustering, shuffling and
systematic competitive evolution with a deterministic local search algorithm (Simplex) to find the
global minimum. Initial parameter spaces varied over sufficiently wide ranges (Table 3.1). The
uncertainty of the parameters obtained with coupled hydrogeophysical inversion was assessed by
calculating the 95% confidence intervals based on a first order approximation (e.g., Kool and Parker,
1988; Vrugt and Bouten, 2002).

Table 3.1: Parameter inversion bounds

Parameter |  Lower bound  Upper bound
o [em™] 0.005 0.165
n[-] 1.2 11.2
K [cmhr'] 0.2 100

Ny [-] 1.1 2.7

"o and n are hydraulic parameters which are respectively related to the air entry pressure value and
the width of the pore size distribution. K is the saturated hydraulic conductivity and n, is the
saturation exponent of the law of Archie (1942).

Two inversion scenarios are considered in this study. In the first scenario, coupled hydrogeophysical
inversion was performed to estimate the parameter set p = {a, n and K;}. The remaining hydraulic
parameters (6, 6; and [) and the petrophysical parameters (os, and n,) were fixed to literature or
independently measured values. In the second scenario, n, was also included in the inversion.

To benchmark the inversion of streaming potential signals for soil hydraulic properties, the
tensiometric data obtained during the laboratory experiment were also inverted for a, n and K using
HYDRUSI1D and SCE-UA. The objective function was based on the root mean square difference
between the time-lapse tensiometric measurements and the corresponding simulations of the matric
potential (in analogy to Eq. 3.19)
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3.3.6. Numerical experiments

Numerical experiments were performed to investigate the feasibility of estimating subsurface
hydraulic properties from streaming potential signals obtained under falling head infiltration into an
initially saturated soil and subsequent primary drainage. We considered a sandy soil with typical
MVG hydraulic parameters (6, = 0.045 cm’ Cm'3, 0, =043 cm’ Cm'3, o =0.145 Cm'l, n=2068, K=
29.7 cm h™ and [ = 0.5) according to Carsel and Parish (1988). For the petrophysical parameters and
the voltage coupling coefficient at saturation, we assumed the values determined by Linde et al.
(2007) for fine-grained sand. Namely, F = 4.26, g, = 0.051 S m'l, ny,= 1.6, and Cy;; = -2.9 x 107V
Pa'. Based on these hydraulic and petrophysical parameters, streaming potential signals
corresponding to the measurement setup and duration of the laboratory experiment were simulated.
Gaussian noise with a standard deviation of 2.73 x 10° V and a mean of zero was added to the
simulated signals. This noise level was estimated from repeated measurements of streaming potential
for long time series in the laboratory. The simulated data with added noise were used as
measurements in the numerical experiments. To study the shape of the objective function in the
vicinity of its minimum and to gain insights into the correlation and identifiability of the three key
MVG hydraulic parameters (a, n, and K), we constructed 2D objective function response surfaces in
the a-n, a-Ks and n-K; parameter planes. This was done by fixing all other parameters and
systematically varying the mentioned pairs between predefined ranges and computing the objective
function (Eq. 3.19). In addition to the 2D objective function response surfaces, the simulated data
were used to test the uniqueness of the parameter estimates that can be retrieved from the streaming
potential signals considering the two inversion scenarios p = {a, n, K} and p = {a, n, K;, n,} under
investigation.

3.4. Results and Discussions

3.5.1. Numerical Experiment

Figure 3.3 shows the synthetic data generated during falling head infiltration and drainage based on
our experimental setup. As expected, the simulated SPg data tend to zero voltage towards the end of
the experiment where water flow is insignificant. The feasibility analysis using the synthetic data is
summarized in 2D objective function response surfaces in Figure 3.4. The first column of Figure 3.4
shows the response surfaces when only SP; measurement during falling head infiltration are
considered. The second column shows the response surfaces when only SP; measurement during
drainage are considered, while the third column shows the response surfaces obtained when both data
sets are combined. As expected, only K; can be obtained from SP; measurements obtained under
falling head infiltration into a saturated soil. This is clearly observable in the a-K; and n-K; parameter
planes where the objective function minimum is constrained in a space which is perpendicular to the
K axis at the point where K is equal to its true value.

The response surfaces for the drainage phase of the experiment indicate that SP; measurements
obtained during drainage also contain enough information to adequately constrain the inversion for
K. This is evident in the a-K; and n-K; response surfaces that illustrate that a slight change in log(K)
in the vicinity of the objective function minimum is accompanied by a major increase in the misfit.
This sensitivity of SPs signals to Kj is obvious as streaming currents are induced by fluid motion and
K is a parameter that strongly influences the pore water velocity and the associated drag on the
excess of charge in the diffuse electrical double layer at the mineral-fluid interface. On the other
hand, the a-n response surface during drainage revealed a correlation between these two parameters
in the vicinity of the objective function minimum. It is worth noting that n varies over a narrow range
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of values compared with the range of values for a. SPs signals obtained from a 1D drainage
experiment therefore seem to contain more information on n than a for the sandy soil investigated
here. The response surfaces during drainage are similar to those obtained from the combination of
drainage and falling head infiltration. Therefore, we only considered the drainage phase in the
analysis of the actual experimental data.
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Figure 3.3: Synthetic streaming potential data during falling head infiltration and drainage. Distances are relative
to the bottom of the column.

To investigate the uniqueness of the hydraulic parameter estimates, the synthetic data with added
noise were used to invert for hydraulic parameters following the two inversion scenarios (Table 3.2).
A comparison of prescribed and inverted parameters reveals that accurate estimates of n and K are
possible for both scenarios. The inversion result for a is still reasonably good for most practical
applications. It is worth noticing that the saturation exponent, n,, is also accurately estimated in
scenario 2. Theoretically this implies that SPg signals obtained under variably saturated flow
conditions contain enough information to uniquely constrain the inversion for n, K and n, for a
sandy soil. This finding is interesting because the independent estimation of n, from soil cores is an
error-prone procedure which may result in non-negligible error propagation in coupled
hydrogeophyical inversion.

Table 3.2: Hydraulic and petrophysical parameres estimates from synthetic data

Scenarios Pararameters’

ol cm’ | n [-] K [cm hr'l] n, [-]
“True’ 0.145 2.68 29.7 1.6
Scenario 1 | 0.137 2.69 2977 | -----
Scenario 2 | 0.138 2.69 29.7 1.59

"o and n are hydraulic parameters which are respectively related to the air entry pressure value and
the width of the pore size distribution. K is the saturated hydraulic conductivity and n, is the
saturation exponent of the law of Archie (1942). In scenario 1, coupled hydrogeophysical inversion
of synthetic streaming potential data is performed to estimate @, n and K while in scenario 2 n, is
additionally estimated.
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Figure 3.4: Simulated 2D objective function (OF) response surfaces during falling head infiltration infiltration
(Column 1) into a saturated sandy soil column and subsequent drainage (Column 2). Column 3 considers both
processes. The white (+) is the OF minimum while the white areas are parameter combinations for which the
hydrologic model does not converge.

3.5.2 Laboratory experiments

The voltage coupling coefficient at saturation, Cs,, and the petrophysical properties of the sand were
determined independently. Cg, was estimated to be -3.3 mV m’! (Figure 3.5). This value is
comparable to those obtained by Linde et al. (2007) and Allegre et al. (2010) on sands using tap
water of similar electrical conductivity. The saturation exponent, n,, was estimated to be 1.87 (Figure
3.6), which also is well within the range of previously reported values (e.g., Ulrich and Slater, 2004).

The hydraulic parameters of the sand were estimated from matric potential measurements made
during the drainage phase. Previously, it has been shown that such measurements contain enough
information to provide good estimates of soil hydraulic properties (Hopmans et al., 2002). A good fit
between measured and simulated matric potential with a RMSE of 1.0 cm was obtained (Figure 3.7).
Moreover, the estimated K, of 31.5 cm hr! (Table 3.3) compares well with the value obtained from
the falling head method (36.6 cm hr''"). Therefore, the hydraulic parameters estimated from the matric
potential data are used as an independent benchmark for the streaming potential-based inversions.
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Figure 3.5: Estimation of the voltage coupling coefficient at saturation (Cj,).The slope of the linear regression (black
line) leads to C,, = 3.3 mV m for a water conductivity of 6, = 0.044 S m’.

