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Abstract. The rate of constitutive isoprenoid emissions from

plants is driven by plant emission capacity under specified

environmental conditions (ES, the emission factor) and by

responsiveness of the emissions to instantaneous variations

in environment. In models of isoprenoid emission, ES has

been often considered as intrinsic species-specific constant

invariable in time and space. Here we analyze the varia-

tions in species-specific values of ES under field conditions

focusing on abiotic stresses, past environmental conditions

and developmental processes. The reviewed studies high-

light strong stress-driven, adaptive (previous temperature and

light environment and growth CO2 concentration) and de-

velopmental (leaf age) variations in ES values operating at

medium to long time scales. These biological factors can al-

ter species-specific ES values by more than an order of mag-

nitude. While the majority of models based on early concepts

still ignore these important sources of variation, recent mod-

els are including some of the medium- to long-term controls.

However, conceptually different strategies are being used for

incorporation of these longer-term controls with important

practical implications for parameterization and application of

these models. This analysis emphasizes the need to include

more biological realism in the isoprenoid emission models

and also highlights the gaps in knowledge that require further

experimental work to reduce the model uncertainties associ-

ated with biological sources of variation.
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(ylo.niinemets@emu.ee)

1 Introduction

Accurate prediction of emissions of the very reactive plant-

generated volatile organic compound class – volatile iso-

prenoids – is highly relevant for reliable simulation of a

number of atmospheric properties, including chemical re-

activity and clearness (secondary organic aerosols, cloudi-

ness) (Claeys et al., 2004; Curci et al., 2009; Fowler et al.,

2009; Heald et al., 2008; Kanakidou et al., 2005; Kulmala

et al., 2004; Mentel et al., 2009; Peñuelas and Staudt, 2010;

Spracklen et al., 2008). The prediction of volatile isoprenoid

emission fluxes is achieved by a variety of emission models

applied at scales ranging from leaf to globe. These mod-

els are based either on Guenther et al. (1991, 1993) pivotal

algorithms that phenomenologically described the instanta-

neous responses of isoprenoid emissions to key environmen-

tal drivers, light and temperature, or on process-based emis-

sion algorithms trying to link the emissions directly to en-

zyme kinetics and carbon metabolism (Arneth et al., 2007b;

Martin et al., 2000; Niinemets et al., 1999, 2002b; Zimmer

et al., 2000).

In all the existing emission models, predicted emission

rates critically depend on the emission capacity that char-

acterizes the plant potential for volatile isoprenoid forma-

tion under defined environmental conditions. In Guenther et

al. (1991, 1993) type of models, the emission capacity is the

average emission rate under standardized environmental con-

ditions (typically leaf temperature of 30 ◦C and quantum flux

density of 1000 µmolm−2 s−1), also called the emission fac-

tor (ES). In the process-based models, the emission capac-

ity typically reflects the maximum activity of rate-limiting
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enzymes such as isoprene and monoterpene synthases un-

der given temperature (Martin et al., 2000; Niinemets et al.,

1999, 2002b; Zimmer et al., 2000). In the latter type of mod-

els, the estimates of the emission capacity can be obtained

from available ES data under certain assumptions (e.g., Ar-

neth et al., 2007b; Niinemets et al., 1999, 2002b).

Given the importance of ES, many screening studies all

over the world have been conducted to obtain ES values for

model parameterizations. Once reported, ES estimates have

been considered as constant in subsequent model estimates

of plant isoprenoid emission fluxes (Guenther et al., 1994,

1995; Lamb et al., 1993; Simpson et al., 1995; Simpson et

al., 1999) with the variability associated with ES estimates

and resulting uncertainties in model predictions analyzed in

only very few cases (Guenther et al., 1994; Hanna et al.,

2005). However, many of the existing ES estimates may not

be wholly correct and can be misleading for a variety of rea-

sons including conceptual, analytical and biological issues.

As demonstrated in the accompanying paper (Niinemets

et al., 2010b), definition of ES is dependent on the shape

and stability, hence representativeness, of the assumed re-

sponse curves, and therefore, ES is largely a modeling con-

cept defined within the given model framework. While ES is

defined in a relatively straightforward manner for isoprene,

non-specific storage and induced emissions complicate the

definition of the emission factor for mono- and sesquiter-

penes (Niinemets et al., 2010b). Among the analytical prob-

lems, ES estimation can critically depend on the enclosure

and sampling techniques altering leaf environment during the

measurements as well as on the efficiency of volatile sam-

pling and detection (for analytical issues in determination

of ES values see Ortega and Helmig (2008) and Ortega et

al. (2008). Apart from the conceptual and analytical difficul-

ties, vegetation has a huge capacity for developmental and

adaptive modifications, resulting in strong temporal and spa-

tial variations in ES. In particular, it has been observed that

ES is affected by leaf age and ontogeny (Mayrhofer et al.,

2005; Monson et al., 1994; Wiberley et al., 2005), climatic

conditions preceding the emission measurements (Blanch et

al., 2010; Geron et al., 2000; Gray et al., 2006; Pétron et

al., 2001; Sharkey et al., 1999; Staudt et al., 2003), en-

vironmental stress (Fang et al., 1996; Lavoir et al., 2009;

Loreto and Schnitzler, 2010; Niinemets, 2010; Peñuelas

and Staudt, 2010), growth CO2 concentration (Possell et al.,

2005; Rosenstiel et al., 2003; Wilkinson et al., 2009) and ac-

climation of foliage to canopy light environment (Harley et

al., 1996, 1997). While some recent models have attempted

to include some of these factors (Ekberg et al., 2009; Guen-

ther, 1999; Guenther et al., 1999, 2006; Keenan et al., 2009),

many modeling exercises still do not consider vegetation as

an adaptive system, leading to large uncertainties in emission

inventories using static algorithms.

In this review, we analyze the alterations in constitutive

isoprenoid emissions in response to biological factors and the

implications for ES determinations and isoprenoid emission

model construction. In particular, we focus on environmen-

tal factors that influence longer-term responses of emissions

from days to weeks and seasons, including the effects of

stress, canopy environment, weather influences and dynam-

ics in the atmospheric CO2 concentration, as these sources

of variability are largely missing from the current emission

models. We believe that the biological limitations can in-

troduce at least as much variability in ES values as con-

ceptual and analytical problems (Niinemets et al., 2010b for

an overview of conceptual issues). The analysis also high-

lights the key areas needed to be addressed by future research

that aims to include more biological realism in models and

thereby reduce the uncertainties in future model analyses. As

biological aspects of induced emissions have recently been

reviewed (Dicke and Baldwin, 2010; Loreto and Schnitzler,

2010; Niinemets, 2010), we deliberately focus here on the

constitutive isoprenoid emissions.

2 Biological sources of variability in emission

inventories

Most widely used volatile isoprenoid emission algorithms

defined by Guenther et al. (1991, 1993) as modified by

Wilkinson et al. (2009) describe the isoprenoid emission rate,

E, as the product of standardized emission rate, ES, and

the instantaneous responses of isoprenoid emissions to light,

f (Q), leaf temperature, f (TL), and leaf intercellular CO2

concentration, f (Ci):

E = ES f (Q) f (TL) f (Ci), (1)

where the functions f (Q), f (TL) and f (Ci) are normalized

to 1.0 at standardized conditions used for ES determination.

Equation (1) provides a conceptually simple way to sepa-

rate the emission controls that operate through instantaneous

changes in environment and through longer term controls on

ES. Drivers that can modify ES values in time and space

are environmental stress, past environmental conditions, and

leaf age and seasonality. Modifications in ES values due to

these sources of variability are not typically considered in

the emission models, except for a few cases (Boissard et al.,

2008; Guenther et al., 1999, 2000, 2006; Karl et al., 2009;

Keenan et al., 2009; Steinbrecher et al., 2009). As shown in

the following, for many of the observed modifications in ES,

we currently lack appropriate models or we lack information

of the extent and time-kinetics of the ES changes. Further-

more, biological sources of variability have been studied in

only a few model species, making it difficult to derive param-

eter estimates for inclusion in large-scale models.

2.1 Effects of stress on ES

Plants in field environments must frequently sustain stress

periods of varying duration and severity. Abiotic and, in par-

ticular, biotic stress factors can lead to elicitation of volatile
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isoprenoid emissions in species non-emitting volatile iso-

prenoids constitutively, but can also modify the emission

profiles in constitutive emitters (for reviews see Arneth and

Niinemets, 2010; Loreto and Schnitzler, 2010; Niinemets,

2010). As discussed in the accompanying paper (Niinemets

et al., 2010b), the induced emissions can critically alter the

estimates of ES and also require development of novel emis-

sion models.

