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We analyze the effect of time-dependent hydrodynamic interactions on the dynamics of flexible poly-
mers in dilute solution. In analytical calculations, the fluctuating hydrodynamics approach is adopted
to describe the fluid, and a Gaussian model to represented the polymer. Simulations are performed ex-
ploiting the multiparticle collision dynamics approach, a mesoscale hydrodynamic simulation tech-
nique, to explicitly describe the fluid. Polymer center-of-mass velocity correlation functions are cal-
culated for various polymer lengths. Similarly, segment mean square displacements are discussed
and polymer diffusion coefficients are determined. Particular attention is paid to the influence of
sound propagation on the various properties. The simulations reveal a strong effect of hydrodynamic
interactions. Specifically, the time dependence of the center-of-mass velocity correlation functions
is determined by polymer properties over a length-dependent time window, but are asymptotically
solely governed by fluid correlations, with a long-time tail decaying as t−3/2. The correlation func-
tions are heavily influenced by sound modes for short polymers, an effect which gradually disappears
with increasing polymer length. We find excellent agreement between analytical and simulation re-
sults. This allows us to provide a theory-based asymptotic value for the polymer diffusion coeffi-
cient in the limit of large system sizes, which is based on a single finite-system-size simulation.
© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4799877]

I. INTRODUCTION

The study of the dynamics of polymers in dilute solu-
tion by analytical theory1–16 and computer simulations17–31

has a long history. By now, the fundamental impor-
tance of fluid-mediated interactions, i.e., hydrodynamic
interactions,7, 10 which strongly affect or even dominate the
polymer dynamics, is generally accepted and confirmed by
experiments on synthetic7, 32–37 and biological flexible and
semiflexible polymers.12, 38–43 Moreover, recent fluorescence
correlation spectroscopy (FCS) investigations of the dynam-
ics of DNA44–47 and actin filaments48, 49 as well as fluores-
cence microscopy studies of DNA50–52 and actin filaments53

corroborate the presence and significance of hydrodynamic
interactions.

Typically, long time and large scale aspects of the poly-
mer dynamics are discussed. Comparably little attention has
been paid to the polymer dynamics on shorter time scales,
where fluid fluctuations are important.54, 55 On this scale,
polymer center-of-mass velocity correlation functions exhibit
a distinct behavior over a wide, polymer-length dependent,
time range before the asymptotic long-time tail is reached.
Moreover, sound may play an important role on such time
scales, depending on the properties of the solvent.

Recent combined experimental, theoretical, and simula-
tion studies of a trapped colloidal particle in solution reveal
the effect of hydrodynamic fluctuations and correlations on

a)Electronic addresses: c.c.huang@fz-juelich.de; g.gompper@fz-juelich.de;
and r.winkler@fz-juelich.de

the colloid dynamics.56 As has been shown, the fluid “mem-
ory” leads to colored, non-white, thermal fluctuating forces,56

i.e., hydrodynamic self-interactions lead to a self-awareness
of the colloidal particle.57

Another aspect discussed for colloid dynamics is
backtracking.58–60 For compressible fluids and sufficiently
small objects, the colloid motion may induce sound waves,
which in turn lead to a reaction force that strongly influ-
ences its dynamics. This behavior resembles viscoelastic-
ity and has been theoretically predicted for non-viscoelastic
fluids.58 Measurements suggest that such hydrodynamic cor-
relations appear in many-body systems on time scales shorter
than the time needed for vorticity, i.e., shear waves, to dif-
fuse between the colloids.61 Such aspects have not been ad-
dressed for polymers in solution, but polymers should exhibit
similar features. To gain insight into the polymer dynamics,
we perform mesoscale hydrodynamic simulations by com-
bining the multiparticle collision dynamics (MPC) approach
for the fluid with molecular dynamics simulations (MD) for
polymers.62–64 MPC is a particle-based simulation technique
which incorporates thermal fluctuations, provides hydrody-
namic correlations, and is easily coupled with other simu-
lation techniques such as molecular dynamics simulations
for embedded particles.63–65 It has successfully been applied
to study equilibrium and non-equilibrium dynamical prop-
erties of colloids,56, 59, 63, 64, 66–73 polymers,25, 29, 31, 63, 64, 74–76

vesicles,77 and red blood cells.78

MPC proceeds in two steps—a streaming and a collision
step. Collisions occur at discrete times with a fixed interval,
and although space is discretized into a lattice of cubic cells

