arXiv:1304.2894v1 [physics.ins-det] 10 Apr 2013

Forschungszentrum Jiilich

Internal Report No. XXX

A Data Acquisition and Monitoring System for the
Detector Development Group at FZJ/ZEA-2

Riccardo Fabbri®

* Forschungszentrum Juelich (FZJ), Jilich
E-mail: r.fabbri@fz-juelich.de

April 11, 2013

Abstract

The central institute of electronics (ZEA-2) in the Forschungszentrum
Jillich (FZJ) has developed the novel readout electronics JUDIDT [I] to
cope with high-rate data acquisition of the KWS-1 and KWS-2 detectors
in the experimental Hall at the Forschungsreacktor Miinchen FRM-II [2]
in Garching, Miinchen.

This electronics has been then modified and used also for the data-
acquisition of a prototype for an ANGER Camera [3] proposed for the
planned European Spallation Source. To commission the electronics, soft-
ware for the data acquisition and the data monitoring has been developed.
In this report the software is described.

Contents

8

9

Introduction

Installation of the DAQ Software
Overview of the DAQ Programs

DAQ Server

DAQ Client

The DAQ Socket Library

The Main User Frontend: DAQClientGui
The DAQ Library

The Online Monitor GUI

10 The Data Format

11 The Run LOG

12 The JUDIDT Library

13 Conclusions

BE B HEEH 8 e 8 e

& H

1 Introduction

This note describes how to install and to use the DAQ program suite devel-
oped for the Neutron and Gamma Detector Group (Arbeit Gruppe Neutron
und Gamma Detektoren, AGNuGD) at ZEA-2 in FZJ. The documentation also
provides a description of how the code is structured with the scope to give to the
future developers the possibility to easily implement modifications and further
developments.

The program was initially developed for the commissioning of the JUDIDT?2 [I]
electronics, designed and manufactured at ZEA-2, to be used as a readout sys-
tem for an ANGER Camera prototype within the XX Collaboration. During
the commissioning its functionality was extended to perform spectrum analysis
of plastic scintillators by using the ACQIRIS digitizers. The description here
given refers to the software version V2.0. Later changes and implementations
should not invalidate the main procedures here shown.

2 Installation of the DAQ Software

The suite is distributed as a zip archive DAQ_ Vxx.zip (the tag xx referring to
the version number, as 0.1, 0.2, and so on). After copying the zip file to the
wanted location, the archive can be unzipped (under Linux man can use the
command “unzip <zip_file>") and the directory DAQ_Vxx will be there un-
packed. In that root directory the sub-directories of each of the DAQ programs
are found, and they contain the source code for their build:

1. LIB_JUDIDT
==> library of the JUDIDT electronics;

2. DAQ_LIB
==> library of the DAQ;

3. DAQ_SERVER
==> the DAQ Server;

4. DAQ_CLIENT
==> the DAQ Client in terminal mode and the libSocket;

5. DAQ_ CLIENT GUI
==> a graphical interface to communicate with the SERVER;

6. ONLINE MONITOR
==> the graphical monitor to watch the data online (or the data previ-
ously taken);

7. RUNLOG
==> the GUI to store in an external file information on the runs.

These programs above listed are the main constituents of the DAQ suite,
and are described in the sections 4.x.

Additional folders and files are present in the unzipped folder. One group is
needed to build the software, and it is foreseen to provide the necessary flexibility
to be platform independent. Tools to compile with gcc, nmake, Visual Studio
and the QT IDE are given. In principle, the QT environment should provide a
cross-platform framework, being its configuration files (.pro files) configured to
compile in both Linux and Windows systems. By using QT functions many calls
are already cross-platform; for example, from the Client GUI external programs
(as the DAQ server or the Online Monitor) can be started. The reference build
system is QT, while the other frameworks are periodically but not regularly
updated, and their maintenence is not regularly ensured.