Apart from the induction of new emissions, stress can

also strongly alter the constitutive emissions and constitutive

emissions can alter the sensitivity to stress (Vickers et al.,

2009). So far, the influence of only a few stress factors on

constitutive isoprenoid emissions has been studied. Among

volatile isoprenoid vs. stress studies, limited water availabil-

ity has obtained special attention, reflecting the importance

of regular drought periods in Mediterranean and tropical dry

forests and unpredictable episodic drought in many temper-

ate forests. In addition, heat stress, alone or in combination

with drought, often occurs in natural ecosystems (Hall, 1992;

Hällgren et al., 1991; Peñuelas and Llusià, 2003). Here we

focus on drought and heat stress effects on the constitutive

isoprenoid emissions as these two factors have been studied

in most systematic manner. We consider the immediate phys-

iological stress responses and the acclimation (i.e., changes

due to modified activity of terminal enzymes determining the

emission capacity) observed during and after the stress. To

highlight the richness of the stress responses, we also briefly

review a number of other stresses and outline ways of con-

sidering the stresses in models.

2.1.1 Influence of drought

Drought vs. isoprenoid emission studies have demonstrated

that drought effects on isoprenoid emissions crucially de-

pend on the severity of drought (Niinemets, 2010). Mild

drought stress does not strongly affect either isoprene (Pe-

goraro et al., 2004a; Pegoraro et al., 2004b; Sharkey and

Loreto, 1993) or monoterpene (Lavoir et al., 2009; Peñuelas

et al., 2009; Staudt et al., 2002) emissions. However, both

isoprene and monoterpene emissions strongly decrease dur-

ing prolonged drought (Bertin and Staudt, 1996; Brilli et al.,

2007; Grote et al., 2009; Lavoir et al., 2009; Llusià and

Peñuelas, 1998; Peñuelas et al., 2009; Sharkey and Loreto,

1993; Staudt et al., 2008; Staudt et al., 2002). As photo-

synthesis rate is significantly reduced already during a mild

stress due to strong stomatal closure and reduction in inter-

cellular CO2 concentration (Ci), the proportion of carbon lost

as isoprene or monoterpenes increases significantly under

conditions of soil moisture deficit (Fang et al., 1996; Llusià

and Peñuelas, 1998; Niinemets et al., 2002a; Pegoraro et al.,

2004b; Sharkey and Loreto, 1993).

To characterize the isoprene emission responses to

changes in within-leaf CO2 concentration associated with

immediate, rapid alterations of CO2 concentration either be-

cause of artificial alteration of ambient CO2 concentration or

due to changes in stomatal openness, Wilkinson et al. (2009)

have defined the Ci response function (Eq. 1), f (Ci) as:

f (Ci) = Emax −
EmaxC

h
i

Ch
∗ + Ch

i

, (2)

where Emax is the asymptotic value at which a further reduc-

tion in Ci has an insignificant effect on the isoprene emission

rate, and C∗ and h are empirical scaling coefficients to cal-

ibrate the sigmoidal shape of the relationship between the

isoprene emission rate and Ci.

Can this response function be used to predict the iso-

prenoid emission responses to mild and severe drought? At

current ambient CO2 concentration of ca. 385 µmolmol−1,

mild drought stress typically results in reduction of

Ci values in actively photosynthesizing leaves from

ca. 250–330 µmolmol−1 to 200–250 µmolmol−1 (Flexas and

Medrano, 2002; Medrano et al., 2002). According to the in-

stantaneous CO2 response function (Eq. 2), applied over a

finite Ci range of ca. 150–330 µmolmol−1, isoprene emis-

sion is relatively insensitive over this range or moderately

increases at lower Ci (Wilkinson et al., 2009), likely ex-

plaining the insensitivity of isoprenoid emissions to mild

stress (Lavoir et al., 2009; Peñuelas et al., 2009; Sharkey

and Loreto, 1993; Staudt et al., 2002), or the moderately in-

creased emissions occasionally observed under mild stress

(Bertin and Staudt, 1996; Pegoraro et al., 2005; Staudt et al.,

2008; Yani et al., 1993).

In contrast, severe drought results in reductions inCi down

to 100–150 µmolmol−1, Ci occasionally even reaching the

photosynthetic compensation point under extreme drought

(Flexas and Medrano, 2002; Medrano et al., 2002). Thus,

strong reductions in intercellular CO2 concentration in re-

sponse to the severe drought can explain the massive re-

duction, up to 10% to that before the stress of isoprene

(Sharkey and Loreto, 1993) and monoterpene (Bertin and

Staudt, 1996; Llusià and Peñuelas, 1998; Staudt et al., 2002)

emissions. In addition, there is evidence of reduced isoprene

synthase activity under severe drought (Brilli et al., 2007;

Fortunati et al., 2008). Severe drought also partly uncou-

ples isoprene synthesis from immediate photosynthetic car-

bon metabolism, implying that droughted plants use stored

carbon fixed in periods prior to drought stress for formation

of isoprene (Brilli et al., 2007; Fortunati et al., 2008). This

means that the Eq. (2), in which the effects of Ci operate

through immediate carbon metabolism, is not adequate in de-

scribing the severe drought stress effects.

The situation is further complicated by findings that after

severe drought, isoprene and monoterpene emissions can be

significantly higher compared to pre-stressed rates (Peñuelas

et al., 2009; Sharkey and Loreto, 1993), although not al-

ways (Brilli et al., 2007; Fortunati et al., 2008). Such “over-

shoots” cannot currently be explained on the basis of im-

mediate regulation of isoprenoid metabolism by CO2 avail-

ability. Enhanced expression of terminal enzymes respon-

sible for isoprenoid emission during the sustained drought

www.biogeosciences.net/7/2203/2010/ Biogeosciences, 7, 2203–2223, 2010
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stress or during recovery may provide an explanation for

such elevated emissions, but isoprenoid synthase activities

have not been analyzed in “overshoot” studies. These ob-

servations collectively suggest that instantaneous emission

vs. Ci responses can only partly explain the effects of pro-

longed drought periods on emissions. In addition to phys-

iological short-term responses that can be likely explained

by the CO2 response function (Eq. 2), changes in ES values

(emission capacity at any given Ci driven by isoprenoid syn-

thase activities) and modifications in the carbon sources for

isoprenoid production need consideration in prediction of the

emissions under prolonged drought and after the drought.

So far, drought effects are mostly not considered in the

existing isoprenoid emission models. Recently, the effects

of drought were empirically included in MEGAN, assum-

ing an hypothetical relationship between soil water content

and isoprene emission after a threshold soil water content is

reached (Guenther et al., 2006). In other models, effects of

drought are included through drought effects on Ci, carbon

metabolism and photosynthetic electron transport similarly

to theCi-response function (Arneth et al., 2007b; Grote et al.,

2006; Niinemets et al., 2002b; for comparison of approaches

to model drought effects on emissions see also Grote et al.,

2009, 2010). However, as drought response involves also

a longer-term component, an approach linking ES to inte-

grated drought dose, i.e., time-integrated plant water-status

below the stress threshold water status, can provide a proxy

to simulate such patterns similar to how past weather effects

are included in the emission models (Sect. 2.3).

2.1.2 Effects of heat stress

Under natural conditions, high temperature is another key

stress that may become especially severe in combination with

drought when transpiratory water loss is reduced and leaf

temperature rises significantly above the ambient air temper-

ature. Sometimes leaf temperatures can exceed the ambient

air temperatures even by more than 10 ◦C (Hamerlynck and

Knapp, 1994; Sharkey et al., 1996; Singsaas et al., 1999;

Valladares and Niinemets, 2007).