0021-9606/2013/138(14)/144902/15/$30.00 © 2013 American Institute of Physics138, 144902-1
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to define the stochastic collision environment, both particle
coordinates and velocities are continuous variables. Various
schemes for the multiparticle collision interaction have been
proposed.62–64, 79, 80 The original method, which employs ro-
tation of relative velocities, is often denoted as stochastic ro-
tation dynamics (SRD).62–64, 79

In this article, we elucidate the effect of hydrodynamic
correlations on the dynamics of polymers in dilute solu-
tion. Simulations results are presented, which are obtained
by the MPC approach for the fluid. In addition, the fluc-
tuating hydrodynamics approach based on the linearized
Landau-Lifshitz Navier-Stokes equation is adopted to derive
corresponding theoretical expressions.65, 81 This approach has
been shown to describe the emergent fluctuating hydrody-
namic of the MPC fluid very well.65 As far as the poly-
mer dynamics is concerned, the fluctuating hydrodynamic
approach has been used in Refs. 54 and 55 for incompressible
fluids. We will use a somewhat different approach, adapted
to the considered MPC fluid, and consider compressible flu-
ids. Naturally, we will recover some of the previously derived
results.

We discuss the center-of-mass velocity correlation func-
tions for polymers of various lengths, considering both,
Gaussian phantom chains as well as self-avoiding poly-
mers with bonds of finite length. In addition, diffusion
coefficients are determined and a procedure is suggested
to obtained the asymptotic infinite-systems-size diffusion
coefficients by exploiting the analytical solution for the
fluid velocity correlation function. Moreover, the polymer
segmental dynamics is analyzed and the scaling properties are
determined. Our study reaches far beyond previous ones,54, 55

since we consider both vorticity and sound effects, and
present a detail study of chain length and excluded-volume
effects.

The paper is organized as follows. In Sec. II, the fluctu-
ating hydrodynamic approach for the MPC fluid is presented
and fluid correlation functions are calculated. In Sec. III, the
analytical model for the polymer is presented and solutions
for its center-of-mass velcocity correlation functions are dis-
cussed. Section IV presents the simulation models for the
polymer and the fluid. Simulation results of the polymer dy-
namics are discussed and compared with the analytical theory
in Sec. V. Finally, Sec. VI summarizes our findings. An ap-
pendix presents more detailed calculations of fluid correlation
fluctuations, the hydrodynamic tensor, and velocity correla-
tion functions of self-avoiding polymers.

II. FLUCTUATING HYDRODYNAMICS

The hydrodynamic properties of the MPC fluid are de-
scribed by the linearized Navier-Stokes equations on suf-
ficiently large length and long time scales.62–65, 82, 83 A re-
cent detailed study of the emergent fluctuating hydrodynam-
ics of the MPC fluid even demonstrates that the linearized
Landau-Lifshitz Navier-Stokes equations provide an excellent
description on length scales above a few collision cells.65

For an compressible isothermal MPC fluid, more pre-
cisely a SRD fluid, the corresponding linearized continuity

and Landau-Lifshitz Navier-Stokes equations are

∂

∂t
δρ + ρ∇ · v = 0, (1)

ρ
∂

∂t
v = −∇p + η�v + 1

3
ηk∇(∇ · v) + f c + f R (2)

in three dimensions.65, 81 Here, ρ + δρ(r, t) denotes the mass
density with its mean value ρ and its (small) fluctuations
δρ(r, t) at the position r in space and the time t. v = v(r, t)
is the fluid velocity field, f c(r, t) is a volume force, and
f R(r, t) = ∇ · σR(r, t) is the random force due to the ther-
mal fluctuations of the fluid, with σR the corresponding stress
tensor. Note that only the mean density ρ will appear through-
out the rest of the paper. η = ηk + ηc is the shear viscosity of
the MPC fluid, with the kinetic and collisional contributions
ηk and ηc, respectively.65, 83, 84 The bulk viscosity is set to zero,
in agreement with simulation results65, 83 and expectations for
an ideal monatomic gas.85