0 ' ' ' «
R2=0.9947 //
s
= 05+ & .
] s
Y e
E' _1 L /{/ _
5 e
2 15; y»‘ 1

-1 -0.75 -05 -025 0
Iog,l 0(SW)

Figure 3.6: Estimation of Archie’s saturation exponent (n,) from bulk-to-saturated electrical conductivity ratio
01,/6,c and water saturation S,,. The slope of the linear regression (black line) gives n, = 1.87

Figure 3.8 shows the raw SP measurements acquired during the experiment. While the drainage
phase of our experiment is similar to the experiment of Allegre et al. (2010), our data look very
different from theirs. Our data show the same trends observed in the synthetic measurements (Figure
3.3) during falling head infiltration and drainage. Although the voltages do not tend to zero towards
the end of the experiment as observed in the synthetic data, the first derivatives do. This indicates
that negligible changes in the observed signals over time were recorded towards the end of the
experiment. One of the reasons why the signals do not tend to zero towards the end of the experiment
is because of SP contributions other than streaming potentials. This is evident from Figure 3.8
because constant signals that differ in magnitude for each electrode were observed under no flow
conditions. These issues were handled with careful pre-processing of the SP signals prior to
inversion. The resulting corrected SPy signals are presented in Figure 3.9 for the drainage phase.
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Figure 3.7: Measured (grey lines) versus simulated (black lines) matric potentials at four locations within the sand
column during drainage. Distances are relative to the bottom of the column.
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Figure 3.8: Raw SP measurements taken at distances relative to the bottom of the column. Signals from 0-0.36 hr,
0.36-1.06 hr, 1.06-2.14 hr, 2.14-10 hr were obtained under no flow, constant head, falling head and drainage

conditions, respectively
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The independently estimated Cy, and n, were used within the coupled hydrogeophysical inversion to
estimate the hydraulic properties of the sand from the processed streaming potential signals obtained
during drainage. Table 3.3 compares the estimated parameters from streaming potential
measurements to those independently obtained from the inversion of tensiometric data. The 95%
confidence intervals on these estimates are also presented in Table 3.3. Figure 3.10 presents a
comparison between the measured streaming potential and the corresponding simulations based on
the estimated hydraulic parameters from scenario 1 (RMSE is 0.02 mV). An identical plot (not
presented) was obtained using the hydraulic parameters from scenario 2. Scenarios 1 and 2 resulted
in similar hydraulic properties which are comparable to those obtained from the inversion of matric
heads. This is illustrated in Figure 11 which compares the predicted hydraulic conductivity and water
retention functions of the three methods. In all three inversions, n and K, are estimated with a
relatively narrower 95% confidence interval than a. This confirms the numerical findings in which it
was observed from 2D objective function response surfaces that SPg signals obtained for our
experimental conditions contained more information on K; and n than a. The estimated saturation
exponent, n,, is 1.81 in scenario 2, which is close to the independently derived value of 1.87.
Evidently, SP; measurements obtained under variably saturated flow conditions contain ample
information on the subsurface electrical conductivity distribution. The ability of the coupled
hydrogeophysical inversion approach to also estimate petrophysical parameters determining this
electrical conductivity distribution is due to the strong mass balance constraints provided by the
hydrological model.

Table 3.3: Hydraulic and petrophysical parameters from actual data

Methods Parameters!t 95% confidence limits

ofcm] n[-] K [cm hr'] n, [-]
Matric head 0.020 £ 0.015 3.879 £ 0.0001 31.117 £ 1.000
SP Scenario 1 0.021 £ 0.309 3.408 £ 0.011 33.266 T 1.004
SP Scenario 2 0.019 £ 0.444 3.203 £ 0.002 28.445 £ 1.005 1.812£0.006
I

a and n are hydraulic parameters which are respectively related to the air entry pressure value and
the width of the pore size distribution. K is the saturated hydraulic conductivity and n, is the
saturation exponent of the law of Archie (1942). In scenario 1, coupled hydrogeophysical inversion
of streaming potential data is performed to estimate o, n and K while in scenario 2 n, is additionally
estimated.
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Figure 3.9: Pre-processed SP signals during drainage. The signals were shifted to zero voltage at the end of the
experiment while ensuring that signals at the beginning of drainage correspond to values directly determined
based on the voltage coupling coefficient at saturation.

The measured voltage coupling coefficient C(Sy) between successive electrode pairs as a function of
average saturation, Sy, between the pairs is shown in Figure 3.12a. The average saturation S,, was
calculated from pressure head using the hydraulic parameters obtained from the inversion of
tensiometric data. The calculated saturation varies between 0.325 and 1. In similar drainage
experiments with sand (e.g., Revil et al., 2007; Allegre et al., 2010), this range was also observed as
the saturation limits within which significant voltage coupling coefficients were measured. From this
range, 13 bins with a step of 0.05 were constructed to obtain a plot of the average absolute voltage
coupling coefficient as a function of average water saturation (Figure 3.12b). It can be observed that
the absolute C(Sy) decreases non-linearly with a decrease in saturation. Contrary to the observations
of Allegre et al. (2010), our data does not show an increase in absolute C(Sy) with decrease in
saturation between 1 and 0.7. Our data are also inconsistent with the models of Darnet and Marquis
(2004) and Revil et al. (1999) because these model predict an increase of absolute C(Sy,) in response
to a decrease in saturation. Therefore, these models are not considered in detail in the following.
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Figure 3.10: Simulated and observed streaming potentials (SP;) at distances relative to the bottom of the column

during drainage.
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Figure 3.11: Comparison of (a) hydraulic conductivity and (b) water retention functions from the streaming
potential inversion scenarios 1 and 2 (SP,; and SP,,) with those predicted from the inversion of matric head
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Figure 12b compares the models of Guichet et al. (2003), Perrier and Morat (2000) and Linde et al.
(2007) with the binned absolute C(Sy,). For the comparison of these models, we used the measured
Archie’s saturation exponent (n, = 1.87) and prescribed the relative permeability k; based on the
hydraulic parameters obtained from the independent inversion of tensiometric data. The model of
Guichet et al. (2003) deviates most from the measured absolute C(Sy,). Clearly, a simple linear
decrease with decreasing saturation does not capture the non-linear behavior observed in our data.
The model of Linde et al. (2007) fits the absolute C(Sy) data well. The model of Perrier and Morat
(2000) captures the shape of the measured curve but underestimates absolute C(Sy). In conclusion,
the results presented in Figure 3.12 inspire confidence in the approach of Linde et al. (2007) and
Revil et al. (2007).
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Figure 3.12: a) Variation of measured voltage coupling coefficient C(S,) with saturation. b) The models of Perrier
and Morat (2000), Guichet et al. (2003) and Linde et al. (2007) are also presented. Hydraulic properties were
obtained from the inversion of tensiometric data.

3.6. Conclusions

The primary objective of this study was to investigate the feasibility of estimating subsurface
hydraulic and petrophysical properties from streaming potential signals (SPs) obtained under variably
saturated flow conditions using a coupled hydrogeophyical inversion approach while a secondary
aim was to compare different models describing the voltage coupling coefficient under partially
saturated conditions. In order to so, a laboratory experiment was performed in which falling head
infiltration and drainage of an initially saturated sandy soil column was monitored with a vertical
alignment of non-polarizable Ag/AgCl electrodes and tensiometers. As a first step, we numerically
investigated the possibility of using this experimental set-up to estimate three Mualem-van
Genuchten (MVG) parameters (a, n and K;) and the Archie’s saturation exponent n, from time-lapse
SPy signals. It was concluded from these synthetic experiments that SPg signals obtained under
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drainage contained enough information to uniquely constrain the inversion for n, K, and n, for the
assumed experimental conditions. The synthetic data also enabled a reasonably good estimate of a.

In a next step, the actual time-lapse SP; measurements were analyzed. Coupled hydrogeophysical
inversion of SP; signals obtained during drainage provided estimates of a, n and Kj that are similar to
those obtained from the inversion of the tensiometer data. In addition, the fitted Archie’s saturation
exponent, n,, was also close to the independently measured value. It was therefore concluded that
coupled hydrogeophysical inversion of SPy signals obtained under variably saturated flow conditions
allows estimation of unsaturated hydraulic parameters. The success of this procedure relies on
efficient pre-processing of the observed SP data prior to inversion. This is because the observed SP
signals contain contributions like time varying electrode potentials and drift which are not of
electrokinetic origin.