The way the emissions respond to temperature depends

on the duration of heat exposure. While short-term heat

pulses, up to a few minutes, result in amplified emissions that

can be explained by temperature-dependent increases in iso-

prene synthase activity (Fig. 1a), longer moderate heat stress

lasting between tens of minutes to hours results in gradual

reduction of the emission capacity, ES (Fig. 1a, Singsaas

and Sharkey, 2000). Reduced sensitivity of isoprene emis-

sions to temperature can be associated with overall reduction

of foliage metabolic activity (Sharkey and Seemann, 1989;

Zhang et al., 2009; Zhang and Sharkey, 2009), and accord-

ingly, reduced production of intermediates for isoprene syn-

thesis. Engagement of alternate stored carbon sources may

also explain the reduced temperature sensitivity of isoprene
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Fig. 1. Illustration of heat stress effects on isoprene (a) and

monoterpene α-pinene (b) emissions. Data in (a) are normalized

with respect to the steady-state emission rate at 30 ◦C, while the

data in (b) are normalized with respect to the emission rate before

the heat stress. Modified from (a) Singsaas and Sharkey (2000) and

(b) Staudt and Bertin (1998).

emissions, especially in combination with drought stress

(Fortunati et al., 2008).

On the other hand, isoprene emission capacity increases

during recovery after prolonged moderate heat periods last-

ing from a day to several days (e.g., Pétron et al., 2001;

Sharkey et al., 1999), indicating acclimation to past temper-

ature environment. Such an enhancement of isoprene emis-

sions is most likely associated with an elevation of isoprene

synthase activity (Mayrhofer et al., 2005; Wiberley et al.,

2008).

Analogous responses have also been observed for

monoterpene emissions (Fig. 1b, Loreto et al., 1998; Staudt

and Bertin, 1998). However, in the case of monoterpenes

with lower volatility, rapid temperature effects on the emis-

sions (Ciccioli et al., 1997) can be due to the combined

response of temperature on monoterpene synthase activ-

ity and evaporation of non-specifically stored monoterpenes

(Niinemets et al., 2010b).

There is currently not enough physiological information to

parameterize the time-dependent modifications in isoprenoid

emission rates during heat stress. Thus, the emission rates are

predicted using static emission response curves that are based

on immediate effects of temperature on emissions, e.g., the

rapid increase of isoprene emissions just after the increase

of leaf temperature from 30 ◦C to 40 ◦C in Fig. 1a. As with

drought, consideration of alternate carbon sources and mod-

ifications in enzymatic activities may be needed to include

heat stress effects into the models. Differently from the re-

sponses during heat stress, modifications in ES after moder-

ate non-damaging heat stress have been successfully simu-

lated using past temperature variations (Sect. 2.3).

2.1.3 Other abiotic and biotic stresses and outlook

Apart from these two key stresses, constitutive isoprenoid

emissions are affected by many other stress factors including

air pollutants such as ozone (e.g., Fares et al., 2006; Llusià et

Biogeosciences, 7, 2203–2223, 2010 www.biogeosciences.net/7/2203/2010/
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al., 2002; Loreto et al., 2004; Loreto and Velikova, 2001; Ve-

likova et al., 2005), wounding (e.g., Funk et al., 1999; Loreto

et al., 2000, 2006; Loreto and Sharkey, 1993), insect feed-

ing (e.g., Brilli et al., 2009; Peñuelas et al., 2005; Staudt

and Lhoutellier, 2007) and fungal infection (e.g., Anderson

et al., 2000; Steindel et al., 2005). In general, these studies

demonstrate a reduction in constitutive isoprenoid emission

rates in species lacking specialized storage tissues. However,

the plant response strongly depends on stress severity and

duration (Niinemets, 2010 for a review), and increased emis-

sions have been demonstrated in some cases, for instance in

response to wounding (e.g., Loreto et al., 2006) or insect

feeding (e.g., Peñuelas et al., 2005). Typically, the eleva-

tion of emissions after stress is associated with the release of

novel compounds, reflecting elicitation of induced emissions

(for these emissions see recent reviews by Holopainen and

Gershenzon, 2010; Loreto and Schnitzler, 2010; Niinemets,

2010). Nevertheless, induced emissions may also consist

of terpenoids that are under non-stressed conditions emitted

constitutively (Staudt and Lhoutellier, 2007), making it diffi-

cult to separate between these two types of emissions.

In species with specialized storage tissues, enhanced emis-

sions due to wounding or herbivory, at least temporarily, are

commonly observed as the result of breakage and exposure to

ambient air of the contents of these storage structures (Chen

et al., 2009; Juuti et al., 1990; Kim, 2001; Litvak and Mon-

son, 1998; Loreto et al., 2000; Priemé et al., 2000; Schade

and Goldstein, 2003). Although such stress effects are cur-

rently ignored in the emission models, under natural condi-

tions, plants essentially always suffer from moderate chronic

biotic stresses, implying that damage of storage tissues fre-

quently occur. As with non-storage emitters, biotic stress

generally results in induced isoprenoid emissions in species

with specialized storage structures as well, and these emis-

sions can also be sometimes difficult to separate from the

constitutive emissions (Huber et al., 2005; Litvak and Mon-

son, 1998).

Overall, this evidence suggests that stress effects can

prominently modify ES values. Ignoring abiotic and biotic

stress effects on ES measurements as is common in field

studies, especially in large screening programs, introduces

large uncertainties in species-specific estimates ofES. So far,

information of many stress effects is rudimentary, and conse-

quently, process-based models cannot yet be derived. How-

ever, information about the regulatory elements of key limit-

ing enzymes such as isoprene synthase is gradually becoming

available (Cinege et al., 2009; Loivamäki et al., 2007), im-

plying that mechanistic models might be possible to develop

in the near future. At any rate, it is important to characterize

the presence of stress in field measurements. Standard phys-

iological measures such as photosynthesis rate and stomatal

conductance can provide important clues of the presence of

environmental and biotic stresses, especially if baseline es-

timates of leaf physiological activity in non-stressed plants

(e.g., Flexas and Medrano, 2002; Sharkey, 2005) or accepted

reference values for given type of vegetation (e.g., Flexas

and Medrano, 2002 for reference values of stomatal conduc-

tance) are available. In addition, measurements of stress-

elicited emissions of green leaf volatiles (various C6 alde-

hydes, also called lipoxygenase pathway volatiles) or methyl

salicylate (Beauchamp et al., 2005; Fall et al., 1999; Hei-

den et al., 2003; Karl et al., 2008) can provide particularly

useful information on stress evolution kinetics and strength.

Both the measurements of net carbon gain and characteris-

tic stress volatiles can be conducted at spatial scales ranging

from single leaves and whole plants (as done conventionally)

to ecosystems (e.g., Karl et al., 2008 for sensing of stress

at ecosystem scale) and we call for inclusion of such mea-

surements in standard protocols for estimation of biogenic

volatile organic compound emissions.

2.2 ES in relation to long-term variations in

environment

Many environmental drivers such as light and nutrient avail-

ability strongly vary within and among plant communities.

There can be further important interactions among environ-

mental drivers (Niinemets and Valladares, 2008 for a review).

Effects of a variety of such environmental modifications on

isoprenoid emissions have been studied (e.g., Peñuelas and

Staudt, 2010). Here we analyze in detail the changes in iso-

prenoid emissions in response to variations in growth CO2

concentrations and in within-canopy environment to exem-

plify the potential magnitude of long-term environmental

modifications on isoprenoid emissions.

Both these long-term sources of variation in emission rates

are highly relevant to consider in the emission models. In-

clusion of the CO2 effects is important to modeling that aims

to understand how CO2 concentrations that have varied in

the geological past, and those that are currently increasing

with a rate of ca. 1.5–2.5 ppm/yr (www.esrl.noaa.gov/gmd/

ccgg/trends), influence isoprenoid emissions. On the other

hand, as light gradients always occur in plant canopies, con-

sideration of acclimation of isoprenoid emission potentials to

within-canopy light environment is needed for accurate inte-

gration of canopy emission fluxes.