The stochastic process for σR(r, t) is assumed to be
Gaussian and Markovian with the moments

〈σR(r, t)〉 = 0,

(3)〈
σR

αβ(r, t)σR
α′β ′ (r, t)

〉 = 2kBT ηαβα′β ′δ(r − r ′)δ(t − t ′),

where α, α′, β, β ′ ∈ {x, y, z}, and

ηαβα′β ′ = ηδαα′δββ ′ + 1

2
[η + ηk]δαβ ′δα′β

− 1

2

[
η + 1

3
ηk

]
δαβδα′β ′ . (4)

Since SRD is not conserving angular momentum in the MPC
collision step, the fluid stress tensor is non-symmetric,65, 82, 83

which is accounted for in the correlations (3). The Navier-
Stokes equations and correlation functions of Refs. 54 and 81
for angular momentum conserving fluids are recovered in
Eq. (4) for ηc = 0 and η = ηk.

The linear Eqs. (1) and (2) are solved by Fourier transfor-
mation. Since we want to compare the analytical with com-
puter simulation results, we adopt a discrete Fourier transfor-
mation for a spatially periodic and cubic system, i.e., we use65

v(r, t) = 1

2π

∑
k

∫
v(k, ω)e−ik·reiωtdω, (5)

v(k, ω) = 1

V

∫
v(r, t)eik·re−iωtd3rdt (6)

with kα = 2πnα/L, nα ∈ Z\{0}, and V = L3. As shown in
Ref. 65, the resulting flow field is

v(k, ω) = Q(k, ω)[ f R(k, ω) + f c(k, ω)] (7)

with Q(k, ω) = QL(k, ω) + QT (k, ω) and

QL =
(

η̃k2 + iρ

ω
[ω2 − c2k2]

)−1

P = QL(k, ω)P, (8)

QT = (ηk2 + iρω)−1 (E − P) = QT (k, ω) (E − P) . (9)
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In the derivation of Eq. (7), we use the ideal gas equation
of state, which applies to the MPC fluid. c is the isother-
mal velocity of sound, η̃ = η + ηk/3, and E denotes the unit
matrix. Note that for angular-momentum conserving fluids
η̃ = 4η/3. Otherwise the same expressions (8) and (9) are
obtained. P is a projection operator with the components
Pαβ = kαkβ /k2, k = |k|, and projects a vector along the direc-
tion of k. Hence, v(k, ω) = vL(k, ω) + vT (k, ω) consists of
a longitudinal part vL and transverse part vT with respect to
k, i.e., v(k, ω) · k = vL(k, ω)k and vT (k, ω) · k = 0. Fourier
transformation with respect to ω yields

QT (k, t) = 1

ρ
e−μk2t�(t) (10)

for the transverse part, where �(t) is Heaviside’s function and
μ = η/ρ denotes the kinematic viscosity. For the longitudinal
contribution, we obtain the expression65

QL(k, t) = 1

ρ
e−k2μ̃t/2

×
⎡
⎣cos(
t) −

√
k2μ̃2

4c2 − k2μ̃2
sin(
t)

⎤
⎦�(t)

(11)

for 4c2/(k2μ̃2) > 1, where 
 = k2μ̃
√

4c2/(k2μ̃2) − 1/2 and
μ̃ = η̃/ρ, and

QL(k, t) = 1

ρ
e−k2μ̃t/2

×
⎡
⎣cosh(�t) −

√
k2μ̃2

k2μ̃2 − 4c2
sinh(�t)

⎤
⎦�(t)

(12)

for 4c2/(k2μ̃2) < 1, where � = k2μ̃
√

1 − 4c2/(k2μ̃2)/2.
For the sake of completeness, we present auto-correlation

functions of the random velocity

vR(r, t) = 1

V

∫∫
Q(r − r ′, t − t ′) f R(r ′, t ′) d3r ′dt ′. (13)

In k-space, we obtain

〈
vR

α (k, t)vR
β (k′, t ′)

〉 = kBT

V
δk,−k′

× [QT
αβ(k, t − t ′) + QL

αβ(k, t − t ′)
]
,

(14)

with the matrix elements QT
αβ(k, t) = QT (k, t)(δαβ − Pαβ)

and QL
αβ(k, t) = QL(k, t)Pαβ . In real space the correlation

functions become〈
vR

α (r, t)vR
β (r ′, t ′)

〉
= kBT

V

[
QT

αβ(r − r ′, t − t ′) + QL
αβ(r − r ′, t − t ′)

]
.