The compilation folders and scripts are the following:

1. Makefile.gcc
==> the script to compile the packages with gcc

2. Makefile.nmake
==> the script to compile the packages with nmake

3. QT _CREATOR
==> the folder with the configuration files (*.pro) to compile within the
QT IDE

4. VS2008
==> the folder with the configuration files (*.vcproj) to compile within
Visual Studio

5. bin
==> where the executables are locally stored

6. include
==> include files common to more packages

7. lib
==> libraries locally stored

8. CONFIGURE
==> Configuration files are here stored:

e configure.sh
==> to perform the initial configuration in Linux

e configure.bat
==> to perform the initial configuration in Windows .

As first step the user has to run the configure.sh(.bat) script in order to
create some relevant folders. Under Linux the installation of the libraries should
require root privileges. During the configuration the following three directories
are created, according to which operating system is running (Linux, XP, or the
CYGWIN environment for XP):

1. Where the binary files of the accumulated data are stored

e Linux:

==> /scratch/DAQ_ REPOSITORY
e XP:

——- ¢\DAQ REPOSITORY
e XP/CYGWIN:

==> /scratch/DAQ_REPOSITORY

2. Where the executables will actually run, and where the program configu-
ration files are located

e Linux:

==> /scratch/DAQ_WORKING DIR
e XP:

——> ¢:\DAQ_WORKING_DIR
e XP/CYGWIN:

——~ /scratch/DAQ_WORKING _DIR

3. Where the executables are globally located

e Linux:
==> /home/<user home directory>/bin
e XP:
==> ¢:\bin
¢ XP/CYGWIN:
==> /home/<user home directory>/bin .

Note that to compile the drivers for the JUDIDT2 readout system the driver,
library and include files for the Plx tools should be present in the system. The
PlIx tools are needed to control the FPGA in the SYS interface and in the JU-
DIDT2 module. See the JDAQ.pro file in the QT _CREATOR/LIB_JUDIDT
for clarifications. The same applies for the ACQIRIS system. In addition, also
the libraries and the includes of ROOT [5] developed at CERN are needed, be-
cause the GUI packages are built against those libraries, exploiting their long
and mature development to fulfill the requirements of the analysis in several
fields of physics. Please note that when using external libraries as the ROOT
ones, the same compiler should be used to correct identify the symbols of the
used objects saved in the library.

When no error appears during the compilation, then all the packages should
have been located in the installation directory, which was setup during the initial
configuration procedure.

Additional folders and files are present:

1. DOCUMENTS
==> contains this and additional documentation;

2. README
==> A short description about how to compile all packages

3 Overview of the DAQ Programs

This DAQ programs are structured in a client-server framework, as shown in
Fig. The server (DAQServer) runs listening to clients (DAQClient), which
send it commands via a socket [4]. It is eventually the user-level interface to a
shared library which interacts with the low-level driver of the selected readout
system.

DAQClient

I/0 with Readout Systems

____» ACQIRIS

DAQLib

ONLINE MONITOR GUI
[C++/CERN ROOT]

—» ZEL

DAQServer

=
=

so/.dll

Database OPERATING SYSTEMS:

—- Linux (OpenSuse 11.x): GCC/Make
—- XP/ Cygwin: GCC/Make

—— XP: VS/Nmake ——> Cross—platform Qt

Figure 1: Structure of the client-server architecture of the DAQ.

As soon as the DAQ starts, the data are stored in binary format into a file
saved in the DAQ_REPOSITORY directory. The data can be online or offline
inspected by the online monitoring GUT (OnlineMonitor), based on the ROOT
libraries.

In principle all the DAQ operations can be done in terminal mode, in cases
when the amount of computer resources (CPU and memory) could be an issue.

A friendly GUI (DAQClientGUI), based on ROOT, has been also developed to
control, directly from its menu, the data acquisition and the online monitoring.

The modular structure of this DAQ suite provides many advantages with
respect to having a single block of software. It allows in fact the implementation
of changes to single parts, without altering the remaining components. As
an example, the OnlineMonitor could be implemented using graphical libraries
different from ROOT, e.g. using the LabView interface, or additional features
of the program can be written without the need of modifying the DAQ server
and clients.

On the other side, when a fast monitoring of the data (e.g. at acquisition
rates as fast as the Megahertz) is needed then possibly this solution appears to
be not the best, being the data acquisition delayed by the continuous i/o to the
database (for example a file).