We further note that for simulation of emissions from a va-

riety of ecosystems, it is important to consider also the soil

nutrient effects on ES. So far, the majority of studies report

a positive effect of N-fertilization (or a positive correlation

with foliar nitrogen) on ES for isoprene, possibly mediated

through a positive effect of N on overall foliage physiolog-

ical activity, including the increases in foliage net assimila-

tion rate and the capacity for volatile isoprenoid production

(Ekberg et al., 2009; Harley et al., 1994; Litvak et al., 1996;

Possell et al., 2004). In contrast, variable effects of N have

been observed for monoterpene emission rates (Blanch et al.,

2007; Lerdau et al., 1995; Staudt et al., 2001). In addition,

other nutrients such as phosphorus can have differing effects

on isoprenoid emissions (Fares et al., 2008). We refer to

www.biogeosciences.net/7/2203/2010/ Biogeosciences, 7, 2203–2223, 2010
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Fig. 2. Review of changes in isoprene emission rate under standardized conditions (leaf temperature of 30 ◦C, light intensity of

1000 µmolm−2 s−1 and ambient CO2 concentration of 370 µmolmol−1) upon acclimation to different CO2 growth concentrations (Cg)

(modified from Young et al., 2009) and comparison with the instantaneous CO2 (intercellular CO2 concentration, Ci) response functions of

isoprene emission (Eq. 2) for Populus tremuloides grown at an ambient CO2 concentration of 400 µmolmol−1 and 1200 µmolmol−1 (the

inset scale is the same as in the main panel, modified from Wilkinson et al., 2009). In the main panel, the data were expressed relative to the

values measured in plants grown at the ambient CO2 concentration of 370 µmolmol−1, while the instantaneous CO2 response of isoprene

emission was normalized with respect to an intercellular CO2 concentration of 400 µmolmol−1. The following species were included in the

analysis of the growth CO2 concentration effects: Arundo donax (Possell et al., 2005), Ginkgo biloba (Li et al., 2009), Eucalyptus globulus

(Wilkinson et al., 2009), Liquidambar styraciflua (Monson et al., 2007; Wilkinson et al., 2009), Mucuna pruriens (Possell et al., 2005),

Phragmites australis (Scholefield et al., 2004), Populus deltoides (Rosenstiel et al., 2003; Wilkinson et al., 2009), Populus x euroamericana

(Centritto et al., 2004), Populus tremuloides (Monson et al., 2007; Sharkey et al., 1991; Wilkinson et al., 2009), Quercus chapmanii (Buckley,

2001), Quercus robur (Possell et al., 2004), Quercus rubra (Sharkey et al., 1991), and Quercus stellata (Monson et al., 2007). The red line

denotes y=370/Cg relationship previously used to simulate elevated CO2 effects on isoprene emissions (Arneth et al., 2007b), while the green

line is the best fit relationship fitted to the data after leaving out the outlying observations for Ginkgo biloba (Li et al., 2009) and Quercus

rubra (Sharkey et al., 1991) (r2=0.78).

Peñuelas and Staudt (2010) for a recent in-depth review of

nutrient effects.

2.2.1 Effects of growth CO2 environment on emissions

in species without isoprenoid storage

Apart from the instantaneous CO2 responses of isoprene

emission (Eq. 2), an increasing number of studies have

demonstrated acclimation ofES to the long-term CO2 growth

environment, visible as modification of the emission rates

when assessed at the same intercellular CO2 concentration,

ES,SCO2 (Fig. 2). Acclimation responses of plant carbon

gain to ambient CO2 concentration are becoming routinely

included in models of earth carbon balance (e.g., Gutschick,

2007; McMurtrie and Comins, 1996; Reynolds et al., 1996).

However, growth CO2 effects have so far implicitly been

considered in a very few cases in simulating volatile iso-

prenoid emissions under global change (Arneth et al., 2007a;

Heald et al., 2009; Young et al., 2009).

For isoprene emissions, the acclimation responses ob-

served in ES,SCO2 involve a significant decline in emissions

in plants grown at higher CO2 atmospheres, while a strong

increase in plants grown under below-ambient CO2 con-

centrations (Fig. 2, for overviews see Arneth et al., 2007b;

Peñuelas and Staudt, 2010; Young et al., 2009). For monoter-

pene emissions in species without specialized storage tis-

sues, the response of ES,SCO2 to growth CO2 has been stud-

ied much less, but the available evidence also demonstrates

a reduction of ES,SCO2 in plants grown under higher CO2

(Baraldi et al., 2004; Llorens et al., 2009; Loreto et al., 2001;

Rapparini et al., 2004), although not always (Llorens et al.,

2009; Loreto et al., 2001; Staudt et al., 2001). One study

has further reported the increase in monoterpene ES,SCO2

in plants grown at CO2 concentrations below the ambient

(Baraldi et al., 2004). Such similarity with the majority of

isoprene studies is expected given the same chloroplastic 2-

C-methyl-D-erythritol 4-phosphate (MEP) pathway respon-

sible for isoprene and monoterpene production.

Contrary to these reports, enhanced isoprene ES,SCO2 val-

ues were observed in plants with lifetime exposure to high

CO2 in the vicinity of a natural CO2 spring (Tognetti et al.,

1998). True statistical replication is principally not possible

for CO2 spring studies, and thus, additional factors may have

affected the patterns in Tognetti et al. (1998) study. How-

ever, higher isoprene emission rates were also observed un-

der experimentally elevated CO2 in Li et al. (2009) and in one

out of the two studied species in Sharkey and Loreto (1991).

Enhanced monoterpene ES,SCO2 values in plants grown at

Biogeosciences, 7, 2203–2223, 2010 www.biogeosciences.net/7/2203/2010/
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higher CO2 environment were found in Staudt et al. (2001)

and Llorens et al. (2009). These observations, contrasting

the findings in the majority of other reports, are currently not

understood, even if the data are analyzed at the same inter-

cellular CO2 concentration to account for the short-term CO2

effects (Eq. 2).

To explain the reduction of isoprenoid ES,SCO2 values un-

der high CO2 observed in the majority of studies, the same

cellular mechanism as for the instantaneous CO2 response

(Eq. 2) has been proposed, i.e., enhanced withdrawal of an

isoprenoid intermediate, phosphoenolpyruvate (PEP), from

chloroplasts and use of PEP in cytosol by PEP carboxylase

(Rosenstiel et al., 2003). However, not only the literature

reports are contrasting, but also the shape of instantaneous

responses of isoprene emission to CO2 changes upon accli-

mation to growth CO2 (Wilkinson et al., 2009, Fig. 2 inset).

Furthermore, the growth CO2 response is much stronger than

the instantaneous CO2 response (Fig. 2 for the comparison).

This suggests that factors other than or additional to substrate

level control can be responsible for the observed patterns in

ES,SCO2. Among these other factors, reduction in isoprene

and monoterpene synthase activities may provide partial ex-

planation for the reduction in the emission rates. In fact, a re-

duction in monoterpene synthase activity has been observed

upon acclimation to elevated CO2 in the leaves of evergreen

sclerophyll Quercus ilex (Loreto et al., 2001). Clearly, in-

stantaneous (Eq. 2) and long-term responses need to be sep-

arately analyzed to simulate responsiveness of isoprenoid

emissions to altered CO2 atmospheres. The situation is anal-

ogous to modeling CO2 effects on carbon gain. While instan-

taneous CO2 responses can be well described by the widely

used Farquhar et al. (1980) photosynthesis model, photosyn-

thetic acclimation to elevated CO2 is much more complex to

simulate and requires consideration of additional feedbacks

such as nutrient and water availabilities etc. (Gutschick, 2007

for a review).

2.2.2 Growth CO2 effects in terpene-storing species

In species where the emissions mainly rely on a large stor-

age pool such as in conifers, no instantaneous effect of CO2

is expected, and the effects of altered growth CO2 concen-

tration can occur through changes in total pool size and

modifications in internal diffusion conductance for monoter-

penes, e.g., through changes in resin duct to total leaf surface

area ratio as well as through changes in resin duct epithe-

lial permeability (Tingey et al., 1991 for a detailed model

of monoterpene emission in storing species). Theoretical

considerations based on tissue carbon/nitrogen (C/N) ratios

predict stronger accumulation of secondary compounds such

as monoterpenes when carbon availability is in excess of

that required for growth, e.g., under elevated CO2 concen-

trations (Lerdau et al., 1994; Litvak et al., 2002; Peñuelas

and Estiarte, 1998). This in turn suggests potentially higher

emissions under elevated CO2 (Lerdau et al., 1994; Litvak et

al., 2002; Peñuelas and Estiarte, 1998).

By now, some studies have reported a decrease rather than

an increase in leaf monoterpene contents under elevated CO2

(Litvak et al., 2002; Räisänen et al., 2008a; Snow et al.,

2003), while other studies have reported unaffected monoter-

pene contents (Constable et al., 1999; Peñuelas and Llusià,

1997), overall not agreeing with theoretical predictions. For

the emissions, the studies have found a non-significant ef-

fect of elevated CO2 (Constable et al., 1999; Li et al., 2009;

Llorens et al., 2009; Peñuelas and Llusià, 1997) or an in-

crease or a decrease under high CO2, depending on species

and time of sampling (Llorens et al., 2009). In Räisänen et

al. (2008b), elevated CO2 alone did not affect the emissions,

but a combination of high growth temperature and elevated

CO2 resulted in greater emissions. Obviously, additional ex-

perimental work simultaneously analyzing the alterations in

emissions, foliage anatomy and monoterpene pool sizes is

needed to gain conclusive insight into growth CO2-driven

changes in species with specialized terpene storage pools.