(15)

The expression for QT (r, t) is explicitly calculated in Ref. 86.
The calculation of QL(r, t) is much more difficult due to the

nonlinear dependence of QL(k, t) on k2. In both cases, we
will perform the Fourier transformations numerically for the
evaluation of the required correlation functions.

III. POLYMER DYNAMICS

A. Model

We consider a single linear flexible polymer embedded in
a fluid. For the analytical description of the polymer dynam-
ics, we adopt a mean-field model. Here, the polymer is con-
sidered to be a continuous space curve r(s, t), where s (−Lp/2
≤ s ≤ Lp/2) is the contour coordinate along the chain of length
Lp.12, 15, 16, 45 Its configurational “energy” is7, 16

UG = 3kBT

2l

∫ (
∂ r(s)

∂s

)2

ds, (16)

where l is the Kuhn segment length, T is the temperature, and
kB is Boltzmann’s constant. No-slip boundary conditions are
imposed, i.e., ṙ(s, t) = v(r(s, t), t), where v(r(s, t), t) is the
fluid flow field at the position r(s, t) of the polymer chain.
The force density f c in Eq. (2) is then

f c(r, t) =
∫

[F(s ′, t) − � r̈(s ′, t)]δ(r − r(s ′, t)) ds ′ (17)

with the inertial force � r̈(s, t), and F(s) = −δUG/δr(s); �

is the linear polymer mass density. Hence, Eq. (7) yields the
equation of motion for the polymer

ṙ(s, t) = vR(r(s, t), t) + 1

V

∫∫
Q(r(s, t) − r(s ′, t ′), t − t ′)

× [F(s ′, t ′) − � r̈(s ′, t ′)] ds ′dt ′. (18)

To solve the nonlinear equation, we apply Zimm’s
preaveraging approximation2, 7, 12, 16, 54 and replace
Q(r(s, t) − r(s ′, t ′), t − t ′) by its average Q(s − s ′, t − t ′)
= 〈Q(r(s, t) − r(s ′, t ′), t − t ′)〉 = Q(s − s ′, t − t ′)E. Hence,
Q is a function of the distance s′ − s along the polymer con-
tour only. Similar, the preaveraging approximation implies
that vR(r(s, t), t) → vR(s, t), which is necessary to satisfy
the fluctuation-dissipation relation.87 Next, we perform the
eigenfunction expansions

r(s, t) =
∞∑

n=0

χn(t)ϕn(s), (19)

vR(s, t) =
∞∑

n=0

vR
n (t)ϕn(s) (20)

in terms of the eigenfunctions ϕn of the eigenvalue equation

3kBT

l

d2

ds2
ϕn(s) + ξnϕn(s) = 0 (21)
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with the eigenvalues ξ n. The boundary conditions dϕn(s)/ds
= 0 for s = ±Lp/2 lead to the eigenfunctions

ϕn(s) =
√

2

L
sin

nπs

L
, n odd, (22)

ϕn(s) =
√

2

L
cos

nπs

L
, n even, (23)

and the eigenvalues ξ n = 3π2kBTn2/(lL2). In this representa-
tion, the matrix elements of the tensor Q(s − s′, t) become

Qnm(t) = 1

V

∫∫
ϕn(s)Q(s − s ′, t)ϕm(s ′) dsds ′. (24)

The equations of motion for the normal-mode amplitudes
are then given by

χ̇n(t) = vR
n (t) +

∫
Qnn(t − t ′)[−ξnχn(t ′) − �χ̈n(t ′)]dt ′.

(25)

Here, the approximation Qnm ≈ Qnnδnm has been used.7, 12, 16

As pointed out in Ref. 12, a numerical calculation shows

that the time-integrated matrix QT
nm, i.e., the Oseen tensor

is almost diagonal. As is evident from Refs. 30 and 47, off-
diagonal elements lead to small quantitative differences be-
tween the solutions of the equations of motion with the full or
diagonal tensor. However, an analytical solution is only pos-
sible for the diagonal tensor.