4 DAQ Server

The server (DAQServer) is a terminal mode program, which can be started
either directly from a terminal (Fig. [2]), or using the main user GUI Note that
this last option also opens a terminal.
As soon as the server is started, a LOG file is opened in the DAQ _ WORKING _DIR,
and every activity executed is recorded there. The LOG file can be online ac-
cessed under Linux via ’tail -f DAQ_WORKING DIR/DAQServer.log’.

A = riabbri@akebaran~ <3» -l =
rfabbrilAldebaran:™> DADSerwer

DAdServer: Program Global Variable Initialization ...

DAdServer IMIT: WORKIMG DIR: Ascratch /DAOD_WORKIMG_DIR!

DA0Serwer- IMIT: DATABASE DIR: Ascratch DAL_REFPOSITORY !

DAdSerwer IMIT: LOGFILE: DANSerwer,logl

]iHE!Ser*ver* LOG: SETTIMG UP THE LOG FILE DAQSerwer.log ...

Figure 2: The server is here started directly from a terminal.

The server then opens a socket at the port 5540 (this number is for the
moment hardcoded), and starts to listen at commands sent by any number of
independent clients.

When a command is received, either to configure the hardware or the data
acquisition, the server calls the relevant function in the DAQ library. Here,
according to the used readout system the corresponding proper function is used;
at the server side every command disregards the underlining hardware; it is the
DAQ library which takes care to use the proper driver with respect to the
readout system.

5 DAQ Client

The client (DAQClient) is a simple program which takes as command line argu-
ment an option and, when needed, its value. Via a socket the command is sent
to the server which, after processing it, sends back the answer to the received
command, which could be also a value of the hardware configuration. This
communication is done using the DAQSocket library.

In case no option is sent an error is dumped to the terminal. To know which
commands are available the option ~help’ should be used (see the bottom right
terminal in the screenshot shown in Fig.|3)), and a list of options will be dumped
to the server LOG file (leftmost displayed terminal in the picture).

After receiving the answer from the server the client always exits. Commands
can be sent to the server by, in principle, ’infinite’ clients, each one running in
an independent terminal. This is possible because what is important here to
communicate with the server, is the existence of a socket at a specific port.

To start (stop) the data acquisition, the user should simply sending the
command ’-start’ (-stop) to the serve. The default run number is taken to be
the largest already stored run number, increased by one unit.

6 The DAQ Socket Library

As previously mentioned, the communication between server and clients is based
on a library (libSocket.so/libSocket.dll) which uses a socket for exchanging in-
formation between them. The working principle of a socket is based on the
transmission of character strings via virtual channels (i/o ports for the operat-
ing system). A shared library function with three arguments is used for this
purpose. The library arguments are pointers to strings.

A command is transmitted to the server giving the socket library the pointer
to the command string as its first argument. The second and third arguments
are the pointers to additional strings. The library acknowledges to have received
a certain command using the string which is pointed by the second argument
of the library. It sends then the command string to the server via the socket,
and it remains active waiting for the answer from the server via the opened
socket. The received string is copied to the allocated memory pointed by the

K =] vonbrgknbara.

RIZEL_ANGER_DAQ <2»

DAServers OWLINE CHD' HELP

—help

~discover

-close

—ztart

-pause

—rEsUmne

—ztop

-init

—module KX
-getconfig
—get_status
-set_events KK
—get_events
—zet_pretrigger Hi
-get_pretrigger
-set_trglevel ¥

—get_trglevel
-set_trgzlope XK

-get_trgzlope
—zet_sigmax WK

—get_sigmax
—zet_timeout XX
—get_timeout
—zet_nrof samples XX
-get_nrof samples
—zet_sanp_unit Wi
—get_samp_unit
-zet_runnunber XX
—get_runnunber

Commands to the server can be sent wia
the client DAOCLient(,exe for WIN} <aoptions>

The current available optionz are:

==} dump thiz help
==» dizcover devices on the system
==3 shutdown the DAQ
== start a new run
==» pause the data acquizition
==} resume the data acquisition
== ztop the run
==} perform a system reinitialization
== zelect module XX for the DA
== dump the current DAD config,
== get A0 status (on/pausesstop)
== get max nr XX of events to accumulate
==» get the max nr of events to accumulate per Run
== move start DAQ window XX ns wet trigger
==» get the offset of DAD window in ne wet trigger
==» zet trigger level XX in mV
HOTE: it can be also negative!
==} get the trigger level in mY
==» zet trigger =lope XX
HE = 041 for pozitive/negative slope
== get the trigger slope flag
==r set vertical max walue in mV
MOTE: the resolution iz ¥¥A1024 wMAADC for ACOIRIS
==» get the vertical max value in mY
== zet timeout XX zec for a readout
==% get the timeout in sec for a readout
== et nr of zamples in a waveform
==} get the nr of samples in a waveform
==% zet zampling unit XX in ns
==» get the sampling unit in ns
== zet runnumber for next run
==} get currentdlatest runnumber

K2 rabbri@akibaran <2 BELO
fabbri@Aldebaran:™> DANServer

AlServer: Program Global Yariable Initialization ...

AlServer INIT: WORKING DIR: /scratch/DAD_WORKING_DIRI

A0Server INIT: DATABASE DIR: /scratch/DAC_REFOSITORY!

AlServer INIT: LOGFILE: DAQServer,logl

AlServer LOG: SETTING UP THE LOG FILE DAQServer,log ...
fabbrilAldebarany™ []

% rfabbri@Aldebaran:~ 3=

rfabbriBAldebaran;™> DANClient —get_runnunber
DAQCLient: MESSAGE TO SERVER: -get_runnumber |

SERVER ACKMOWLEDGHMENT: DAQClient: WESSAGE TO SERVER: -get_runnumber |
SERVER AMSWER: DAUCIient: ANSWER RECEIVED: 001725
rfabbrilAldebaran:™> IAUClient -help

DAOCLients MESSAGE TO SERVER: —help !

SERVER ACKNOWLEDGHMENT: DAOClient: MESSAGE TO SERVER: -help !

SERVER AMSWER: DAUClient; AMSWER RECEIVED: OK

rfabbri@dldebaran:s |l

Figure 3: Example of sending a command to the server. The user via a client
asks the server for the list of the available options, which is dumped into the
LOG file by the server.

third argument of the library. The client can now retrieve the server answer
accessing this last address. The memory needed for these strings is allocated by

the client before issuing a command.

7 The Main User Frontend: DAQClientGui

A graphical interface (based on the ROOT libraries) was developed to help the
user to access all the main components of the DAQ the server. As shown in the
screenshot of Fig[d] directly from the GUI the DAQ can be started and closed,
the readout system can be chosen (at the moment only the JUDIDT and the
ACQIRIS systems are implemented), and the OnlineMonitor program can be

Show GUI Logfile
Choose DAG System
sEnHIm alEge

Show Online kanitar

A2 riobbri@Akiebaran~ <4
AQUIRIS_LINUK_DRIVERS 1ibJDAO,d11 libSocket, so
DANCL ient., exe 1ibJOAD, 1ib libWINdirent ,obj
DAlLib,dll 1ibJIAD, so Plsfpi.a

DADLib, 1ib 1ibPlxfpi, 20 PlxApi, =0
DAOLib,obj libSocket, dl1

DAlLib, =0 libSocket, lib

rfabbi-18A1 debarang */PROGRANS /MY _PROGRAMSANGER_DAC/ W2, 2/ 0A0_
et,cc
rfabbri @A debaran: ™ /PROGRAMSHY _PROGRAMSANGER_DAQ W2, 2/ TAN_(
ﬁFabbr‘i@ﬂldebar‘an:”> DAOCT ientGUT

B R B R R R AR A AR R R R R SRR AR]

LG Cutput £rom the DAQ SERVER:

LR R R e AR R R R R R R R AR R R R R R AR R R R R R AR R R R R R R AR]

Figure 4: Directly from the GUI the DAQ can be started and closed, the readout
system can be chosen and the OnlineMonitor program can be launched from
there.

launched from there.