2.2.3 Variations in light availability

In plant canopies, there is an inherent variation in light avail-

ability, often more than 50-fold between the canopy top and

bottom in dense stands (Niinemets, 2007 for a review). In

addition, even in less densely vegetated ecosystems such as

savanna-type woodlands, foliage is often strongly aggregated

in the tree crowns, also bringing about large light availability

gradients within the foliated plant parts (Asner et al., 1998).

In addition to light, air and leaf temperatures increase with

increasing light availability in tree canopies (Baldocchi et

al., 2002; Niinemets and Valladares, 2004). Such long-term

variations in environmental conditions are reflected in signif-

icant increases of isoprene emission rates per unit leaf area

(ES,area) from the canopy bottom to top (Harley et al., 1996,

1997; Niinemets et al., 1999). Analogous increases in ES,area

have been observed for monoterpenes in species without spe-

cialized storage tissues (Lenz et al., 1997; Niinemets et al.,

2002a).

In general, the within-canopy range in ES,area is more than

an order of magnitude (Harley et al., 1996, 1997; Niinemets

et al., 1999, 2002a). AsES,area is the product of leaf dry mass

per unit area (MA) and ES per unit leaf dry mass (ES,mass),

part of this extensive variation in ES,area reflects modifica-

tions in leaf structure, i.e., increases in MA with increasing

light availability. Typically, MA increases 2-4-fold along the

canopy light gradients (Niinemets, 2007 for a review), result-

ing in accumulation of isoprenoid synthesizing mesophyll

cells per unit leaf area. Despite the importance of structural

modifications, ES,mass also varies 3-4-fold across the canopy

light gradients (Niinemets et al., 2002a), indicating that the

isoprenoid synthesis capacity of average leaf cells is also pos-

itively affected by light availability within the canopy.
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As light and temperature co-vary in plant canopies

(Niinemets and Valladares, 2004), the question is whether the

long-term variations in light or temperature drive changes in

ES. This question is justified given that growth under higher

temperatures also results in higher isoprene (Hanson and

Sharkey, 2001b) and monoterpene emission rates (Staudt et

al., 2003). However, studies with plants grown under differ-

ent incident quantum flux densities in constant temperature

environments have also demonstrated positive correlations

between light availability and isoprene (Hanson and Sharkey,

2001b; Litvak et al., 1996) and monoterpene (Staudt et al.,

2003) emission capacities. This evidence suggests that light

alone can drive alterations in isoprenoid emission potential,

although the role of temperature in within canopy variation

in isoprenoid emission potentials cannot be ruled out.

Quantitative relationships with light availability or canopy

leaf area index have not yet been developed. Neverthe-

less, within-canopy variation in ES has been occasionally in-

cluded in the emission models, varying ES with cumulative

leaf area index from the canopy top to the bottom (Guenther

et al., 1999). However, in models that attempt to account

for effects of growth environment, within-canopy variation

of ES is strongly reduced, since the variation is incorporated

in long-term light response activity algorithms (Guenther et

al., 1999). Models running with canopy-scale ES values

do not explicitly consider within-canopy variations, except

when canopy-scale ES values are constructed from leaf-level

estimates (Guenther et al., 2006).

2.3 ES in relation to medium-term variations in

environment

In addition to the effects of long-term within-canopy varia-

tion in environment, light and temperature strongly fluctu-

ate among consecutive days or groups of days. Abrupt al-

terations in environmental conditions such as suddenly im-

proved light conditions after canopy gap formation in the

understory or heat waves associated with synoptic weather

systems also occur in nature. Experimental data demonstrate

that ES at any given location within the canopy is capable of

acclimating to such environmental fluctuations (Funk et al.,

2003; Hanson and Sharkey, 2001a; Sharkey et al., 1999). In

fact, circadian and light-dependent regulatory elements have

been observed for isoprene synthase, implying that the ex-

pression of isoprene synthase has the potential to respond

to short-term stimuli (Cinege et al., 2009; Loivamäki et al.,

2007; Wilkinson et al., 2006). Weather-dependent variations

in isoprene emission capacity over periods of one to few days

were best predicted by average temperature or light condi-

tions of 12–48 h preceding the measurements (Ekberg et al.,

2009; Funk et al., 2003; Geron et al., 2000; Sharkey et al.,

1999; Simon et al., 2005; Wiedinmyer et al., 2005). Anal-

ogous relatively rapid acclimation responses have been re-

ported for methylbutenol (Gray et al., 2006) and monoter-

penes (Porcar-Castell et al., 2009; Staudt et al., 2003).

In addition to short-term responses to fluctuating light and

temperature conditions, full acclimation to any given envi-

ronmental modification can take much longer, especially for

profound alterations in environment. For isoprene emissions,

4–6 days are needed to fully respond to a step change in en-

vironmental conditions (Hanson and Sharkey, 2001a; Pétron

et al., 2001). For monoterpene emission, it has further been

demonstrated that the response kinetics differ for the increase

(Fig. 3a) and decrease (Fig. 3b) of light intensity and tem-

perature (Staudt et al., 2003). While full acclimation to the

increased light and temperature took ca. 10 days (Fig. 3a),

the response to reduced light and temperature took almost

40 days (Fig. 3b). Such asymmetric responses mean that

the use of simple correlations of ES with average values of

temperature from the preceding few days are likely in error.

In fact, the correlations observed with past environmental

drivers are often scattered (Funk et al., 2003; Geron et al.,

2000), possibly reflecting the different time kinetics for the

rise and reduction of emission capacities in response to envi-

ronmental alterations.

Although using an average value of ES during a certain

time period may realistically estimate the average emission

rate during this time period, such an approach will overes-

timate the emissions during some periods of the simulation

and underestimate during other periods, with the magnitude

of the errors depending on the degree of fluctuation of en-

vironment. So far, the influence of preceding environmental

conditions is included in only very few models. In MEGAN

(Guenther et al., 2006), the temperature response function

used in Eq. (1) is modified in dependence on the average

temperature of past 24 h and past 10 days to consider longer-

term acclimation responses (s. seasonality in Sect. 2.4). In

this new model formulation (Guenther et al., 2006), the tem-

perature response function, f (TL), modified this way, does

generally not equal 1.0 under typical standard temperature

of TL=30
◦C. Apart from temperature response function, the

light response function is also modified in dependence on

past 24 h and 240 h light environment (Guenther et al., 2006).

Ekberg et al. (2009), recently proposed an empirical relation-

ship between 48 h average temperature and ES to simulate

the past weather influences on isoprene emission (Ekberg et

al., 2009, Fig. 4), implicitly arguing that in the case of field

observations, it is not possible to separate effects of past tem-

perature and light conditions since these strongly co-vary.

The simulations of the influences of temperature history on

temporal dynamics with both models demonstrate significant

effects of past weather conditions on the emissions, but also

that the function used to describe the past weather can signif-

icantly alter the predicted emission fluxes (Fig. 4).

Apart from the need for consensus description of past cli-

mate effects on emissions, there are other difficulties asso-

ciated with the existing models. First, the speed of accli-

mation and response curve shapes can vary between species

of the same biome (Ekberg et al., 2009) and possibly be-

tween different biomes. So far, the models use a constant

Biogeosciences, 7, 2203–2223, 2010 www.biogeosciences.net/7/2203/2010/
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Fig. 3. Example of the acclimation kinetics of the monoter-

pene emission factor in Mediterranean evergreen sclerophyll Quer-

cus ilex after transfer of plants from (a) moderate light (quantum

flux density, Q=300 µmolm−2 s−1) and low temperature (10 ◦C

night/20 ◦C day) to high light (Q=1100 µmolm−2 s−1) and warm

temperature (20 ◦C night/30 ◦C day), and after an opposite trans-

fer (b). The emission factor was measured at leaf temperature of

25 ◦C and incident quantum flux density of 900 µmolm−2 s−1 after

reaching the steady state (≥60min) under these assay conditions.