In the following, we will focus on the polymer center-of-
mass dynamics, where the center-of-mass is defined as

rcm(t) = 1

Lp

∫ Lp/2

−Lp/2
r(s, t) ds = χ0(t)ϕ0 = 1√

Lp

χ0(t)

(26)

and vcm(t) = χ̇0(t)/
√

Lp. Then, Fourier transformation with
respect to time,

χ̇0(ω) =
∫

χ̇0(t)e−iωtdt, (27)

of Eq. (25) yields, with ξ 0 = 0,

χ̇0(ω) = vR
0 (ω)

1 + iω�Q00(ω)
. (28)

B. Center-of-mass velocity correlation function

The center-of-mass velocity-correlation function can be written as

〈vcm(t) · vcm(0)〉 = 1

(2π )2Lp

∫∫ 〈
vR

0 (ω) · vR
0 (ω′)

〉
[1 + iω�Q00(ω)][1 + iω�Q00(ω′)]

eiωt dωdω′ (29)

by using Eqs. (26)–(28). The expression turns into

〈vcm(t) · vcm(0)〉 = kBT

πV Lp

∫ ∑
k k2S(k)(2η|QT |2 + η̃|QL|2)

[1 + iω�Q00(ω)][1 − iω�Q00(−ω)]
eiωt dω (30)

with the correlation function (A6) of Appendix A for the
stochastic velocity, where [cf. Eq. (B5) of Appendix B]

Q00(ω) = 1

3V

∑
k

S(k)[QL(k, ω) + 2QT (k, ω)] (31)

and

S(k) = 1

Lp

∫∫
exp

(
−1

6
k2〈[r(s) − r(s ′)]2〉

)
dsds ′ (32)

is the polymer structure factor (A8).
As it turns out, our simulations yield an extremely weak

dependence of the correlation function on the inertia term of
the polymer for t > 0, i.e., on iω�Q00 in Eq. (30). Therefore,
we neglect this term for our further considerations. Then, the
center-of-mass correlation function becomes

〈vcm(t) · vcm(0)〉 = kBT

V Lp

∑
k

S(k)(2QT (k, t) + QL(k, t)),

(33)

after Fourier transformation with respect to ω. No closed ex-
pression can be provided for the right-hand side of this equa-

tion. However, the transverse part of the correlation function
can be treated analytically for an infinitely large system.55

1. Transverse center-of-mass velocity
correlation function

In the limit L → ∞ of an infinitely large system,
the transverse center-of-mass velocity correlation function
[Eq. (33)] reads

〈
vT

cm(t) · vT
cm(0)

〉 = kBT

π2Lp

∫
S(k)QT (k, t)k2dk. (34)

With Eqs. (10) and (32), integration yields

〈
vT

cm(t) · vT
cm(0)

〉
= kBT

4ρL2
p

√
π3

∫∫ [
μt + 1

6
〈(r(s) − r(s ′))2〉

]−3/2

dsds ′.

(35)
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For a Gaussian polymer, where 〈(r(s) − r(s ′))2〉 = l|s − s ′|,
the integrals can be evaluated, which implies

〈
vT

cm(t) · vT
cm(0)

〉 = kBT

ρ
√

π3R3
g

�
(
μt/R2

g

)
(36)

with the scaling function

�(x) = (1/
√

x + 2[
√

x − √
x + 1]), (37)

and the radius of gyration Rg = √
lL/6. Hence, 〈vT

cm(t) ·
vT

cm(0)〉R3
g is a universal function of μt/R2

g . A similar expres-
sion has been derived in Ref. 55.

In the asymptotic limit t � R2
g/μ, the expression turns

into 〈
vT

cm(t) · vT
cm(0)

〉 = kBT

4ρ
√

π3

1√
(μt)3

. (38)

Thus, a long-time tail is obtained, which is independent of
the polymer properties; it is solely determined by the fluid,
as already shown in Refs. 54 and 55. In the opposite limit
t 
 R2

g/μ, the correlation function becomes55

〈
vT

cm(t) · vT
cm(0)

〉 = kBT

ρR2
g

1√
π3μt

. (39)

This expression diverges in the limit t → 0 and does not
assume the equilibrium statistical mechanics value, i.e., the
equipartition value of the kinetic energy. The reason is that we
consider the over-damped polymer dynamics. Naturally, our
approach only applies on times scales where polymer inertia
effects are negligible.