Once a readout system is set (via the option ’Choose DAQ System’ in the
menu) then the DAQ setting can be configured by activating the relevant buttons
and choosing the corresponding values in the main panel. The selection done can
be set to the hardware clicking the 'SET SELECTION TO DAQ’ button. The
status of the DAQ can be always be accessed using the button "TOGGLE THE
DAQ STATUS’ or scrolling the output in the server LOG file displayed in the
'DAQ Server LOG’ panel. Note that the DAQ configuration can be performed
only when data acquisition is not running. This is because all the data in a
run should be accumulated with the same configuration, which is saved in the
header of the run file.

The LOG activity of this GUI can be accessed in a separate canvas via the

10

menu option 'Show GUI Logfile’. The Help option gives the user the possibility
to open this documentation in the Acrobat Reader, and the History option
displays the progress done during the several versions of the program.

8 The DAQ Library

The DAQ library is possibly the core of this data acquisition software. It is a
collection of functions to control the hardware, and according to the selected
readout electronics its relevant low-level driver function is called.

When the data acquisition is started, and the data are indeed accumulated,
the value for each event in each channel of the hardware is stored in a global
structure, whose memory location is returned back to the server at every read-
out. This will then save the data to an external binary file, clearing the mem-
ory allocated by the library, and starting a new hardware readout. The default
configuration keeps on accumulating the data also when a run is terminated,
increasing automatically the run number of one unit.

Differently from the ACQIRIS system, which allows to store entire wave-
forms, the JUDIDT electronics provides already the peaking amplitude (calcu-
lated by the internal FPGA). The same data structure is maintained by saving
the JUDIDT data as single-point waveforms.

In principle, following what done using two systems, the library can be
expanded to accommodate additional readout system, keeping the high-level
software (Server, Client and OnlineMonitor) almost unaffected by the performed
changes. The activity done by the library functions is documented in the server
LOG, whose memory address is given to the library functions by the server.

9 The Online Monitor GUI

The friendly graphical user interface OnlineMonitor, based on ROOT, has been
developed to control online the quality of the data provided by the data acqui-
sition system, Fig. [f]

With the option 'Live’ active the program monitors the data of the ongoing
run (after retrieving the current run number from the server). Previously accu-
mulated data can be analyzed by providing the corresponding run number. An
error will be prompted whenever the data file will not be found. In the ’Live’
mode new runs are automatically monitored without any action from the user.

At startup the program reads the steering file ONLINE MONITOR.conf
to give some global variables a value different from the default hard-coded one.
The format is the following: <var>%<Value>. At the moment only the choice
of the data repository directory is implemented, although in principle additional
variables could be there implemented.

The header of the run is shown in the 'Run Configuration’ Tab, as soon as
the run is processed, displaying the following slowcontrol parameters:

11

Run Number Readout System,

Start Time of the run Number of readout channels,
Number of sampling for waveform | Sampling time unit,

Delay time Max amplitude accessed
ADC resolution Pedestal offset

Trigger level (during the DAQ) Trigger slope
Line impedance

Additional tabs show, for each input line, the integrated signal charge, the
calculated pedestal and noise and the corresponding averaged value vs time
average (as well as the rates and the temperature vs time; the temperature is
at the moment not readout, and therefore not displayed yet).

‘i ANGER Camera Prototype: Online Monitor =101 x|

File Options ANGER Camera Prototype: Data Online Monitor Help

Waveforms I Integrated Charge I Space Faoints I Pedestals | Moise I Means Vs Time I Run Caonfiguration I

M Chit M Ch: 2 W Ch: 3 W ch: 4 ¥ Try Level

-0.05 50 100 150 200 250 300 350 400 450

Time [ns]

o

Run Number to Manitor: DAQ Monitoring Status: Processed Events: Coincidence Trigger [mv]: Action on Histos:
93 I i ﬂ Reset Histo Conteml
000031 LIWE Pause -
| Live] St - | boiend
0 Meg & Pos Update Histo Mow |

Figure 5: The accumulated data can be monitored online and offline directly
from a GUI interface. In this example the coincidence of signals from four
photomultipliers, originating from a neutron transit in a gas-filled Anger Camera
is shown. The photomultipliers are here not yet gain-matched.

12

During the monitoring the user can choose, as a first rough analysis of the
data, to provide a common threshold to all the input channels, either positive
or negative.

