000133240 001__ 133240
000133240 005__ 20240711085553.0
000133240 020__ $$a978-3-89336-853-2
000133240 0247_ $$2Handle$$a2128/5067
000133240 0247_ $$2ISSN$$a1866-1793
000133240 037__ $$aFZJ-2013-01778
000133240 041__ $$aGerman
000133240 1001_ $$0P:(DE-Juel1)140203$$aEbert, Svenja Maria$$b0$$eCorresponding author$$gfemale$$ufzj
000133240 245__ $$aVersagensverhalten plasmagespritzter Mg-Al-Spinell-Schichten unter Thermozyklierung$$f2010-01-01 - 2013-02-20
000133240 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2013
000133240 300__ $$aX, 173 S.
000133240 3367_ $$2DataCite$$aOutput Types/Dissertation
000133240 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000133240 3367_ $$2ORCID$$aDISSERTATION
000133240 3367_ $$2BibTeX$$aPHDTHESIS
000133240 3367_ $$02$$2EndNote$$aThesis
000133240 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1598339631_31876
000133240 3367_ $$2DRIVER$$adoctoralThesis
000133240 4900_ $$0PERI:(DE-600)2445288-9$$aSchriften des Forschungszentrums Jülich : Energie & Umwelt / Energy & Environment$$v166
000133240 500__ $$3POF3_Assignment on 2016-02-29
000133240 502__ $$aDissertation, Ruhr-Universität Bochum, 2013$$bDissertation$$cRuhr-Universität Bochum$$d2013
000133240 520__ $$aOne possibility to increase the efficiency in gas turbines is the application of abradable coatings. The housing from the inside is coated with special, high temperature resistant ceramics. Thermal loadings and the centrifugal force causes the turbine to expand. Theblade tips drive into the liners. This minimizes the clearance distance between the rotating blade tips and the stationary components, which leads to increases in efficiency and reductions in fuel consumption. The presented work grew out of the collaboration with Rolls-Royce Deutschland. The cycling behaviour of a multilayer system was tested. Disc-shaped Inconel738-substrates were coated with a vacuum plasma-sprayed bondcoat and a doublelayer ceramic system. The ceramic system was atmospheric plasma-sprayed and consisted of a yttria-stabilisedzirconia (YSZ) layer and a Mg-Al-spinel layer. The cycling was carried out with a gas burner and thermal gradient from surface to bottom. Two different failure mechanisms were observed for the Mg-Al-spinel layer. On the one hand the coating spalled of at the interface between YSZ and Mg-Al-spinel. On the other hand only a spalling on top of the Mg-Al-spinel layer was found. A dependence on the spraying parameters was observed. Goal of the presented work was the clarification of these failure mechanisms. First of all the microstructure after spraying and cycling was analysed. For an alumina rich spinel the thermal cycling and thermal energy leads to the formation of three different phases in thermal equilibrium: Mg-Al-spinel, $\alpha$ -Al$_{2}$O$_{3}$ und CaO*6Al$_{2}$O$_{3}$ (CaO as contamination in the powder). During the heating time of the cycling a dense layer at the surface of the Mg-Al-spinel coating is formed. This layer consists of Mg-Al-spinel and CaO*6Al$_{2}$O$_{3}$ needles. Stress calculationswere carried out, which show that the surface of the Mg-Al-spinel coating is under compression stress during heating. Hot pressing experiments confirmed the compression stress as a cause for the densification. Under this dense layer cracks are formed during cycling, which are the reason for the spalling. Crack formation under the dense layer takes place, when the energy release rate stored in the coating system reaches the critical value. The transfer of the spraying in the industry required new spraying parameters for coating of real engine parts. In the context of this work it was found out, that a coating temperature under 200°C seems to be too low for a good connection between the Mg-Al-spinel splats inside the coating. The coating spalls close to the interface between YSZ and Mg-Al-spinel. 
000133240 536__ $$0G:(DE-HGF)POF2-122$$a122 - Power Plants (POF2-122)$$cPOF2-122$$fPOF II$$x0
000133240 650_7 $$0V:(DE-588b)4012494-0$$2GND$$aDissertation$$xDiss.
000133240 8564_ $$yHigh Resolution Publishers Version$$zPrepress version for printing
000133240 8564_ $$uhttps://juser.fz-juelich.de/record/133240/files/FZJ-133240.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000133240 8564_ $$uhttps://juser.fz-juelich.de/record/133240/files/FZJ-133240.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000133240 8564_ $$uhttps://juser.fz-juelich.de/record/133240/files/FZJ-133240.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000133240 8564_ $$uhttps://juser.fz-juelich.de/record/133240/files/FZJ-133240.pdf$$yOpenAccess$$zPrepress version for printing
000133240 909CO $$ooai:juser.fz-juelich.de:133240$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000133240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140203$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000133240 9132_ $$0G:(DE-HGF)POF3-119H$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vAddenda$$x0
000133240 9131_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000133240 9141_ $$y2013
000133240 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000133240 920__ $$lyes
000133240 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000133240 9801_ $$aFullTexts
000133240 980__ $$aphd
000133240 980__ $$aVDB
000133240 980__ $$abook
000133240 980__ $$aI:(DE-Juel1)IEK-1-20101013
000133240 980__ $$aUNRESTRICTED
000133240 981__ $$aI:(DE-Juel1)IMD-2-20101013