The long-time tail (38) is solely determined by the fluid
kinematic viscosity, whereas the velocity correlation func-
tion of a MPC particle also includes the particle’s diffu-
sion coefficient.65 This is a consequence of the fact that the
dynamic structure factor is replaced by the static structure
factor. Hence, within the applied preaveraging approxima-
tion, we neglect any time dependence in the polymer seg-

mental mean square displacement (MSD) with respect to the
terms μt and μ̃t/2, respectively, in the expression (33). This
is certainly justified for the center-of-mass dynamics—the
long-time segmental dynamics is equal to the center-of-mass
dynamics—since the polymer center-of-mass diffusion coef-
ficient is much small than the kinematic viscosity.

So far, we have considered Gaussian phantom polymers.
As shown in Appendix C, the correlation function can also
be calculated for a self-avoiding polymer in the limit μt/R2

g


 1, which yields the dependence〈
vT

cm(t) · vT
cm(0)

〉 ∼ R−1/ν
g (μt)1/2ν−3/2, (40)

where ν ≈ 3/5 is the (Flory) scaling exponent.7

2. Longitudinal center-of-mass velocity
correlation function

For an infinite system, the longitudinal velocity correla-
tion function is given by〈

vL
cm(t)vL

cm(0)
〉 = kBT

2π2Lp

∫
S(k)QL(k, t)k2dk, (41)

when we use the correlation function (14). To find an ana-
lytical solution for this correlation function, we consider the
limit kμ̃/c 
 1, i.e., small k values. This yields a satisfactory
approximation for times μ̃k2t � 1, since for such long times
the exponential factor in QL suppresses the contributions from
large k-values in the integral. Then, Eq. (11) can be written as

QL(k, t) = 1

ρ
e−k2μ̃t/2 cos(kct). (42)

With the structure factor [Eq. (32)],

S(k) = 2Lp

k2R2
g

[
1 − 1

R2
gk

2
+ 1

R2
gk

2
e−k2R2

g

]
(43)

for Gaussian phantom polymers, Eq. (41) yields the correla-
tion function

〈
vL

cm(t)vL
cm(0)

〉 = kBT

2ρπ2R4
g

√
μ̃t

{√
2π

[(
R2

g + μ̃t
)

exp

(
−c2t

2μ̃

)
−
√

μ̃t

√
2R2

g + μ̃t exp

(
− c2t2

2
(
2R2

g + μ̃t
)
)]

+πt
√

μ̃c2t

⎡
⎣Erf

⎛
⎝
√

c2t

2μ̃

⎞
⎠− Erf

(√
c2t2

4R2
g + 2μ̃t

)⎤⎦
⎫⎬
⎭ . (44)

Here, Erf(x) is the error function.88

C. Diffusion coefficient

The center-of-mass diffusion coefficient is obtained by
the Green-Kubo relation7, 87

D = 1

3

∫ ∞

0
〈vcm(t ′) · vcm(0)〉dt ′. (45)

The correlation function (33) is easily integrated. As is well
known, sound is not contributing to the diffusion coefficient,
because the integral over QL vanishes. The remaining trans-

verse part yields the Zimm diffusion coefficient7, 12

Dz = 8kBT

3
√

6π3η

1√
lL

= 4kBT

9
√

π3η

1

Rg

. (46)

D. Mean square displacement

The polymer center-of-mass MSD �r2
cm(t) = 〈(rcm(t)

− rcm(0))2〉 follows from Eq. (33) by the integral
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�r2
cm(t) =

∫ t

0
(t − t ′)〈vcm(t ′) · vcm(0)〉dt ′. (47)

This integral can easily be performed for the transverse corre-
lation function (36), which yields