The data were fitted by exponential decay functions. In (a) double

exponential model (dashed line) improved the fit, suggesting that

the acclimation consists of several processes with different time-

kinetics. The half-time for the response, τ=ln(2)/k, where k is the

exponential decay constant. The reduction of the emission factor

after transfer to moderate light/low temperature occurs with slower

time kinetics τ=14.4 d than the increase of the emissions after trans-

fer to high light/high temperature (for double-exponential model,

the shorter τ=1.21 d, and for single-exponential model τ=2.18 d).

Data modified from Staudt et al. (2003).

past climate function for ecosystems as divergent as trop-

ics and tundra (Ekberg et al., 2009; Guenther et al., 2006).

In addition, past environmental effects in large scale models

are only considered for isoprene. Yet, the temporal kinet-

ics can be different for isoprene (Funk et al., 2003; Geron et

al., 2000; Hanson and Sharkey, 2001a; Sharkey et al., 1999)

and monoterpenes (Porcar-Castell et al., 2009; Staudt et al.,

2003). Clearly more experimental work is needed to gain

insight into the variations of past weather vs. isoprene and

monoterpene emission responses.

2.4 Seasonal and age-dependent variations in ES

2.4.1 Variations driven by environmental modifications,

foliage development, senescence and stress

Short-term environmental fluctuations between the days are

superimposed on longer-term seasonal and developmental

variations. Isoprene synthase activity increases gradually un-

til full leaf maturation and decreases thereafter with the onset

of leaf senescence (Schnitzler et al., 1997), reflecting sea-

sonal variations in the expression of isoprene synthase and

other enzymes of chloroplastic isoprenoid synthesis pathway

(MEP pathway, Mayrhofer et al., 2005). Analogous develop-

mental modifications have been observed for monoterpene

synthase activity in species without specialized storage (Fis-

chbach et al., 2002). The changes in limiting enzyme ac-

tivity are accompanied by strong seasonal modifications in

isoprene and monoterpene emissions with a maximum dur-

ing the active growth period, and decline in senescing leaves

(Fig. 5, Boissard et al., 2001; Ciccioli et al., 2001; Fischbach

et al., 2002; Fuentes and Wang, 1999; Geron et al., 2000;

Keenan et al., 2009; Kuhn et al., 2004; Mayrhofer et al.,

2005; Sabillón and Cremades, 2001; Schnitzler et al., 1997).

It has been demonstrated that lack of consideration of such

longer-term controls results in overall low explanatory power

of isoprene emission models (Boissard et al., 2008), imply-

ing that it is highly relevant to gain mechanistic insight into

the determinants of seasonality.

Because environmental conditions vary during the season,

in principle, the same mechanisms responsible for shorter-

term changes can be considered operational (Sect. 2.3),

i.e. the seasonal variations in ES can be associated with sea-

sonal changes in temperature and light (Lehning et al., 2001;

Mayrhofer et al., 2005). In fact, in fully-developed non-

senescent leaves, seasonal modifications in isoprenoid ES

values were correlated with seasonal changes in light and

temperature (Geron et al., 2000; Grote et al., 2009; Lehn-

ing et al., 2001; Mayrhofer et al., 2005), demonstrating that

variations in environmental drivers during the season play a

major role in the seasonality of isoprenoid emissions.

Apart from immediate environmental effects operating on

fully mature non-senescent leaves in seasonal climates, the

physiological activity of foliage varies in dependence on leaf

ontogenetic stage, increasing rapidly in developing leaves
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Fig. 4. Simulated temporal variation in isoprene emissions normal-

ized to the rate at 30 ◦C in response to typical diurnal variations in

temperature in continental temperate environments (a). The simu-

lations without temperature history (b) were conducted with the al-

gorithms of Guenther et al. (1993, Eq. 1, black line) and Niinemets

et al. (1999, red line) that links the isoprene emissions to the rates

of photosynthetic electron transport. In the latter simulation, elec-

tron flow was provided from the photosynthesis model of Farquhar

et al. (1982) and assuming fully open stomata, and adjusting the

fraction of electrons going into isoprene synthesis pathway such

that the emission rate under standardized conditions equaled that

in Guenther et al. (1993). In (c), the emissions were simulated by

the same two models, but for Guenther et al. (1993) algorithms, the

past temperature and radiation history was considered as in Guen-

ther et al. (2006, MEGAN), and the past temperature history for the

Niinemets et al. (1999) model as found in Ekberg et al. (2009). The

latter was from a study in cool growth environment and the expo-

nential function was re-scaled to the same common temperature as

used in the MEGAN temperature-history algorithm. In MEGAN,

the optimum temperature of the isoprene response function (f (T )

in Eq. 1) depends linearly on the previous temperature of the past

240 h, while the standardized emission rate depends exponentially

on the temperature of the past 24 and 240 h (Guenther et al., 2006).

In Ekberg et al. (2009), the standardized isoprene emission rate de-

pends exponentially on the previous temperature of the past 48 h.
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Fig. 5. Seasonal variation in standardized monoterpene emis-

sion rate (leaf temperature of 30 ◦C and light intensity of

1000 µmolm−2 s−1) in Mediterranean evergreen sclerophyll Quer-

cus ilex. Data (filled symbols) were combined from several in-

dependent sources (Bertin et al., 1997; Kesselmeier et al., 1997,

1998; Llusià and Peñuelas, 2000; Owen et al., 1997; Sabillón

and Cremades, 2001; Staudt et al., 2002, 2004; Street et al.,

1997) and ES vs. day of the year relationships were fitted ei-

ther by a symmetric sine function or an asymmetric exponential

function (Keenan et al., 2009). The sine function was defined as

y=a*sin[(b+x)*180/365]+c*sin[(d+x)*180/365], where a−d are

empirical parameters. The exponential function was defined as

y=a1+a2e

(

−
(x−a3)2

a4

)

, where a1−a4 are empirical parameters; this

function allows to parameterize asymmetric seasonal variation pat-

terns (Keenan et al., 2009 for further details). Although the sym-

metric sine or second order polynomial functions are often used to

characterize the seasonal changes (Hargreaves et al., 2000; Stolwijk

et al., 1999), the seasonal variation in ES was clearly asymmetric.

and decreasing in senescing leaves undergoing programmed

cell death (e.g., Grassi et al., 2005; Niinemets et al., 2004,

2010a; Shesták et al., 1985). As isoprene synthase is not

expressed in very young leaves, the leaves achieve photo-

synthetic competence earlier than the capacity for isoprene

emission (Grinspoon et al., 1991; Mayrhofer et al., 2005;

Wiberley et al., 2005). The lag between the onset of pho-

tosynthesis, and the capacity of the leaves to emit isoprene

is a few days in hot tropical environments where the tem-

perature environment is relatively stable (Kuhn et al., 2004).

The lag increases to weeks in cooler seasonal temperate en-

vironments where leaf developmental periods are associated

with strong increases in temperature (Monson et al., 1994;

Schnitzler et al., 1997; Wiberley et al., 2005). Experimental

increase of the ambient temperature has been shown to result

in earlier onset of isoprene emission in leaves of the same

developmental stage (Wiberley et al., 2005), suggesting that
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the onset of isoprene emission is at least partly under envi-

ronmental control.

In deciduous species in seasonal climates, reductions in

day length (light availability) and temperature are also as-

sociated with the onset of leaf senescence, leading to rapid

reductions in foliage photosynthetic activity (Grassi et al.,

2005; Niinemets et al., 2004) and coordinated degradation

of leaf function (Keskitalo et al., 2005). Overall decline in

leaf physiological activity is also associated with strong re-

ductions in foliage isoprene emission rates (Lehning et al.,

2001; Mayrhofer et al., 2005; Sun et al., 2009). The on-

set of senescence is both under environmental (temperature)

and photoperiodic control (Fracheboud et al., 2009; Rosen-

thal and Camm, 1996, 1997), but once elicited, is typically

not reversible (van Doorn and Woltering, 2004). This im-

plies that alterations in environmental conditions, e.g. au-

tumn warm spells, not necessarily affect ES, and the decline

of ES in senescing leaves is largely independent of environ-

mental modifications (Sun et al., 2009).