For documentation purposes, via the ’File’ menu entry, a screenshot of
the entire program window, or the histograms in the displayed canvas can be
saved. The format of the generated plot is forseen to be chosen in the 'Options’
menu entry (not yet implemented). At the moment the default format is the
postscript.

The tab ’Integrated Charge’ shows the calculated total charge integrated by
the software in case of the AQUIRIS readout which saves entire waveforms. In
case of the JUDIDT system the integration is performed inside the electronic
(in this case one measurement point is given every single event readout).

With the ACQIRIS system at the moment the pedestal is calculated also in
presence of a neutron signal considering the entire waveform; here the value with
the maximum number of counts is considered as pedestal mean. Around this
value a small range of signal value is used to generated a distribution whose RMS
is considered as system noise during this event. In order to have this technique
reliable some data before the risetime of the signal should be accumulated.

In case of the JUDIDT system, a 'Calibration’ flag should be given (via the
menu in the DAQClientGUI). Then the data are accumulated via a software
trigger and could in principle be considered, e.g. being out of the beam, as
system pedestal events. This distribution, expected to be Gaussian, is shown in
the "Pedestals’ Tab.

The mean and RMS for the data collected every minute are used for the
calculation of the time dependence of the pedestal and noise in each input line,
and are presented in the 'Means vs Time’ Tab. Also, the RMS calculated as
above mentioned is used to fill the Noise histogram presented for every readout
channel in the 'Noise’ Tab.

At the moment the Tabs ’Integrated Charge’, 'Pedestal’ and 'Noise’ allows
to show four channels within the available number of channels in the analyzed
run. The possibility to choose the rate for the histogram refresh (which can
be time consuming) in those three Tabs and also in the ’Space Points’ Tab is
given by th an entry widget: at high DAQ rates a large value is suggested to
keep the monitoring updated with the data acquisition. On the other side, in
case of weak sources a large refresh value could keep the user waiting too long
for a refresh. Please note that a refresh can be always forced by clicking on
the "Update Histo Now’ button in the bottom Status Bar of the GUIL In case
of the ACQIRIS system the refresh rate does not affect the waveform display,
which is always performed every sequential waveform. In the Status section of
the GUI is also present the option ’Reset Histo Content’; in this case the data
sofar accumulated in all histograms will be deleted, except for the graphs shown
in the 'Means vs Time’ Tab.

An additional canvas can be shown to present the LOG entries generated by
the program. To show or hide it the menu option 'Show Logfile’ can be used.

In order to correctly process the data content in the binary file the updated
version of the include file DataStructure.h should be used at the compilation

13

time. This issue originates from unwanted but necessary modifications in the run
header motivated by the data analysis needs. The old runs have been modified
offline considering the latest implementations of the data stream structure.

10 The Data Format

The data are saved in a compressed binary format following the scheme shown
in Fig. [6] The first information which should be saved is the run configuration
introduced by the TAG #RUN _CONFIG, and can be interpreted via the
C-structure RUN _CONF:

typedef struct {

unsigned long int RUN_NUMBER; // Run Number
unsigned long int RUNSTART TIMESTAMP; // Start of the Run
char READOUT _SYSTEM]JS§]; // Which Readout System
int NR_OF _CHANS; // Nr of Channels
int NR_OF_ SAMPLES; // Samples in each Event
int TRIGGER_SLOPE; // Trigger Slope
int COUPLING _FLAG; // Impedance FLAG
double DELAY TIME; // DAQ Window pre-trigger (secs)
double SAMPLING INTERVAL; // Sampling Unit (secs)
double TRIGGER_LEVEL LOW; // Trigger Level
double Offset; // Volt Offset
double FullScale; // Volt Scale

} RUN_CONF;

A C-call like

Header

5.
83
S 3
Ny

Readout

1st Readout Nth Readout

Figure 6: Diagram describing the structure of the streamed data saved in the
binary file.

14

"fread(&RUN _CONTF, sizeof(RUN_CONF), 1, POINTER_TO_FILE);"

should allow to fill all the variables declared in the RUN CONF structure.
It is clear that not all variables will obtain a non null value, according to the
readout system (e.g. the JUDIDT system in this DAQ system does not save the
waveform but only the peaking amplitude, therefore in this case the number of
samples per event is one). At this stage all variable objects dynamically allo-
cated which depend on the number of readout channels (e.g. signal, pedestal
and noise histograms) are deleted and reallocated according to the new size
provided. This operation is performed only once at the beginning of the run.