�r2
cm(t) = 6Dztϒ

(
μt/R2

g

)
(48)

with the scaling function

ϒ(x) = 1 + x1/2 − 2

5x
[(x + 1)5/2 − x5/2 − 1], (49)

as already shown in Ref. 54. In the asymptotic limit of long
times, the expression turns into54, 55

�r2
cm(t) = 6Dz

⎛
⎝t − 3

4

√
R2

gt

μ

⎞
⎠ . (50)

Hence, the linear Einstein regime is reached slowly for
tμ/R2

g � 1.
For the sake of completeness and for comparison with

simulation results, we also provide the well-known mean
square displacement of a segment in the polymer center-of-
mass reference frame7, 12, 45

�r2
m(t) = 2lLp

π2

∞∑
n=1

1

n2

[
1 − exp

(
− tn3/2

τz

)]
, (51)

which follows from the Zimm model with a time-independent
hydrodynamic tensor. τ z is the Zimm relaxation time

τz = 6
√

2η√
πkBT

R3
g. (52)

The monomer dynamics will certainly depend on Q(s, t) [cf.
Eq. (24)] at short times. However, the calculation of �r2

m re-
quires the solutions of Eq. (25) for all modes, which will be
discussed in a future article.

E. Discussion

Figure 1 displays analytical results of the normal-
ized polymer center-of-mass velocity correlation function
[Eq. (33)],

Cv(t) = CT
v (t) + CL

v (t) = m

kBT
〈vcm(t) · vcm(0)〉 (53)

with its transverse, CT
v , and longitudinal, CL

v , contributions
according to Eqs. (36) and (41), in the asymptotic limit of
a large system size. For the fluid parameters μ, μ̃, ρ, and
c, we choose values corresponding to the MPC fluid, which
will be studied in Sec. IV, i.e., μ = 0.87

√
kBT a2/m, μ̃

= 0.89
√

kBT a2/m, ρ = 10m/a3, and c/
√

kBT /m = 1 with
the units of the MPC method.

There are various characteristic time scales for the fluid
and polymer dynamics.

� The longitudinal velocity correlation function be-
comes negative above a polymer-length-dependent
time τ x.

� The time scale τ c associated with sound propagation
is given by the ratio of a characteristic polymer length
scale and the velocity of sound. For a polymer coil, a
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FIG. 1. Analytical center-of-mass velocity correlation functions
Cv = m 〈vcm(t) · vcm(0)〉 /kBT . (a) Transverse [Eq. (36)] (solid lines)
and magnitudes of longitudinal [Eq. (41)] (dashed lines) correlation func-
tions. The dashed-dotted lines represent negative parts. (b) Total correlation
functions (solid lines) and the contributions of the transverse parts (dashed
lines). The magenta line indicates the fluid long-time tail according to
Eq. (38). The polymer lengths are Lp/l = 10, 102, 103, 104, and 105 (top to
bottom).

suitable length scale is the radius of gyration, hence τ c

= Rg/c.
� The viscous time τμ corresponds to the time of mo-

mentum diffusion over a radius of gyration, i.e., τμ

= R2
g/μ.

� The longest polymer relaxation time is the end-to-end
vector relaxation time τr ∼ ηR3

g/(kBT ).

For the lengths and viscosity of Fig. 1, the time τ c

approximately corresponds to the time where CL
v increases

strongly at the end of a plateau-like regime. Above this time,
the correlation function CL

v decays to zero very fast. A numer-
ical fit yields a stretched exponential, i.e., CL

v ∼ e−(t/t0)ζ , with
a length-dependent exponent ζ ≥ 1. The contribution of the
longitudinal mode to the total correlation function decreases
with increasing polymer length. This is also reflected in
Fig. 1(b), which shows a comparison of total correlation func-
tions and the corresponding transverse parts only. For all poly-
mer lengths, we find a certain difference between the two
quantities for t/t̂ < 1. In addition, shorter polymers exhibit
a “sound dip” for somewhat larger times.
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FIG. 2. Analytical longitudinal center-of-mass velocity correlation functions
for the polymer lengths Lp/l = 10, 103, and 105 (top to bottom). The solid
lines represent the full expression (41) and the dashed lines the approximation
(44).

Above τμ, the correlation functions become independent
of the polymer properties, as discussed in Sec. III B 1. For
t � τμ, the transverse velocity correlation functions approach
the fluid asymptotic long-time tail.

