000133433 001__ 133433
000133433 005__ 20210129211451.0
000133433 0247_ $$2doi$$a10.1063/1.4764342
000133433 0247_ $$2ISSN$$a0021-8979
000133433 0247_ $$2ISSN$$a1089-7550
000133433 0247_ $$2WOS$$aWOS:000311968400045
000133433 0247_ $$2Handle$$a2128/5076
000133433 037__ $$aFZJ-2013-01881
000133433 082__ $$a530
000133433 1001_ $$0P:(DE-HGF)0$$aReuters, Benjamin$$b0$$eCorresponding author
000133433 245__ $$aRelaxation and critical strain for maximum In incorporation in AlInGaN on GaN grown by metal organic vapour phase epitaxy
000133433 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2012
000133433 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s133433
000133433 3367_ $$2DataCite$$aOutput Types/Journal article
000133433 3367_ $$00$$2EndNote$$aJournal Article
000133433 3367_ $$2BibTeX$$aARTICLE
000133433 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000133433 3367_ $$2DRIVER$$aarticle
000133433 500__ $$3POF3_Assignment on 2016-02-29
000133433 520__ $$aQuaternary AlInGaN layers were grown on conventional GaN buffer layers on sapphire by metal organic vapour phase epitaxy at different surface temperatures and different reactor pressures with constant precursor flow conditions. A wide range in compositions within 30–62% Al, 5–29% In, and 23–53% Ga was covered, which leads to different strain states from high tensile to high compressive. From high-resolution x-ray diffraction and Rutherford backscattering spectrometry, we determined the compositions, strain states, and crystal quality of the AlInGaN layers. Atomic force microscopy measurements were performed to characterize the surface morphology. A critical strain value for maximum In incorporation near the AlInGaN/GaN interface is presented. For compressively strained layers, In incorporation is limited at the interface as residual strain cannot exceed an empirical critical value of about 1.1%. Relaxation occurs at about 15 nm thickness accompanied by strong In pulling. Tensile strained layers can be grown pseudomorphically up to 70 nm at a strain state of 0.96%. A model for relaxation in compressively strained AlInGaN with virtual discrete sub-layers, which illustrates the gradually changing lattice constant during stress reduction is presented.
000133433 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000133433 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000133433 7001_ $$0P:(DE-HGF)0$$aFinken, M.$$b1
000133433 7001_ $$0P:(DE-HGF)0$$aWille, A.$$b2
000133433 7001_ $$0P:(DE-Juel1)125595$$aHolländer, Bernhard$$b3
000133433 7001_ $$0P:(DE-HGF)0$$aHeuken, M.$$b4
000133433 7001_ $$0P:(DE-HGF)0$$aKalisch, H$$b5
000133433 7001_ $$0P:(DE-HGF)0$$aVescan, A.$$b6
000133433 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.4764342$$gVol. 112, no. 9, p. 093524 -$$n9$$p093524 -$$tJournal of applied physics$$v112$$x0021-8979$$y2012
000133433 8564_ $$yPublished under German "Allianz" Licensing conditions on 2012-11-13. Available in OpenAccess from 2012-11-13$$zPublished final document.
000133433 8564_ $$uhttps://juser.fz-juelich.de/record/133433/files/FZJ-133433.pdf$$yPublished under German "Allianz" Licensing conditions on 2012-11-13. Available in OpenAccess from 2012-11-13$$zPublished final document.
000133433 8564_ $$uhttps://juser.fz-juelich.de/record/133433/files/FZJ-133433.jpg?subformat=icon-1440$$xicon-1440
000133433 8564_ $$uhttps://juser.fz-juelich.de/record/133433/files/FZJ-133433.jpg?subformat=icon-180$$xicon-180
000133433 8564_ $$uhttps://juser.fz-juelich.de/record/133433/files/FZJ-133433.jpg?subformat=icon-640$$xicon-640
000133433 909CO $$ooai:juser.fz-juelich.de:133433$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000133433 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125595$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000133433 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000133433 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000133433 9141_ $$y2012
000133433 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000133433 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000133433 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000133433 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000133433 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000133433 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000133433 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000133433 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000133433 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000133433 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000133433 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000133433 915__ $$0StatID:(DE-HGF)0520$$2StatID$$aAllianz-OA
000133433 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000133433 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000133433 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000133433 9801_ $$aFullTexts
000133433 980__ $$ajournal
000133433 980__ $$aUNRESTRICTED
000133433 980__ $$aJUWEL
000133433 980__ $$aFullTexts
000133433 980__ $$aI:(DE-Juel1)PGI-9-20110106
000133433 980__ $$aI:(DE-82)080009_20140620
000133433 980__ $$aVDB