Soon after the run header should appear the header of the first data readout,
and the call

"fread(&DataFlag, sizeof(DataFlag), 1, POINTER TO_FILE);"
will fill the C-structure for the data header:

typedef struct {

int DAQ_TRIGGER,; // Type of data (Normal/Calib)
int NR_OF READOUT; // Readout Counter

unsigned long int TIMESTAMP; // Start of the Readout

int NR_ OF EVENTS; // Events in each channel

long int SIZE OF STREAM; // Size of Data Stream

} DATA FLAG;

After retrieving how many events per channel are stored in a particular read-
out, the analyzer can read the amplitude value of each event following this "for
loop" sequence:

for _loop over channels {
for loop over events in channel {
for loop over sampling in event { // only one with JUDIDT

} // Loop over samplings in one event
} // Loop over events in one channel
} // Loop over channels
Knowing how to easily read the data from the binary files the analyzer can,
in principle, perform also a more detailed analysis on the data with his own
code; it is enough to have a single include file.

15

1
Filz Options RN LOG Manitor Hiskary | Help | About |

11 The Run LOG

A small GUI has been developed in Tcl/Tk (due to the flexibility and simplicity
of this interpreted language) to store during the data acquisition some informa-
tion relevant to the ongoing run. A screenshot of the program is presented in
Fig.[1

At the end of each run the user can set some relevant parameters for the
accumulated data, which are then stored in the ascii file RunList.dat when
typing "Save run to RunList". Then a new empty form will be presented to the

DAQ_RunLog ¥0.1 : Main Monitor Window - | Ellil

=

Read Run Data Quality Status

| ooooga | other | JUDIDT | MULL | WULL | WULL | MOLL | WOLL | WOLL | MOLL | MOLL | 0xd0 | «
[‘ooooes | other | JUDIDT | MOULL | WULL | WULL | WOLL | MO | WOLC | MO | WO | oxi0
[oooo7o Other [UDIDT | Pulser | WULL | MULL | WOLL | MULL | WULL | WOLL | MWOLL | w0l
000071 Other [UDIDT | Puser | WULL | MULL | MOLL | WULL | WULL | WOLL | MOLL | G0l

000072 other [JUDIDT | MULL | WULL | MULL | MOLL | WULL | WULL | MOL | MO | oedl |
Moiss | JUDIDT | Puser | MULL | MULL | MOLL | MULL | WULL | WOLL | MWOLL | G0l
000074 | other | JUDIDT | MULL | MULL | MULL | MOLL | MULL | WULL | WULL | MWOLL | <0l
[oono7s | Moiss | JUDIDT | Pulser | MULL | WULL | MOLL | MOLL | WOLL | MOLL | WO | oxi0
[oooo7e | other | JUDIDT | Puser | WULL | WULL | MOLL | MO | WULL | MOLL | WO | oxi0
[ooo077 | Other [UDIDT | Pulser | WULL | MULL | MWOLL | MULL | WOLL | WOLL | MWOLL | w0l
[oooors | Other | JUDIDT | Puiser | MULL | WULL | MOLL | MO | WULL | MOLL | WO | ox10

1| | !

W ARMIMG: PLEASE FILL THIS RUMN IMFORMATICON AT THE END OF EACH RUM

Set Run Daka Quality Status |
Runme 192 Runtype: | Beam [Calb [Other [Readout System: I Acquris [zeL

[Eventrr:

li ™ hoise ™ Gain " other

W [T Meutron Beam [T Radioactive Source [T Pulse Generatar

[rigger: |ttt [tz [t [omntd [Ext [Rates (He) Betting (-v) |

v lorife: | [anade: | [pra71:] [prara: | [prara: | [prama: |

|Select source of bad DO ||- other ™ Bad I Beam [~ Source [DaQ [Commissioning

|Cnmment: l

Save run ko RunListl

Figure 7: Screenshot of the GUI DAQ_RunLog.tcl.

16

user with the run number increased of one unity.