In species with foliage longevities extending over sev-

eral growing seasons, senescence of older foliage can oc-

cur throughout the year, although it is often more frequent

during new foliage growth and development (Bargali and

Singh, 1997; Gholz et al., 1991; Pook, 1984). However,

older non-senescent foliage becomes gradually shaded due

to new foliage formation and expansion (Brooks et al., 1994;

Niinemets et al., 2006). In Quercus ilex, it has been demon-

strated that 1-yr-old leaves intercept ca. 30% less light than

the current-year leaves, and more than 3-yr-old leaves inter-

cept even ca. 80% less light than they intercepted during

their formation (Niinemets et al., 2006). Until now, age-

dependent changes of isoprenoid emission capacity of non-

senescent leaves in species with foliage life-span of more

than one season have not been studied extensively. Re-

ductions of light availability due to enhanced within-canopy

shading suggest that isoprenoid emission capacity declines

with increasing leaf age (Sects. 2.2.3 and 2.3). In fact, a

lower monoterpene ES estimate has been obtained for 1-yr-

old leaves ofQ. ilex relative to the current-year leaves (Staudt

et al., 2003), and this change has been associated with re-

ductions in monoterpene synthase activity (Fischbach et al.,

2002). However, no significant difference between current

and 1-yr-old leaves was found in the same species in another

study (Lavoir et al., 2009), although the trend was similar

to Staudt et al. (2003). Besides the changes in physiologi-

cal activity due to enhanced shading, there is also evidence

of lower photosynthetic activity of older foliage at any given

light availability (Niinemets et al., 2006), but no studies have

so far examined such modifications in ES values of older fo-

liage under controlled (or specified) light availability. Clearly

more experimental work is needed to characterize the varia-

tion in ES values of older foliage due to enhanced shading as

well as time-dependent reductions of foliage physiological

activity.
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Fig. 6. Interaction of drought stress with seasonal variation in stan-

dardized monoterpene emission rate (leaf temperature of 30 ◦C and

light intensity of 1000 µmolm−2 s−1) in Quercus ilex. The exper-

imental drought treatment in the Mediterranean Q. ilex forest in-

cluded partial rain and runoff exclusions and resulted in a reduction

in soil water availability by ca. 25% in all seasons except the sum-

mer hot and dry season, where the soil water availability was similar

in both control and drought treatments. Thus, drought prior to sum-

mer season was responsible for enhanced emission rates in summer

in the drought experiment. Average data for the growing seasons

2003 and 2005 were fitted by the exponential asymmetric function

as in Fig. 5 (modified from Llusià et al., 2010).

Long-term variations in factors other than incident light

and air temperature can occur during the season. In par-

ticular, as discussed in Sect. 2.1.1, seasonal drought can

importantly affect the emission rates. While immediate

drought effects on the emission rates can be explained on

the basis of modifications in intercellular CO2 concentration

(Sect. 2.1.1), long-term drought effect, involving acclima-

tion and causing variations in ES may be difficult to separate

from changes in ES driven by seasonal variations in light and

temperature and leaf ontogeny alone. There is evidence that

the history of drought can affect the seasonal ES responses

(Fig. 6). For example, ES was vastly increased during the

water-limited period of the year inQuercus ilex plants subject

to a more severe drought stress compared with the control

treatment. Variations in the sensitivity to seasonal drought

and the severity of drought sustained in different sites can

provide an explanation for significant interspecific variabil-

ity in seasonal responses of ES in the field (Keenan et al.,

2009).

In addition to the developmental, environmental and

stress-dependent modifications of isoprenoid emission po-

tentials of single cells, a further complication with devel-

opmental modifications in isoprenoid emission capacity is

that leaf structure (MA) also varies during the season. In
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particular, MA strongly increases in developing leaves, and

somewhat decreases in senescing leaves (Grassi and Mag-

nani, 2005; Niinemets et al., 2004; Wilson et al., 2001).

Thus, part of the seasonal variation in ES,area is structural

rather than entirely associated with the alterations in phys-

iological activity of single cells. Accordingly, in addition

to changes of the expression of isoprenoid synthase activi-

ties, information of alterations in leaf structure is needed for

mechanistic consideration of seasonality of isoprenoid emis-

sions in the models.

2.4.2 Including seasonality and age effects in emission

models

The previous section indicated that seasonal variations in ES

entail changes due to foliage development, seasonal varia-

tions in environmental drivers, and senescence and may ad-

ditionally involve long-term stress effects. We suggest that

all these aspects should be addressed in mechanistic models

seeking to describe seasonal variations in ES. In species with

foliage longevity of more than one growing season, foliage

shading and time-dependent changes of physiological activ-

ity of non-senescent leaves may further importantly alter ES.

Several approaches have been proposed for incorporation

of seasonality in models. Schnitzler et al. (1997) included

an additional modifier in Eq. (1), the seasonality function.

In such an approach, ES is defined as the maximum emis-

sion rate in standardized conditions observed during the sea-

son. While first parameterized empirically (Schnitzler et al.,

1997), the seasonality function was later related to leaf phe-

nology, temperature sum and light intensity (Lehning et al.,

2001). In MEGAN (Guenther et al., 2006), the seasonality

in isoprenoid emission rates mainly results from two factors:

leaf age and average temperature and light intensity of the

past 10 days. Leaf age effect is parameterized assigning dif-

ferent emission capacities to four different leaf age classes

– new (emissions not yet induced significantly), growing

(emissions below the peak rates), mature (peak emissions)

and senescing (emissions below the peak rates) leaves (Guen-

ther et al., 1999, 2000, 2006). On top of the leaf age effects,

seasonality also results from temporal changes in average

temperature that is used to modify the short-term tempera-

ture response function in Eq. (1) as explained in Sect. 2.3.

(Guenther et al., 2006). Both the leaf age and leaf temper-

ature function may obtain values above 1 (Guenther et al.,

2006), and thus, ES is differently defined in this model than

in the previous Guenther et al. (1991, 1993) algorithms. In

this new formulation, ES is essentially a modeled variable,

which cannot be experimentally assessed in field conditions,

as it is very hard if possible at all to encounter “standard”

medium- to long-term environmental conditions at one field

location, let alone at a number of sites. Thus, inverse mod-

eling approaches are commonly employed to yield ES es-

timates under standard long-term environmental conditions

and leaf age (Guenther et al., 2006).

Alternatively, seasonal variation in the emissions can be

directly ascribed to set changes in ES (Arneth et al., 2008;

Geron et al., 2000; Grote et al., 2010; Keenan et al., 2009;

Staudt et al., 2000). In such an approach, variation in a mea-

sured quantity, the emission rate standardized for immedi-

ate variation in environmental drivers (Eq. 1), can be linked

to the observed patterns in leaf phenology, and variations in

light availability and temperature during the season. Arneth

et al. (2008) applied a seasonally varying ES (expressed as a

fraction of electrons used for isoprene production, Niinemets

et al., 1999) as a function of growing degree temperature

sums, and linked ES to modeled canopy phenology in spring

and autumn. Grote et al. (2010) simulated ES (determined

by the isoprenoid synthase activity) in dependence on leaf

phenological state and formation kinetics of isoprenoid syn-

thases empirically fitted to the emission data.

Although mechanistic or semi-mechanistic descriptions

linking variations in ES to leaf developmental status and sea-

sonal modifications in environmental drivers are promising,

there are large species-specific variabilities in leaf phenol-

ogy (Augsburger and Bartlett, 2003; Lechowicz, 1984) and

in responsiveness of ES to seasonal variations in environ-

ment (Ekberg et al., 2009). Whenever information of fac-

tors controlling the phenological events is lacking, seasonal

variations in ES can be empirically fitted to the data (Fig. 6,

Keenan et al., 2009; Staudt et al., 2000).