Recent developments now make it possible to use vertically aligned SP electrodes in boreholes
(Pezard et al., 2009). This implies that variably saturated flow can be monitored in the field for the
estimation of subsurface hydraulic properties from streaming potential signals. As outlined by Linde
et al. (2011), this is, however, not trivial because of the superposition of a range of SP sources and
the fact that electrode responses vary with temperature and electrochemical conditions in the vicinity
of the electrode. In addition, non-linear drifts terms that are related to electrode design and age
complicate field SP measurements and often hinder quantitative interpretations of field SP data.
Notwithstanding these challenges, our results show that coupled hydrogeophysical inversion of SP;
signals under variably saturated flow conditions is a promising tool for cost-effective hydraulic
characterization of the vadose zone.

From measurements of the voltage coupling coefficients at partial saturation, it was concluded that
the absolute voltage coupling coefficient non-linearly and monotonously decreases with saturation.
There was good agreement between measured and modeled voltage coupling coefficients using the
approach of Linde et al. (2007). In contrast, the models of Darnet and Marquis (2004), Revil et al.
(1999), Guichet et al. (2003), and Perrier and Morat (2000) did not adequately describe the observed
variation of voltage coupling coefficient with saturation. In the ongoing debate on the modeling of
streaming potentials in unsaturated porous media, it was concluded that the approach and model of
Linde et al. (2007) performed best for our experimental data.
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4. Feasibility of sequential and coupled inversion of TDR data to infer
soil hydraulic parameters under falling head infiltration °

Abstract

Accurate estimation of soil hydraulic properties is a prerequisite for efficient soil and water
management. On a small scale, time domain reflectometry (TDR) measurements obtained during an
infiltration event can be used for estimating soil hydraulic properties either using a sequential or a
coupled inversion approach. In the traditional sequential approach, the TDR measurements are
inverted into water content averages based on travel time analysis and subsequently used for
calibrating a hydrologic model. Travel time analysis has been reported to be subjective and difficult
to use for analyzing TDR measurements obtained during infiltration. In this paper, we extend the
sequential inversion approach by using water content profiles obtained via inverse modeling of TDR
measurements and introduce a coupled inversion approach which directly uses the TDR
measurements for constraining the inversion for hydraulic properties without first inverting them into
water content profiles or averages. By comparing the feasibility of these approaches to infer three
Mualem-van-Genuchten hydraulic parameters (a, n, K;) from TDR measurements obtained under
falling head infiltration, we concluded that the coupled approach is more practical and less uncertain
than the sequential approach. In particular, the coupled inversion approach allows to simultaneously
monitor ponding depth and water infiltration, which avoids the laborious task of manually measuring
the ponding depths and can thus enable rapid estimation of the soil hydraulic parameters for multiple
locations through automatic measurements of ponded infiltration for multiple rings through TDR
multiplexing.

3 Adapted from: Mboh, C. M., J.A. Huisman and H. Vereecken. 2011. Feasibility of sequential 48
and coupled inversion of TDR data to infer soil hydraulic parameters under falling head
infiltration. Soil Science Society of America Journal 75:775-786.
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4.1. Introduction

Time Domain Reflectometry (TDR) has become a standard method for soil water content
determination. This is because TDR can be used to accurately measure soil permittivity, which is
strongly related to soil water content (Topp et al., 1980). In the last two decades there have been
significant advances in the use of TDR to infer soil water content. These advances have gone from
the acquisition of an average water content based on the permittivity estimated from TDR travel time
(e.g. Topp et al., 1980) to spatially resolved water content profiles along the TDR probe based on
modeling of TDR wave propagation (e.g. Heimovaara et al., 2004; Leidenberger et al., 2006; Greco,
2006; Bénninger et al., 2008; Béanninger et al., 2009).

An interesting application of TDR is to use the temporal development of soil water content to
determine soil hydraulic properties. This temporal development of soil water content can be
monitored either by vertically or horizontally installed TDR probes. Wang et al. (1998) used
horizontally installed TDR probes to measure soil water contents under a tension infiltrometer and
estimated the saturated hydraulic conductivity (K;) and an empirical parameter used in the Gardner’s
exponential hydraulic conductivity function. As the probes were buried, this approach is intrusive
and is therefore not applicable to situations where undisturbed soil conditions are required. As a
consequence of this shortcoming, several studies have used vertically installed TDR probes to
measure soil water content during infiltration experiments to infer soil hydraulic parameters. For
instance, Parkin et al. (1995) used time-lapse water contents measured with TDR probes installed
vertically beneath a constant-rate rainfall simulator to derive the cumulative infiltration and estimates
of K and the inverse capillary length scale for a coarse-textured soil. Zhang et al. (2000) obtained
estimates of Kj, the inverse capillary length scale and the saturated water content (65) of a sandy soil
from pressure heads and water content measurements measured by multi-purpose TDR probes
vertically installed below a surface line source with a constant flux of water. Although multi-purpose
TDR probes offer the possibility to obtain supplementary information like pressure head, they are not
yet common and readily commercially available like the ordinary TDR probes. Schwartz and Evett
(2002) combined TDR-measured soil water contents and cumulative infiltration under a tension disc
infiltrometer to investigate the identifiability of the n, a and K parameter of the Mualem-van
Genuchten hydraulic model (Mualem, 1976; van Genuchten, 1980) for a fine-textured field soil.
Three parameter fits to field data yielded a non-unique solution due to a positive correlation between
a and K. By fixing a to a value determined by fitting to laboratory water retention data, they
obtained plausibly good estimates of n and K. However, the optimized water contents for early times
were significantly larger than those measured with TDR.

The previous studies have typically relied on the average water content obtained via travel time
analysis along a vertically installed TDR probe during an infiltration event. The interpretation of
TDR measurements thus obtained requires considerable experience using classical travel time-based
interpretation methods as the wetting front may manifest itself as an intermediate reflection on the
TDR wave trace which may be difficult to differentiate from the reflection at the end of the probe
(Topp et al., 1982; Parkin et al., 1995). Inverse modeling of TDR measurements now allows the
determination of the soil water content variation along the wires of the probe, which eases the
interpretation of TDR measurements made during infiltration and potentially results in additional
information to estimate soil hydraulic properties.

Greco and Guida (2008) used inverse modeling of TDR measurements to monitor the temporal
development of soil water content with depth during infiltration. However, the inversion of TDR
waveforms to obtain soil water content profiles typically requires some kind of regularization of the
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inverse problem. For example, Oswald et al. (2003) added an additional term to the objective
function that penalized large fluctuations in the second derivative of the inverted permittivity and
conductivity profiles. Greco (2006) proposed to describe the soil water content profile using a
parametric function with a limited number of fitting parameters to obtain a well-posed inverse
problem. This approach was used by Greco and Guida (2008) to interpret their TDR data. The soil
water content profiles obtained by inversion of TDR measurements acquired during a hydrological
process can be used in a second inversion of the hydrological model describing the process to obtain
soil hydraulic properties. The disadvantage of such a sequential inversion approach is that all errors
of the TDR inversion will propagate into the estimation of the hydraulic parameters in the second
inversion step. In addition, this sequential inversion approach does not accommodate important
hydrological information that might be available in the case of time-lapse monitoring of infiltration
events (e.g. the total volume of water entering the soil).

Recently, coupled inversion approaches have been proposed for the interpretation of time-lapse
geophysical data (e.g. Kowalsky et al., 2004; Hinnell et al., 2010; Huisman et al., 2010). In a coupled
inversion approach, a hydrological model is coupled to a forward geophysical model and the
geophysical data are directly inverted for hydraulic parameters. This has the advantage that
hydrological information can be considered in the inversion of the geophysical data, amongst several
other advantages discussed in Hinnell et al. (2010). To the best of our knowledge, a coupled
inversion approach has not yet been used to estimate soil hydraulic properties from the TDR
measurements.