In case an error is made, there is a menu option to retrieve the previously
saved settings for that specific run, and to change them. In the menu there is
also the possibility to delete the information of the last saved run, that is of the
last record in the ascii file.

Each record of the file refers to a specific run, and contains the values of all
the relevant variables designed for a specific project (in this case, the commis-
sioning of the JUDIDT electronics). It is clear that, while the needs of a project
might change, different variables could be implemented.

According to the selected run type, Normal (Beam), Calib or Other, a color
code marks the cell of the run number. Normal data taking is marked with green;
otherwise the yellow code is used. In case a test is made, or the accumulated
data are for whatever reason bad and useless, the source of bad quality should
be checked in the section "Select source of bad DQ". The run will then be
marked with red color.

Some parameters can be set only if they are relevant to the specific type of
ongoing run. As an example, if normal data taking is proceeding the calibration
section remains inactive, and will be saved in the ascii file as NULL.

The most striking advantage to use such a program is the possibility to easily
and fast select subsets of data to analyze without going through all the binary
data files.

Although, in the opinion of the author, this interpreted language is really
optimal for this type of applications (easy and fast to implement), nevertheless
the possibility to convert the program in C/ROOT is considered in future ver-
sions. This choice is driven by the advantage to use only one language in the
maintenance of the entire package suite.

12 The JUDIDT Library

This library was developed in the ZEL-2 institute, and embedded and tuned
in a DAQ code for an Online Monitor based on LabView, thus in a monolithic
software needed for a specific project.

In principle, being developed by third parties it should not be mentioned
here; nevertheless, for its use in this separate DAQ project some modifications
were needed, to keep only the driver for the input/output with the electronics,
and to decouple it from the LabView components for the monitoring.

Additional modifications were needed to make the functions of this driver
as much as possible consistent with the driver for the ACQIRIS readout, also
implemented in this DAQ.

The modified code can be compiled in the DAQ CLIENT folder in com-
bination with the DAQClient with the compilers gcc or nmake, or even better
using the QT development environment in QT _CREATOR/LIB_JUDIDT.

17

13 Conclusions

We have presented in this note a new software for the data acquisition based
on the Server-Client architecture, and based on the socket concept for send
and receive commands. All the components of the package were described in
separate sections.

It is clear that the code is at the moment not really a general purpose code,
being in many parts tuned to the forseen project to investigate the JUDIDT
electronics. Nevertheless the code has been designed to be made of separate
independent components, and make strong use of pointers (thus of dynamically
allocated memory arrays with variable size). This aspect should allow an easier
implementation of additional features, if needed in the future.

The publication of the results of the analysis performed on the JUDIDT
readout system, also in combination with the Anger Camera prototype is on

going [6].

Acknowledgments

The author gratefully acknowledges U. Clemens, R. Engels, and
G. Kemmerling for their valuable technical contribution and sugges-
tions to the work here presented.

References

[1] G. Kemmerling et al.,
A New Two-Dimensional Scintillation Detector System for Small-Angle
Neutron Scattering Experiments,
IEEE Transactions on Nuclear Science, VOL. 48, (2001) NO. 4.

[2] W. Glaaser and W. Petry,
The new neutron source FRM-II,
Physica B, vol. 276-278, (2000) 30.

[3] Karl Zeitelhack et al.,
An Anger Camera prototype for Neutron Detection, in preparation.

[4] B. Hall,
Beej’s Guide to Network Programming,
Jorgensen Publishing, 2011.

[5] R. Brun and F. Rademakers,
ROQOT - An Object Oriented Data Analysis Framework,
Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81-86.
See also |http://root.cern.ch/.

18

http://root.cern.ch/

[6] R. Fabbri,
Characterization of the JUDIDT Readout Electronics for Neutron Detec-
tion, in publication.

19

	1 Introduction
	2 Installation of the DAQ Software
	3 Overview of the DAQ Programs
	4 DAQ Server
	5 DAQ Client
	6 The DAQ Socket Library
	7 The Main User Frontend: DAQClientGui
	8 The DAQ Library
	9 The Online Monitor GUI
	10 The Data Format
	11 The Run LOG
	12 The JUDIDT Library
	13 Conclusions