To our knowledge, different parameterization schemes

have been evaluated only in the study of Keenan et al. (2009)

who compared the seasonal variations predicted by MEGAN

(Guenther et al., 2006), i.e., generalized past weather-

dependent response functions for temperature and light com-

bined with a discrete four-level leaf age classification, and

by a model using empirical parameterization fitted to the

seasonal ES data (Fig. 5). This model comparison exer-

cise indicated that the MEGAN parameterization predicted

weaker seasonality of the emissions than was actually ob-

served (Keenan et al., 2009), indicating that generalized

approaches developed to simulate the emissions from any

type of vegetation can introduce important bias into seasonal

emission estimates if applied in more narrowly specialized

applications (any specific type of vegetation, any selected

species). Given the importance of seasonality in shaping the

annual time-courses of isoprenoid emissions, more experi-

mental information is clearly needed on the species-specific

rates of ES changes during leaf development and senescence,

and on the sensitivity of ES to seasonal variations in tem-

perature, light and water availability. As leaf-level seasonal

variation studies may be tedious and difficult to replicate,

canopy-level flux measurements routinely carried out during

the full year may provide an important vehicle for obtaining

seasonal variation data (e.g., Ciccioli et al., 2003; Fuentes et

al., 1999).
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2.5 Philosophy of consideration of biological factors in

models

The biogenic volatile compound emission modeling commu-

nity faces the dilemma that – at least for large scale models

– a truly mechanistic approach, e.g., like for photosynthesis

modeling (Farquhar et al., 1980), is not yet available. All ex-

isting concepts start with a plant’s (or plant functional unit’s)

capacity to emit volatiles under predefined standard condi-

tions (ES), and this capacity is then modified up- and down-

wards based on a number of multiplicative, empirical func-

tions. Originally, ES was defined as an average emission rate

corresponding to arbitrarily defined light intensity and tem-

perature, and emission rates were simulated as the product of

ES and functions describing the instantaneous variations in

light and temperature (Eq. 1, Guenther et al., 1991, 1993). As

the evidence summarized in Sects. 2.1–2.4 demonstrates, it

is not enough to consider only the instantaneous variations in

environmental drivers, but also the medium- to long-term en-

vironmental and biological controls. Contrasting approaches

are currently in use to include these longer-term factors in the

isoprenoid emission models.

Guenther et al. (1999, 2000, 2006) have considered ES

at a canopy level as a constant value, and used age-, previ-

ous climate and stress dependent multipliers in Eq. (1) to de-

scribe the biological effects on the emissions. In Schnitzler

et al. (1997) and Lehning et al. (2001), seasonality has been

analogously considered as a separate modifier of Eq. (1).

In a like manner, Boissard et al. (2008) lumped short and

long-term emission controls into a single stochastic emission

model. In a simplified way, the emission rate according to

these approaches is expressed as:

E = ES
′f (short-term).f (long-term), (3)

where f (short-term) refers to instantaneous temperature,

light and Ci dependencies as in Eq. (1), while f (long-term)

refers to the longer-term dependencies on past temperature

(Tpast), light intensity (Qpast) and CO2 concentration (Cpast)

and leaf age (3), and ES
′ is the emission rate standardized

for all these short to long-term controls. Tpast, Qpast and Cpast

each can operate at several time frames to capture day-to-day

to seasonal variations and variations during the foliage de-

velopment (e.g., within-canopy gradients, growth CO2). Ad-

ditional response functions may be needed and are to some

extent included (e.g. in MEGAN, Guenther et al., 2006) to

consider the effects of various abiotic and biotic stresses on

constitutive emissions and predict stress-induced novel emis-

sions (Sect. 2.1).

Differently from this approach, other studies have consid-

ered ES as originally defined by Eq. (1), i.e. an average value

standardized only for immediate (short-term) variations in

environmental drivers. Thus, ES varies in dependence on

climatic conditions, leaf age and physiological status and

growth CO2 environment (Funk et al., 2003; Geron et al.,

2000; Gray et al., 2005, 2006; Keenan et al., 2009; Possell

et al., 2005; Sharkey et al., 1999). In the latter approach, ES

vs. medium- to longer-term (Tpast, Qpast, Cpast, 3) depen-

dencies will be developed for isoprenoid emission modeling

purposes:

ES = f (long-term). (4)

This approach is analogous to widely used models of carbon

gain, where short term responses of photosynthesis to en-

vironmental drivers are simulated using process-based mod-

els, as a rule, Farquhar et al. (1980) photosynthesis model,

while modifications in the capacities of the partial processes

are studied using acclimation models (Harley and Baldocchi,

1995; Kull, 2002; Niinemets and Anten, 2009; Wilson et al.,

2000a,b).

From a modeling perspective both Eqs. (3) and (4) can

be parameterized to predict the emission rates with a sim-

ilar degree of predicted variance (e.g., Fig. 4). However,

there is a clear distinction from the experimental perspec-

tive and from the perspective of parameterization of the

models. According to Eq. (3), ES
′ is standardized not

only for immediate fluctuations in environment, but also

for longer-term variations, including environmental and leaf-

age-dependent drivers. Thus, one species-specific or canopy-

specific value is scaled to different conditions using gener-

alized instantaneous-to-medium-to-long-term environmental

algorithms. Equation (3) provides an impression that only

one spot measurement is all that is needed. In reality, what

is needed is a generalized value that is standardized for vari-

ations in all the instantaneous to longer-term factors. In this

regard, ES
′ becomes a modeling concept as it is essentially

impossible to simultaneously standardize leaf previous en-

vironment, leaf age, and stress status to determine a single

species-specific value of E
′

S in the field. Thus, E
′

S must be

necessarily derived by inverting the models describing the

emission controls at various time-scales.

According to Eq. (4), ES values are considered inherently

variable, emphasizing that repeated sampling is needed to

describe this inherent variability. As the “variable ES” ap-

proach separates between the instantaneous effects of light,

temperature and internal CO2 concentration on the emission

rate (Eq. 1) and the leaf-specific capacity for isoprenoid for-

mation (ES) that depends on longer term factors, we encour-

age the use of this modeling tactic. At any rate, we be-

lieve that it is highly important to be aware of these con-

trasting approaches and also that the emission factors de-

fined by Eqs. (3) and (4) are not the same. With both ap-

proaches, the difficulty can be that under field conditions, cu-

mulative weather history, leaf age or “seasonality” factors are

often correlated. Thus, care has to be taken to avoid double-

accounting by adding ever more empirical multipliers into

the Guenther-type algorithms or in predicting ES according

to Eq. (4).

www.biogeosciences.net/7/2203/2010/ Biogeosciences, 7, 2203–2223, 2010
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3 Conclusions and outlook

A plethora of recent experimental studies has demonstrated

that a large number of processes shape variation in ES on

timescales from days to decades, overall indicating that the

constancy of ES values used from study to study is illusion.

These major biological sources of variation inES values need

consideration when examining past experimental and model

studies, and the novel information of biological sources of

variation in ES needs to be included more efficiently in the

emission models. Here, we have synthesized the existing

knowledge about dynamics in ES, with the overall aim to

reduce the model uncertainties due to stress, environmental

variability, seasonality and foliage developmental stage. We

admit that all of these effects cannot be included in a straight-

forward way into large scale models, partially due to our

lack of process understanding, partially because this would

lead to over-parameterization of such models. Clearly, in-

clusion of new response functions into existing large-scale

predictive models must go hand-in-hand with experimental

work testing the importance of specific biological responses

and verifying the more complex models under typical nat-

ural settings. While studies on surface-atmosphere interac-

tions have to rely on state-of-the-art source/sink distribution

of volatile isoprenoids, they also need to progress on some

of the known weaknesses regarding their atmospheric oxida-

tion patterns. In chemistry-climate feedback analyses even

the best emission model will be of little value if the chem-

ical reaction pathways are insufficiently described. Separa-

tion of first and second-order effects should therefore be a

research priority, by quantifying sensitivities of isoprenoid

emission model responses to increasing complexity of pro-

cess description in the emission models themselves, as well

as quantifying effects on atmospheric composition.
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genhardt, J., and Stewart Jr., C. N.: Within-plant distribution

and emission of sesquiterpenes from Copaifera officinalis, Plant

Physiol. Bioch., 47, 1017–1023, 2009.

Ciccioli, P., Fabozzi, C., Brancaleoni, E., Cecinato, A., Frattoni,

M., Loreto, F., Kesselmeier, J., Schäfer, L., Bode, K., Torres, L.,
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Karl, M., Guenther, A., Köble, R., Leip, A., and Seufert, G.: A new

European plant-specific emission inventory of biogenic volatile

organic compounds for use in atmospheric transport models, Bio-

geosciences, 6, 1059–1087, doi:10.5194/bg-6-1059-2009, 2009.

Keenan, T., Niinemets, Ü., Sabate, S., Gracia, C., and Peñuelas,

J.: Seasonality of monoterpene emission potentials in Quer-

cus ilex and Pinus pinea: Implications for regional BVOC

emissions modelling, J. Geophys. Res.-Atmos., 114, D22202,

doi:10.1029/2009JD011904, 2009.

Keskitalo, J., Bergquist, G., Gardeström, P., and Jansson, S.: A cel-

lular timetable of autumn senescence, Plant Physiol., 139, 1635–

1648, 2005.

Kesselmeier, J., Bode, K., Hofmann, U., Müller, H., Schäfer, L.,
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