The aim of this paper is to explore the possibility to estimate soil hydraulic properties from a single
ring falling head infiltration experiment monitored with a single vertically installed TDR probe using
inverse modeling. Three TDR-based inversion strategies are considered. In the first approach, the
average water content along the TDR probe is used to determine cumulative infiltration and these
data are then used to inversely estimate hydraulic parameters (i.e a sequential approach similar to
Parkin et al., 1995). In the second approach, inverse modeling of the TDR data is used to determine
the soil water content variation along the wire of the probe and this information is then used to
inversely estimate the hydraulic parameters (i.e. a sequential inversion strategy). In the third
approach, a variably saturated flow model is coupled to a TDR forward model and the hydraulic
parameters are inversely estimated by minimizing the difference between measured and modeled
TDR data (i.e. a coupled inversion strategy). To benchmark the inversion results, the optimized
parameters are compared to those resulting from the cumulative infiltration determined from the
ponding depth and from a multi-step outflow (MSO) experiment carried out with the same material
and similar bulk density.

4.2. Materials and Methods

4.2.1 TDR wave propagation model

We use the TDR wave propagation model of Heimovaara et al. (2004) to simulate TDR
measurements for a given complex permittivity profile along a TDR probe. In this model, the
measured TDR data in the time domain, r(¢), is a convolution of an input signal, vo(), generated by a
cable tester and a system function, s(¢), that describes how the probe-soil system transforms the input
signal (Heimovaara, 1994; Van Gemert, 1973):

=

r(6)= [v,(t=Ds(t)dz (4.1)

—oo

50



Chapter 4. Coupled and uncoupled hydrogeophysical inversion of TDR data

where 7 is an integration variable. Based on the convolution theorem, the frequency domain response
R(f) is defined as:

R(f)=V,(fISf) (4.2)

in which fis the frequency (Hz) and R(f), Viy(f) and S(f) are the Fourier transforms of r(¢), vo(t) and
(1), respectively. Procedures to transform the data from the time domain to the frequency domain are
discussed in detail in Huisman et al. (2004). The input signal, v((?), was described by the analytical
function of Heimovaara et al. (2004):

1+ erf[l//(t —t )]
v, (1) = 5 0 4.3)

where erf is the error function, 7 is the time, fyis time at which the input signal starts to rise and y is a
parameter which signifies the inverse of the rise time (i.e. the time it takes for the input signal to
reach a stable input voltage). Heimovaara et al. (2004) outlines the advantages of using such an
analytical function.

The Fourier-transformed system function, S(f) ,was described by the theoretical S;; multi-section
scatter function (MSSF) (Heimovaara, 1994; Feng et al.,1999; Lin, 2003) of an open ended coaxial
probe as:

p’ (F)+ 55 (f )expl- 27, (1)L, ]

e 4.4
n(f) 1+p/(f)Sljl_l(f)eXpl_ zyi(f)LjJ -
in which
' z, (f)-z.(f)
. | 4.5
p'(f) z,.(N+2,(1) N
7j(f)_ c (46)
Z,(f) =22 -
e’ (f)

where £'(f) is the reflection coefficient of the ™ section with propagation coefficient, 7i(f), impedance
Z(f) and length, L;. Zy’ is the characteristic impedance of the transmission line section in air, and i

=+/—1. The final section of the multisection scatter function describes TDR wave propagation in the
coaxial cable connecting the cable tester to the TDR probe. For this section, we use the model
extension of Lin and Tang (2007) in which

y(f):MA (4.8)

Z(f)= Zo A (4.9)
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A= N+a-»% (4.10)
\ Jr

where 0o is the resistance loss factor (s"o'5 ) that describes the combined effect of geometric factors
and surface resistivity (Lin and Tang, 2007).

Assuming that all the materials in the transmission line do not show a relaxation in the TDR
frequency range, the complex dielectric permittivity is described by:

el(f)=¢, +—2’;‘; (@.11)

in which g,[-] is the apparent dielectric permittivity of layer j, ca. (Sm™) is the bulk electrical
conductivity at dc voltage (assumed to be equal to the TDR bulk conductivity), €y the dielectric
permittivity of free space (8.544 x 10"? Fm™), and i = V-1. For most soils, this is a reasonable
assumption (e.g. Campbell, 1992; Weerts et al., 2001).

Bénninger et al. (2009) proposed to relate the permittivity and the bulk electrical conductivity for
each model section in the soil using a scaling approach:

o, =05 (4.12)

J Topp, j

_ Gdc
Gj —WO}J (4.13)

z rjos,j
L

J=1 s

where o; is the electrical conductivity of the jth slice of the soil (Ls,;) with relative electrical
conductivity, o, and Ns is the number layers used to discretize the soil of total depth L. o is
estimated from the water content of the slice, Orqppj and c, the saturation exponent of Archie’s law
(Archie, 1942). For sandy soils, the saturation exponent is close to 2 (Friedman, 2005; Bénninger et
al., 2009). The soil water content, Otoppj, Of each slice is estimated from the permittivity using the
equation of Topp et al. (1980). When using this scaling approach, it is assumed that the porosity of
the soil profile and the pore water conductivity are constant along the TDR probe (Banninger et al.,
2009).

4.2.2. Calibration of the TDR system for inverse modeling

The TDR measurements in this study were made using the TDR100 cable tester (Campbell
Scientific, USA) connected to a custom-made 19-cm long three-rod TDR probe with a cable of about
2.6 m. The use of inverse modeling of TDR waveforms requires the calibration of a number of model
parameters in the wave propagation model described in Eqgs. (4.3-4.10). As detailed in Heimovaara
(1994), it is important to use a sufficiently long sampling window when acquiring TDR waveforms
for inverse modeling. In this study, all measurements with the TDR100 used a sampling window
starting at -2 m and ending at 25 m. In a first calibration step, the two parameters of the analytical
input function (y and #y in Eq.4. 3) were determined using a TDR measurement of the initial step in
the cable tester (see Heimovaara et al., 2004 for more details). This resulted in y = 6.61 ns and 7y =
0.058 ns. In a second calibration step, unknown cable and probe parameters were determined by
minimizing the difference between measured and modeled TDR waveforms in two media with
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known dielectric properties (air and water with known temperature and electrical conductivity). In
total, seven model parameters were calibrated and these are listed in Table 4.1. The calibrated
lengths of the cable, probe head and probe sections are close to the estimated physical lengths and
the calibrated impedance in air (Z) for the probe is close to the value expected from the probe
dimensions (Ball et al., 2002; Huisman et al., 2008).

Table 4.1: Calibrated parameters of the TDR wave propagation model

Parameter Calibrated Value
Cable

L [m] 2.616

o [s7] 29.165

Probe Head

L [m] 0.030

7 [Q] 154.687

€ [-] 2.764
Probe

L [m] 0.191

7 [Q] 184.216

4.2.3. Falling head infiltration experiment

A cylindrical laboratory column with a height of 35 cm and an internal diameter of 20 cm was tightly
packed to a depth of 20 cm with artificial quartz substrate (Millisil W3, from Quartzwerke Frechen
GmbH, Germany). The initial water content was about 0.03 cm’ cm”™ and the bulk density was 1.54 g
cm™. According to the manufacturer, the material contains 62 % sand, 35 % silt and 3 % clay (i.e. a
sandy loam according to the USDA textural classification). A porous nylon cloth was placed at the
bottom of the column to support the soil and to allow for seepage if required. The TDR probe was
inserted to a depth of 15 cm at the center of the packed column. At the start of the experiment, 4 cm
of tap water was ponded on the soil surface and the infiltration was monitored with TDR. TDR
measurements were taken at 2 minute intervals until the ponded water was completely infiltrated.
The depth of the ponded water at each TDR acquisition time was also measured with a graduated
ruler.

