000133447 001__ 133447
000133447 005__ 20210129211453.0
000133447 0247_ $$2doi$$a10.1002/prot.24295
000133447 0247_ $$2ISSN$$a0887-3585
000133447 0247_ $$2ISSN$$a1097-0134
000133447 0247_ $$2WOS$$aWOS:000329220400014
000133447 0247_ $$2altmetric$$aaltmetric:1335601
000133447 0247_ $$2pmid$$apmid:23553942
000133447 037__ $$aFZJ-2013-01895
000133447 041__ $$aEnglish
000133447 082__ $$a540
000133447 1001_ $$0P:(DE-Juel1)132590$$aMohanty, Sandipan$$b0$$eCorresponding author$$ufzj
000133447 245__ $$aFolding of Top7 in unbiased all-atom Monte Carlo simulations
000133447 260__ $$aNew York, NY$$bWiley-Liss$$c2013
000133447 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1376051484_2874
000133447 3367_ $$2DataCite$$aOutput Types/Journal article
000133447 3367_ $$00$$2EndNote$$aJournal Article
000133447 3367_ $$2BibTeX$$aARTICLE
000133447 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000133447 3367_ $$2DRIVER$$aarticle
000133447 520__ $$aFor computational studies of protein folding, proteins with both helical and β-sheet secondary structure elements are very challenging, since they expose subtle biases of the physical models. Here we present reproducible folding of a 92 residue α/β protein (residues 3–94 of Top7, PDB ID: 1QYS) in computer simulations starting from random initial conformations using a transferable physical model which has been previously shown to describe the folding and thermodynamic properties of about 20 other smaller proteins of different folds. Top7 is a de novo designed protein with two α-helices and a 5 stranded β-sheet. Experimentally it is known to be unusually stable for its size, and its folding transition distinctly deviates from the two state behaviour commonly seen in natural single domain proteins. In our all-atom implicit solvent parallel tempering Monte Carlo simulations, Top7 shows a rapid transition to a group of states with high native-like secondary structure, and a much slower subsequent transition to the native state with a root mean square deviation of about 3.5 Å from the experimentally determined structure. Consistent with experiments, we find Top7 to be thermally extremely stable, although the simulations also find a large number of very stable non-native states with high native-like secondary structure.
000133447 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000133447 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000133447 7001_ $$0P:(DE-Juel1)132189$$aMeinke, Jan$$b1
000133447 7001_ $$0P:(DE-Juel1)132307$$aZimmermann, Olav$$b2$$ufzj
000133447 773__ $$0PERI:(DE-600)1475032-6$$a10.1002/prot.24295$$gp. n/a - n/a$$n8$$p1446 - 1456$$tProteins$$v81$$x0887-3585$$y2013
000133447 8564_ $$uhttps://juser.fz-juelich.de/record/133447/files/FZJ-2013-01895.pdf$$yRestricted
000133447 909__ $$ooai:juser.fz-juelich.de:133447$$pVDB
000133447 909CO $$ooai:juser.fz-juelich.de:133447$$pVDB
000133447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132590$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000133447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132189$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000133447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132307$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000133447 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000133447 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000133447 9141_ $$y2013
000133447 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000133447 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000133447 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000133447 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000133447 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000133447 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000133447 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000133447 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000133447 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000133447 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000133447 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000133447 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000133447 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000133447 920__ $$lyes
000133447 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000133447 980__ $$ajournal
000133447 980__ $$aVDB
000133447 980__ $$aUNRESTRICTED
000133447 980__ $$aI:(DE-Juel1)JSC-20090406