000133447 001__ 133447 000133447 005__ 20210129211453.0 000133447 0247_ $$2doi$$a10.1002/prot.24295 000133447 0247_ $$2ISSN$$a0887-3585 000133447 0247_ $$2ISSN$$a1097-0134 000133447 0247_ $$2WOS$$aWOS:000329220400014 000133447 0247_ $$2altmetric$$aaltmetric:1335601 000133447 0247_ $$2pmid$$apmid:23553942 000133447 037__ $$aFZJ-2013-01895 000133447 041__ $$aEnglish 000133447 082__ $$a540 000133447 1001_ $$0P:(DE-Juel1)132590$$aMohanty, Sandipan$$b0$$eCorresponding author$$ufzj 000133447 245__ $$aFolding of Top7 in unbiased all-atom Monte Carlo simulations 000133447 260__ $$aNew York, NY$$bWiley-Liss$$c2013 000133447 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1376051484_2874 000133447 3367_ $$2DataCite$$aOutput Types/Journal article 000133447 3367_ $$00$$2EndNote$$aJournal Article 000133447 3367_ $$2BibTeX$$aARTICLE 000133447 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000133447 3367_ $$2DRIVER$$aarticle 000133447 520__ $$aFor computational studies of protein folding, proteins with both helical and β-sheet secondary structure elements are very challenging, since they expose subtle biases of the physical models. Here we present reproducible folding of a 92 residue α/β protein (residues 3–94 of Top7, PDB ID: 1QYS) in computer simulations starting from random initial conformations using a transferable physical model which has been previously shown to describe the folding and thermodynamic properties of about 20 other smaller proteins of different folds. Top7 is a de novo designed protein with two α-helices and a 5 stranded β-sheet. Experimentally it is known to be unusually stable for its size, and its folding transition distinctly deviates from the two state behaviour commonly seen in natural single domain proteins. In our all-atom implicit solvent parallel tempering Monte Carlo simulations, Top7 shows a rapid transition to a group of states with high native-like secondary structure, and a much slower subsequent transition to the native state with a root mean square deviation of about 3.5 Å from the experimentally determined structure. Consistent with experiments, we find Top7 to be thermally extremely stable, although the simulations also find a large number of very stable non-native states with high native-like secondary structure. 000133447 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0 000133447 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000133447 7001_ $$0P:(DE-Juel1)132189$$aMeinke, Jan$$b1 000133447 7001_ $$0P:(DE-Juel1)132307$$aZimmermann, Olav$$b2$$ufzj 000133447 773__ $$0PERI:(DE-600)1475032-6$$a10.1002/prot.24295$$gp. n/a - n/a$$n8$$p1446 - 1456$$tProteins$$v81$$x0887-3585$$y2013 000133447 8564_ $$uhttps://juser.fz-juelich.de/record/133447/files/FZJ-2013-01895.pdf$$yRestricted 000133447 909__ $$ooai:juser.fz-juelich.de:133447$$pVDB 000133447 909CO $$ooai:juser.fz-juelich.de:133447$$pVDB 000133447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132590$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000133447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132189$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000133447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132307$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000133447 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0 000133447 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0 000133447 9141_ $$y2013 000133447 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000133447 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown 000133447 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000133447 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000133447 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000133447 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000133447 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000133447 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000133447 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000133447 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000133447 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000133447 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000133447 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000133447 920__ $$lyes 000133447 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000133447 980__ $$ajournal 000133447 980__ $$aVDB 000133447 980__ $$aUNRESTRICTED 000133447 980__ $$aI:(DE-Juel1)JSC-20090406