4.2.4. Hydrological modeling

The HYDRUS1D model (Simunek et al., 2008) was used to simulate falling head infiltration into an
initially dry material subject to an atmospheric upper boundary condition with an initial water layer
of 4 cm. A seepage face was used as the bottom boundary condition of the model. This is a mixed
boundary condition typically used for lysimeters where a no-flow boundary is assumed when the
pressure head in the lower part of the soil column is below 0 and a fixed pressure head of O is
assumed when the pressure head in the lower part of the soil column exceeds 0. The HYDRUS1D
model numerically solves the 1-dimensional Richards’ equation for variably saturated flow in rigid
porous media:

90 _ E[K(h)(% + 1)} (4.14)
ot ox ot
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where x is elevation, 7 is time, 6(h) is the water retention function, @ is the volumetric water content,
h is the pressure head, and K(%) is the hydraulic conductivity function. The 20 cm long soil column
was discretized into 200 elements with a thickness of 0.1 cm. It is assumed that the retention and
conductivity functions that describe the hydraulic properties of the material can be represented by the
classical Mualem-Van Genuchten model IMVG) (Mualem, 1976; van Genuchten, 1980):

mmze,wQ—am+pwfm (4.15)

0-6,\|, |, (6-6 )
MM—K{H 9]1 1(‘ j (.16)

N r

where 0; and 6 are respectively the residual and saturated water content, a and n are empirical
parameters which are respectively related to the air entry pressure value and the width of the pore
size distribution, m is restricted by the Mualem condition m = 1 - 1/n with n > 1, Kj is the saturated
hydraulic conductivity, and [/ is a factor that accounts for pore tortuosity. A total of six MVG
parameters (0, 65, a, n, K and /) are therefore necessary to describe the soil hydraulic properties. Due
to its relatively small effect on hydrodynamic events, the parameter / is commonly fixed to its
average value of 0.5. Defined as the water content of a sample under an infinitely large suction, 6 is
often regarded as empirical and is sometimes fixed to a value of zero (Nimmo, 1991; Fuentes et al.,
1992). Under very dry field conditions, TDR-inferred average soil water content can be a practical
estimate of ¢,. Similarly under saturated field conditions, 5 can easily be measured with TDR. In this
paper, 6, and 6 are fixed to the initial dry soil TDR-inferred water content (0.03 m’ m'3), and the
maximum TDR-measured water content at the topmost layer of the soil column (0.326 m’ m>).
Using these assumptions, there are three MVG parameters (a, n, K;) that remain to be estimated by
inverse modeling.

4.2.5 General approach for inversion of data to obtain soil hydraulic properties

The parameter vector p is estimated by minimizing an objective function (OF) expressed as the root
mean square error between N time-lapse observations D () and model predictions D*(¢, p):

N

OF(p):\/Z(on—D*i t.p)IN (4.17)

i=1

The parameters are perturbed within reasonably wide bounds (see Table 4.2) and the predictions are
compared to observations until a close fit is found. As the objective function is very non-linear and
may be characterized by many local minima, the misfit between predictions and observations is
minimized using the Shuffled Complex Evolution optimization algorithm (SCE-UA) which is a
global optimizer (Duan et al., 1993). According to Duan et al. (1993), the SCE-UA is a genetic
optimizer which combines probabilistic and deterministic approaches with clustering and systematic
evolution to randomly sample and evolve a population of parameter combinations to a global
optimum. In this paper, the SCE-UA was set to convergence criteria by which an optimum was
assumed to be reached when in 10 successive evolution loops the objective function did not improve
by more than 0.01%. The confidence intervals of the inverted model parameters were determined by
a first-order approximation (e.g. Kool and Parker, 1988; Vrugt and Bouten, 2002).
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Table 4.2: Inversion bounds for hydraulic parameters

Parameter =~ Minimum value Maximum value
afem™] 0.004 0.124
n[-] 1.2 2.8
K, [cmh'] 0.095 31.63

4.2.6 Data inversion approaches to estimate hydraulic parameters

i) Inversion using inflow data determined from ponding depth

In the first approach, we use manually measured ponding depths to infer soil hydraulic parameters
from falling head infiltration. A falling head infiltration model for the experimental conditions
discussed in section 4.2.3 was set up in HYDRUS 1D. Using the SCE-UA algorithm, the hydraulic
parameters in the infiltration model were perturbed within reasonably wide bounds (Table 4.2),
generating predictions of inflow. These predictions were compared with the corresponding inflow
measurements until a close fit was found.

ii) Sequential inversion using average water content (inflow) or soil water content profiles
determined by inverse modeling of TDR

In the second and third inversion approach, a sequential inversion strategy consisting of two
optimization step was used. In the first step, the TDR measurements are inverted to obtain average
water content or water content profiles based on the TDR wave propagation theory discussed
previously. In a second step, these data are then compared with predictions from the hydrological
model to inversely estimate the hydraulic parameters. To determine water content profiles from TDR
measurements, the length of the TDR probe inserted in the soil is discretized in 15 layers of 0.01 m.
To account for the water layer ponding on the surface, the part of the TDR probe not inserted into the
soil (0.04 m) was discretized in two layers: one representing air and one representing water as
illustrated in Figure 4.1 for a water layer of 0.02 m.

Air gap | 2 cm)

Ponding water { 2cm )

Probed soil [ 13 cm)

_Unpruhed 30il [ Jem)

Figure 4.1: Soil column illustrating air gap and ponding water (Figure not to scale).

After specifying the measured depth of ponded water, the electrical conductivity of the water layer,
and the water temperature, the water content of each of the 15 layers and the mean bulk electrical
conductivity were inversely estimated by minimizing the difference between measured and modeled
TDR waveforms using the SCE-UA algorithm. The permittivity of each of the 15 layers was
obtained by calculating the permittivity from the soil water content using the equation of Topp et al.
(1980). The bulk electrical conductivity of each layer was estimated using the scaling approach
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outlined in Eqgs. (4.12-4.13). Preliminary investigations showed that highly erratic water content
profiles were obtained when the water content of each layer was inverted independently. Following
Oswald et al. (2003), we therefore applied regularization to obtain smoother water content profiles.
For this, an additional term was added to the objective function OF:

OF = OF, + AOF, (4.18)

where OF is a measure of the quality of the fit, which is quantified by the sum of squared residuals
between measured and modeled TDR waveforms, OF, is a measure of the smoothness of the fitted
solution, which is quantified by the sum of the absolute values of the first derivative of the fitted
water content profile with respect to depth and A is a weighting factor. If a high value is selected for
A, the minimization of OF will lead to an overly smooth solution because of the emphasis on OF,,
whereas a low value for A will lead to the same erratic solution as in the case of no regularization. By
systematically varying A for a number of independent TDR measurements, it was determined that A
= (.05 resulted in an adequate compromise solution that provided a good fit to the TDR waveforms
using a reasonably smooth water content profile.

A second sequential inversion approach considered here uses the cumulative infiltration determined
from the average water content measured by TDR. As argued before, traditional tangent line analysis
to determine the average dielectric permittivity is not straightforward for TDR measurements made
during infiltration (Parkin et al., 1995). In our case, analysis is even more complicated because of the
air gap and ponding depth near the head of the probe (see Figure 4.1). Huisman et al. (2002) showed
that TDR waveforms can be analyzed using an inverse modeling approach with a one-layer model.
Their inverse modeling results were almost identical to the water content averages determined using
direct travel time analysis. In this study, the average water content of the soil in the vicinity of the
TDR probe is determined by averaging the water content profiles obtained as described above.

iii) Coupled inversion of TDR measurements

In coupled inversion, the hydraulic parameters are directly estimated from the TDR measurements
without first inverting them into water content averages or profiles (e.g. Looms et al., 2008; Hinnell
et al., 2010; Huisman et al., 2010). This is achieved by coupling the multi-section scatter function
(Eq. 4.4) to the hydrological model (HYDRUS1D). By perturbing the hydraulic parameters using the
SCE-UA algorithm, water content profiles are simulated in the hydrological model and converted to
permittivity profiles using the equation of Topp et al. (1980). The simulated permittivity profiles are
used to simulate TDR measurements which are then compared to the measured TDR data until a
close fit is found. Unlike the sequential approach where the ponding depth has to be prescribed
during the inversion of TDR data to water content averages or profiles, in the coupled approach, the
ponding depths are obtained from the hydrological model during the inversion for soil hydraulic
parameters. In this way hydrological information (ponding depths) is directly used to constrain the
inversion for soil hydraulic properties without any need for measuring the ponding depths.

iv) Multi-step outflow experiment

A multi-step outflow (MSO) experiment was conducted to determine an independent set of estimates
for the hydraulic parameters. A plexiglass cylinder with a height of 6.8 cm and an internal diameter
of 9.4 cm equipped with a tensiometer at 4.4 cm above the lower boundary was used in the MSO
experiment. This column was packed with the Millisil W3 material to a similar bulk density as used
in the falling head infiltration experiment previously described. The sample was saturated to a water
content of about 0.326 cm’cm™ with degassed tap water and placed on a hanging water column. Six
suction increments were applied over 15 hours while outflow and matric head readings were
recorded at 30 second intervals using pressure transducers. These data were later on filtered and used
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for the estimation of the parameter vector p (a, n, K) by inverse modeling using HYDRUSI1D and
the SCE-UA optimization algorithm. The filtering was such that the number of measurements during
a pressure step was proportional to the length of the pressure step and the frequency of measurements
was inversely proportional to the square root of time. This resulted in a measurement scheme that
emphasized those parts of the flow process where flux rates and hence information content was
highest. In addition to inverse modeling, the K value was also determined directly using the constant
head method as described by Klute and Dirksen (1986).

4.2.7. Numerical experiments

Prior to the actual experiments, the feasibility of obtaining plausible estimates of a, n and K; from
TDR measurements made during falling head infiltration was numerically investigated for an
initially dry sandy loam (6, = 0.41 cm® cm™, 6, = 0.034 cm® cm™, @ = 0.036 cm™, n = 1.56, K, = 1.04
cm h™ and / = 0.5). The numerical experiments were performed for two types of initial conditions. In
the first case, a uniform initial water content equal to the residual water content was assumed. In the
second case, a uniform initial matric potential of -10° cm (pF = 5) was assumed to be representative
for air dried sandy loam. Matric potentials of this magnitude have been measured in air-dried sandy
loam (e.g. Lu et al., 2007). For each of these initial conditions four inversion variants using different
data were considered: i) cumulative infiltration from ponding depth, ii) cumulative infiltration from
average water content obtained with TDR, iii) soil water content profiles obtained from TDR through
independent inversion, and iv) the actual TDR measurements used in the coupled inversion approach.
Falling head infiltration was simulated for the experimental conditions of the actual experiment using
HYDRUSID. Synthetic cumulative infiltration data for pre-defined measurement times was
obtained. Similarly, synthetic water content averages and profiles were obtained. The synthetic water
content profiles were converted to synthetic TDR data using the TDR wave propagation model
described by Eq. 4.4.

For more realistic numerical experiments, noise was added to the synthetically generated
measurements. In the case of cumulative infiltration from ponding depth, Gaussian noise with a
mean of zero and a standard deviation of 0.05 cm was added to the synthetic cumulative infiltration.
This error level is justified considering that real measurements are done with a graduated ruler with
units of 0.1 cm. The same error level was assumed for cumulative infiltration determined from
average water content determined with TDR. Soil water content measured by TDR is typically
affected by an error level of 0.01 to 0.02 cm’® cm™. Therefore, Gaussian noise with a mean of zero
and a standard deviation of 0.01 cm’® cm™ was added to the simulated soil water content profile.
From an analysis of reflection coefficient at long times measured in demineralized water, Huisman et
al. (2004) proposed a standard deviation of 6.5 x 10 for TDR data. Likewise, Gaussian noise with
this standard deviation was added to the synthetic TDR data.

The four data types were then used to compute the objective function (Eq. 17) response surfaces in
the a-K, a-n and K-n parameter planes. In the computations, 6;, 6;, [ and one of the other three
parameters (a, n and K) were kept constant at their “true” value while the other two were
systematically varied between the bounds shown in Table 4.1. For each parameter, the range was
divided in 50 equidistant parts, which means that a single response surface consists of 2601 objective
function evaluations.
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4.3. Results and Discussion

4.3.1 Numerical Experiment

Figures 4.2 and 4.3 show the objective function response surfaces obtained from the numerical
experiment using initial conditions in water content and matric potential respectively. Because the
objective function response surfaces obtained using cumulative infiltration based on ponding depth
and TDR average water content were the same, only one of them is presented (first column of Figure
2 and 3). The a-K; response surfaces for all the inversion types show an error landscape in the
vicinity of the objective function minimum which is almost perpendicular to the K axis at the point
where Kj is equal to its true value. This indicates that adequate estimates of K are possible with all
the data types from a 1D falling head infiltration experiment. This finding is also supported by the
response surfaces of the n-K parameter plane.
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Figure 4.2: Objective function response surfaces with initial condition in water content (0.03 cm’cm™). Columns 1,
2 and 3 respectively show the responses surfaces obtained using synthetic cumulative infiltration (Icum), water
content profiles (WCP) and TDR reflection coefficients (TDR-r, also called TDR data). The white spaces indicate
parameter combinations for which the hydrological model does not converge. Colour scale shows objective
function values (normalized by the standard deviation of the measurement error) for various parameter
combinations

The plausibility of the parameter estimates for the o and n parameters will mostly depend on the
information content of the data used in the different inversion types. As can be seen in Figure 4.2, the
o-n error landscape for all inversion types shows an elongated valley and a positive correlation
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between a and n when the initial conditions are specified in terms of water content. This implies that
the data do not contain sufficient information to simultaneously constrain the inversion for a and n
from a 1D falling head infiltration experiment with initial conditions specified in water content.
However, when initial conditions are specified in matric potential (Figure 4.3), it is observed that the
objective function minimum in the a- n parameter plane is constrained in a smaller space for all the
data types. These findings highlight the importance of at least one pressure head measurement when
estimating soil hydraulic parameters from a 1D falling head infiltration experiment. The added value
of pressure head measurements has also been reported by Simunek and van Genuchten (1996) and
Vereecken et al. (2008). Although they are not yet common and readily commercially available, the
multi-purpose TDR probe of Baumgartner et al. (1994) which can simultaneously measure matric
potential and water content can be used to obtain this information.
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Figure 4.3: Objective function response surfaces with initial condition in water matric head. Columns 1, 2 and 3
respectively show the responses surfaces obtained using synthetic cumulative infiltration (Icum), water content
profiles (WCP) and TDR reflection coefficients (TDR-r). The white spaces indicate parameter combinations for
which the hydrological model does not converge. Colour scale shows objective function values (normalized by the
standard deviation of the measurement error) for various parameter combinations.

It is worth noticing that in the a-n parameter plane for both types of initial conditions (Figure 4.2 and
4.3), the objective function minimum is constrained in a smaller space for the coupled approach than
for the two sequential approaches. This indicates that the coupled approach is potentially less
uncertain than the sequential approaches. Although the topography of 2D objective function response
surfaces provide valuable insights into parameter correlation and sensitivity for designing an efficient
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optimization strategy, it should however be noted that the plots cannot demonstrate uniqueness when
three parameters are fitted simultaneously.

4.3.2. Laboratory experiments

Figure 4.4 presents the measured outflow and pressure head for the MSO experiment. The model
predictions based on the optimized hydraulic parameters provided in Table 4.3 are also shown.
Clearly, the fit is excellent. In addition, the optimized K value (1.01 cm h™") from the MSO data
compares well with the K; value directly determined using the constant head method (0.80 cm h™"). In
the remainder of this study, the hydraulic parameters obtained from these MSO data are considered
as a reference for comparison with the other inversion types under investigation.

The measured cumulative infiltration determined from ponding depth (I-pond) and the average water
content measured with TDR (I-TDR-awc) is presented in Figure 4.5. Clearly, there is an excellent
agreement between both data types, which indicates that infiltration was reasonably homogeneous
and that preferential infiltration along the wires of the TDR probe during ponded infiltration can be
excluded. Table 4.3 shows the optimized hydraulic parameters (o, n and K;) and their 95 %
confidence interval in parenthesis in addition to the fixed parameters (6;, 6; and [). The predicted
cumulative infiltration corresponding to the model parameters of Table 4.3 is also presented in
Figure 4.5. The modeling results correspond to the case in which the initial conditions are specified
in water content (0.03 cm’ cm'3). It can be seen that there is excellent fit between the observations
and the predictions based on hydraulic parameters determined from cumulative infiltration data
obtained from ponding depth and average water content measured with TDR.
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Figure 4.4: Measured versus predicted cumulative outflow (a) and matric heads (b) from the MSO experiments.
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Table 4.3: Optimum parameters using the different data types

. Parameters

Data g, T g, o n Ks 1

[em’em™]  [em’em?) [em™] [-] [emh'] [-]

I-pond 0.030 0.326 0.047 2.693 1.157 0.5
(0.045 - 0.049) (2.680 - 2.706) (1.137 - 1.177)

I-TDRawc 0.030 0.326 0.037 2.462 1.028 0.5
(0.035 - 0.039) (2.437 - 2.487) (1.009 - 1.048)

TDR-wcp 0.030 0.326 0.025 2.686 0.863 0.5
(0.023 - 0.027) (2.616 - 2.756) (0.835-0.891)

TDR-r 0.030 0.326 0.043 2.339 1.165 0.5
(0.043 - 0.044) (2.338 - 2.340) (1.161 - 1.169)

MSO-d 0.030 0.326 0.009 2.482 1.009 0.5

(0.008 - 0.009)

(2.393 - 2.570)

(0.917-1.101)

T Fixed during optimization

" I-pond is the cumulative infiltration measured from ponding, I-TDRawc is the cumulative
infiltration obtained from TDR-inferred average moisture content, TDR-wcp is the TDR water
content profile, TDR-r is TDR reflection coefficients (also called TDR measurements or TDR data),
and MSO-d is muti-step outflow data (cumulative outflow and matric head

A selection of the soil water content profiles obtained by inversion of the TDR measurements is
shown in Figure 4.6. Despite the use of the regularization approach, it can be seen that the inverted
water content profiles show a sharp infiltration front indicating that regularization was not overly
strong. However, there is some variability in the top and the bottom of the profile, possibly indicating
inversion artifacts during the conversion of the TDR measurements to water content profiles. The
water content profiles were used to inversely estimate hydraulic parameters (‘sequential approach’)
and the predicted water content profiles associated with the optimized hydraulic parameters
presented in Table 4.3 are also shown in Figure 4.6. At early times, the fit between inverted and
predicted water content profiles is good, but at later times (i.e. 54 minutes) the predicted water
content profile is steeper than the inverted profile, perhaps indicating that the inverted water content
profile is too smooth due to the regularization. Figure 4.5 shows the cumulative infiltration
associated with the hydraulic parameters determined from fitting the water content profiles obtained
by inversion of the TDR measurements. It can be seen that the predicted cumulative infiltration is too
large as compared to the measurements and the other predictions. It is interesting to note that these
inverted water content profiles were used to obtain the average water content used to determine
cumulative infiltration from TDR, which well matched the measured cumulative infiltration
determined from ponding depth, as discussed earlier. Again, this is an indication that the distribution
of water content obtained from TDR inversion might be troubled by inversion artifacts introduced by
the ill-posedness of the inverse problem and the regularization required to stabilize the solution of the
inverse problem.
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Figure 4.5: Comparison of measured infiltration with the predicted cumulative infiltration using four data types.
I-pond is the measured cumulative infiltration from ponding depth and I-TDRawc is the measured cumulative
infiltration from TDR average water content while, I*-pond, I*-TDRawc, I*-TDRwcp and I*-TDR-r, are
respectively the simulated cumulative infiltrations using the optimized parameters from I-pond, I-TDR-awc, TDR
water content profile ( TDR-wcp) and TDR reflection coefficients (TDR-r, also called TDR measurements)

To overcome the propagation of inversion artifacts when using a sequential inversion strategy as
outlined above, the coupled inversion strategy was proposed. Figure 4.7 shows measured and
modeled TDR data for four selected times obtained using the coupled inversion approach. The key
features of the measured TDR data are clearly well captured. In particular, it is worthwhile to note
the complicated shape of the TDR measurement near the reflection of the end of the probe due to the
infiltration front in dry soil for the measurements after 4 and 20 minutes. The modeled TDR data
nicely capture the reflections from the infiltration front and the end of the probe (see Figure 4.7a),
whereas a traditional travel time analysis would have had great difficulty in correctly interpreting
these TDR measurements. The hydraulic parameters obtained by directly fitting the TDR
measurements using a coupled inversion approach are presented in Table 3. The calculated
confidence intervals for a and n for this approach are narrower than those for the sequential
approaches. This confirms the findings of the numerical experiment where the objective function
minimum in the a-n parameter plane was constrained in a smaller space for the coupled approach
than for the sequential approaches.

Although the measured ponding depths were not an input in the coupled hydrogeophysical inversion
procedure because the ponding depth was simulated by the hydrological model, the simulated
cumulative infiltration matches very well with the observed infiltration from ponding depth (see
Figure 4.5). This indicates that the TDR measurements can be used to simultaneously monitor
ponding depth and infiltration when the measurements are interpreted using a coupled inversion
approach. This implies that the method has a potential for rapid, accurate and automatic monitoring
of falling head infiltration in the field. This is particularly advantageous when estimates of soil
hydraulic parameters in relatively larger surface areas are desired. With TDR multiplexing and
automatic data logging, several ring infiltrometers can be installed in the field for fast and cost
effective estimation of soil hydraulic parameters. Additionally, the ability to remotely monitor

62



Chapter 4. Coupled and uncoupled hydrogeophysical inversion of TDR data

ponding depths using the coupled approach stretches the potential applications of our system to
include flood management by earth dams and also flood irrigation management for instance.
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Figure 4.6: Measured versus predicted Water content profiles for four measurement times. Myinss M10 mins s M20 minsy a0d My
mins are the measured water content profiles at 4, 10, 20 and 54 minutes while E;4 .in, E19 minss E20 mins a0d Esgq mins are the
corresponding simulations from the estimated hydraulic parameters.

From Table 4.3, it can be observed that the K values obtained in all four inversions compare well
with the MSO data and the constant head method (0.8 cm h'l). This confirms the findings from the
numerical experiment which showed that all the data types contain adequate information on Kj.
Within the limits of their uncertainties, all four inversion types also have optimal n values that
compare well with those obtained from the MSO experiment. The optimal o values from all the four
inversion types represent an overestimate compared to those from MSO. This implies that only two
of the MVG parameters (K, and n) can be successfully estimated using the four inversion types in a
1D falling head infiltration experiment. Russo et al. (1991) and Simunek and Van Genuchten (1996)
also showed that using cumulative infiltration data alone, only two hydraulic parameters can be
estimated by inverse modeling. While it seems reasonable to expect more information in the water
content profiles and the full TDR measurements than in cumulative infiltration data alone in the case
of a 1D falling head infiltration experiment, the difference in information content is minimal
especially when the initial conditions are specified in water content. Using these initial and
experimental conditions, all four inversion types produce similar results as can be seen from the
hydraulic conductivity and water retention functions in Figure 4.8.
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Figure 4.8: Comparison of hydraulic conductivity (a) and water retention (b) functions from optimized
parameters using multi-step out flow data (MSO-d), infiltration from ponding depth (I-pond), Infiltration from
TDR average water content ( I-TDRawc), TDR water content profiles (TDR-awc), and TDR reflection coefficients
(TDR-r, also called TDR measurements)
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4.4. Conclusions

Using an artificial quartz substrate as test material and a relatively simple experimental set up
consisting of a single laboratory column and a single trifilar TDR probe connected to a cable tester,
we demonstrated the feasibility of using TDR data obtained under falling head infiltration to infer
three topsoil MVG parameters. Three TDR-based data sets were used during inversion for hydraulic
parameters: 1) cumulative infiltration from average water content measured with TDR (‘sequential
approach’), ii) soil water content profiles obtained from TDR inversion (‘sequential approach’) and
iii) direct inversion of TDR measurements using a coupled inversion approach. The results were
compared with those from inversions using: i) cumulative infiltration from ponding depth, and ii)
multi-step out flow data

When initial conditions are specified in water content, a numerical experiment revealed a positive
correlation between a and n for both the sequential and coupled inversion approaches. This implied
that the simultaneous estimation of a and n is not feasible in a 1D falling head infiltration experiment
using this initial condition. The results also indicated that all the inversion strategies can lead to
plausible estimates of K. On the other hand, it was numerically proven that the coupled inversion of
TDR measurements can provide enough information to constrain the inversion for a, n and K when
the initial conditions are specified in matric potential. The use of the multi-purpose probes of
Baumgartner et al. (1994) which simultaneously measure matric potential and water content in
combination with the coupled inversion approach of TDR measurements therefore appears as a
potential and practical field method for the estimation of a , n and K necessitating further
investigations.

In a laboratory experiment in which only the initial water content distribution was known the three
TDR-based inversion strategies gave plausible estimates of n and K comparable with those from an
MSO experiment and cumulative infiltration from ponding depth. The three TDR-based inversion
strategies and the inversion using cumulative infiltration from ponding depth however ovestimated o
when compared to the MSO result. This implied that under a 1D falling head infiltration with initial
condition in water content all the other four inversion strategies produce similar results with minor
differences. This may not be the case in multi-dimensional (2D or 3D) infiltration where the shape of
the infiltrating bulb may also contain additional information on the hydraulic parameters. This should
be explored in future studies.

Although the sequential and coupled inversion strategies produced similar results, the coupled
inversion approach has a distinct advantage because it can be used to simultaneously monitor
ponding depth and water infiltration. This avoids the laborious task of manually measuring the
ponding depths and can thus enable automatic measurements of ponded infiltration for multiple rings
through TDR multiplexing. This allows rapid estimation of the soil hydraulic parameters over
relatively large surface areas with less human effort and resources. The code required to perform the
sequential and coupled inversion are available from the first author upon request.
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5. Synthesis

5.1 Final conclusions

Efficient soil and water management warrants a good knowledge of soil hydraulic parameters. From
the view point of cost, spatial coverage, rapidity, accuracy and environmental safety, one way of
estimating soil hydraulic parameters is to perform an inverse modeling in which geophysical data
acquired from the monitoring of a hydrologic experiment are directly used to constrain a hydrologic
model describing the experiment. This inverse modeling approach is referred to as coupled
hydrogeophysical inversion. The objectives of this PhD work were to develop coupled
hydrogeophysical inversion schemes and estimate soil hydraulic parameters using actual data from:

a) An ERT-monitored constant head infiltration experiment in the field

b) A column scale SP-monitored drainage experiment in the laboratory

¢) A column scale TDR-monitored falling head infiltration experiment in the laboratory

ERT proved to be a valuable method for non-destructive monitoring of constant head infiltration in
the field. Several methods of combining inflow and ERT data within the objective function for the
estimation of soil hydraulic parameters using 3D coupled hydrogeophysical inversion were
investigated. For an objective function defined as the sum of the root mean square error of both data
types normalized by the respective standard deviations of the measurements, three key Mualem-
Genuchten parameters (o, n and K;) comparable to those obtained from a multi-step outflow
experiment were obtained from coupled hydrogeophysical fusion of inflow and ERT data (electrical
resistances). This showed that ERT and inflow data contain enough information to constrain the
inversion for these parameters. The ability of the coupled hydrogeophysical inversion scheme to
retrieve this information for parameter estimation depends on the choice of an appropriate objective
function. Moreover, while it took about two months to obtain MSO data from destructive sampling
of the field site, the ERT and inflow data were non-destructively acquired over a period of three
hours and coupled hydrogeophysical inversion of the data took 2 days. Coupled hydrogeophysical
inversion of geophysical data obtained in transient hydrologic experiments is therefore a rapid and
cost-effective way of estimating soil hydraulic properties.

Coupled hydrogeophysical inversion of the streaming potential component of SP measurements
obtained during primary drainage of a sandy soil column provided estimates of three key Mualem-
van Genuchten parameters (o, n and K;) comparable to those obtained from the inversion of
tensiometric data. In addition, an estimate of Archie’s saturation exponent close to the independently
determined value could be obtained. However because SP measurements usually contain
contributions other than streaming potential, efficient pre-processing of the SP data is necessary to
extract the streaming potential component prior to coupled hydrogeophysical inversion. While this is
can be achieved for SP data acquired under controlled laboratory conditions, it is far from trivial
under field conditions. The successful inversion of streaming potential data required an adequate
model for the voltage coupling coefficient at partial saturation. From a comparison of several such
models with the experimental data, it was shown that models that consider the relative permeability
of the porous medium in addition to water saturation were most appropriate.

Unlike coupled hydrogeophysical inversion, uncoupled hydrogeophysical inversion is an inverse
modeling method which involves an intermediate inversion step. A comparison of the feasibility of
both approaches to infer three key Mualem-van Genuchten parameters (o, 7 and K;) of a sandy loam
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from a falling head infiltration experiment monitored with a single vertically inserted TDR probe
revealed that the coupled hydrogeophysical inversion approach is less uncertain and more practical.
It was shown that coupled hydrogeophysical inversion enables simultaneous monitoring of ponding
depth and water infiltration. This implies that with TDR multiplexing, ponded infiltration can be
automatically monitored in rings at several locations within a field for accurate, rapid and cost-
effective estimation of topsoil hydraulic parameters. Additionally, from synthetic experiments it was
observed that the information retrieval capability of the coupled hydrogeophysical inversion of TDR
waveforms for soil hydraulic properties depends on the initial conditions. Better results are obtained
when initial conditions are defined in matric head than in water content. We propose to use multi-
purpose TDR probes that measure water content in addition to matric potential in combination with
the coupled hydrogeophysical inversion approach for improved estimates of the hydraulic
parameters.

5.2 Outlook

5.21. Initial and boundary conditions and unrepresented processes.

Successful coupled hydrogeophysical inversion for soil hydraulic parameters requires the definition
of a hydrologic model which is representative of the underlying physical system. At times the
definition of appropriate initial and boundary conditions is not trivial. This problem sometimes leads
to an initial condition paradox in which tomographic inversion is used to define the initial conditions
in the forward hydrologic model used in coupled hydrogeophysical inversion. Research is needed on
how to alleviate the issue of prescribing an appropriate initial condition. Although hydrologic model
spin-ups with atmospheric boundary conditions have been proposed as a solution in synthetic
experiments, the reliability of the approach to real field conditions still remains questionable. The
hydrologic model can only provide reliable mass balance constraints on geophysical inversion when
the model can reproduce the key processes under investigation. This implies that in the presence of
subsurface processes like preferential flow, a hydrologic model which does not account for it can
lead to erroneous interpretations of geophysical observations using the coupled hydrogeophysical
inversion approach. Despite the quantitative bottlenecks associated with subsurface tomograms, the
qualitative insights they can provide on unrepresented processes like preferential flow paths, can be
used in defining an appropriate hydrologic model under such circumstances.The application of the
coupled hydrogeophysical inversion approach to study complex flow and transport processes which
are not usually accounted for in commonly used hydrologic models like HYDRUS is a therefore a
challenging domain worth exploring.

5.2.2. Petrophysical parameters and spatially varying hydraulic properties

Although coupled hydrogeophysical inversion is a promising method for subsurface hydraulic
characterization, there are a number of issues which must be properly addressed in order to reap its
full potential. In this PhD, coupled hydrogeophysical inversion was used to estimate effective
hydraulic properties and a common assumption was that the petrophysical properties that ensure the
coupling between the hydrologic and geophysical forward models were spatially constant. While the
results seem to justify this assumption, it is yet to be confirmed when the estimation of spatially
varying hydraulic parameters is the objective of coupled hydrogeophysical inversion. Moreover the
susceptibility of these petrophysical parameters to change with soil structure and temperature and the
corresponding influence on the estimated hydraulic parameters still requires profound investigation.
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5.2.3. Computational speed and parameter uncertainty estimation

Throughout this PhD work, a global optimizer was used to minimize the objective function for the
estimation of soil hydraulic properties and the uncertainty on the parameters was determined based
on first order approximation. Compared to first order approximations, a better way to characterize
the uncertainty is to determine posterior probability distributions of these inverted parameters using
MCMC algorithms. This can however be achieved only at a higher computational cost, typically
requiring tens or hundreds of thousands of forward model runs to converge to the posterior
distribution. In the 3D coupled hydrogeophysical inversion with ERT and inflow measurements a
good computational speed was achieved by the use of a parallel code for the forward hydrologic
model. It will be interesting to also incorporate a parallel code for the electrical flow problem within
the coupled hydrogeophysical inversion scheme. Research is therefore needed on different ways of
improving the computational speed.

5.2.4. Coupled hydrogeophysical data fusion - a holistic approach to subsurface
characterization

The flexibility of the coupled hydrogeophysical inversion schemes allows for the integration of
multiple geophysical and hydrologic data sets for subsurface characterization. If research is needed
on how to combine different geophysical and hydrologic data sets, even the choice of the different
geophysical and hydrologic methods requires a holistic approach. Ideally coupled hydrogeophysical
data fusion for subsurface characterization should involve a combination of methods which are
economically viable, technically feasible and environmentally safe. This therefore calls for stake
holder participation from economic policy makers, hydrologists, geophysicists and
environmentalists. Further development of the coupled hydrogeophysical inversion approach will
depend on a strong collaboration between these stake holders. In this way many other exciting
applications of the approach will spring up besides subsurface hydraulic characterization. For
instance, the approach can be used to study root water uptake due to the strong mass balance
constraints on geophysical inversion provided by the hydrologic model.
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