The full expression (41) of the velocity-correlation func-
tion CL

v (t) is compared with the approximation (44) in
Fig. 2. We obtain good agreement for polymer lengths Lp/l
> 200 and long times. The magnitude of CL

v (t) in the
“plateau-like” regime decreases as |CL

v | ∼ R−3
g with the ra-

dius of gyration of the polymer. The transverse contribution to
the velocity correlation function decreases as |CT

v | ∼ 1/R2
g .

Thus, for polymers with R2
g/ l2 � 100, the total correlation

function is determined by the transverse part only beyond the
time τ x, where the CL

v becomes negative.
The analytical calculations [Eq. (39)] predict the depen-

dence CT
v ∼ 1/

√
μt of the transverse correlation function for

t 
 τμ. Due to the presence of sound, Cv shows such a de-
pendence for extremely long polymers only. Already for Lp/l
� 104, we observe deviations from this prediction, and finite-
size (polymer) properties determine the actual time depen-
dence above the time τ x.

Figure 3 illustrates the influence of the fluid viscosity on
the polymer correlation function Cv(t). Evidently, a larger vis-
cosity implies a more pronounced sound effect. The presence
or lack of longitudinal contributions to Cv(t) depends on both,
polymer length and viscosity.

Due to the fast decay of CL
v (t) for t/τ c > 1, sound yields

no contribution to the center-of-mass mean square displace-
ment (47) above τ c. For longer polymers, the sound contribu-
tion is even negligible for t/τ x � 1.

IV. SIMULATION MODELS

A. Polymer model

Similar to Sec. III, we consider a single linear flexi-
ble polymer. Two different polymer models are considered,
a Gaussian phantom chain and a self-avoiding chain with
excluded-volume interactions between non-bonded pairs of
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FIG. 3. Analytical center-of-mass velocity correlation functions of the poly-
mer of length Lp/l = 103 and the collision time steps h/t̂ = 0.05 (red), 0.01
(blue), 0.03 (green), and 0.1 (black). These values correspond to the kine-
matic viscosities μ/

√
kBT a2/m = 16.4, 8.2, 2.8, and 0.9.

monomers.25, 64 For the Gaussian chain, the bond potential
is7, 89

UG = 3kBT

2l2

Nm−1∑
λ=1

(rλ+1 − rλ)2, (54)

where rλ(t) is the position of monomer λ (λ = 1, . . . , Nm) and
l is the root-mean-square bond length.

For the self-avoiding polymer, the bond potential is

UEV = κ

2

Nm−1∑
λ=1

(|rλ+1 − rλ| − l)2, (55)

where κ is the spring constant. Excluded-volume interactions
are taken into account by the repulsive, shifted, and truncated
Lennard-Jones potential

ULJ =

⎧⎪⎨
⎪⎩

4ε

[(σ

r

)12
−
(σ

r

)6
+ 1

4

]
for r >

6
√

2σ

0 otherwise,
(56)

where the parameter σ characterizes the monomer size and ε

the energy.25, 31 The dynamics of the monomers is determined
by Newton’s equation of motion, which are integrated by the
velocity Verlet algorithm with the time step hp.90

B. MPC fluid

The multiparticle collision dynamics fluid is composed
of N point particles of mass m in a cubic periodic system of
volume V = L3, which interact with each other by a stochas-
tic process.62–64 The particle dynamics comprises alternating
streaming and collision steps. In the streaming step, the par-
ticles advance ballistically for a time h, which we denote as
collision time, i.e.,

r i(t + h) = r i(t) + hvi(t), (57)

where r i(t) and vi(t) are the position and velocity of particle
i (i = 1, . . . , N). In the collision step, particles are sorted into
cubic cells of side length a and their relative velocities, with
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respect to the center-of-mass velocity of their cell, are rotated
around a randomly oriented axis by a fixed angle α,

vi(t + h) = vi(t) + [R(α) − E] [vi(t) − vcm(t)] . (58)

R(α) is the rotation matrix64, 91 and

vcm(t) = 1

Nc

Nc∑
j=1

vj (t) (59)

is the center-of-mass velocity of the particles in the cell of
particle i, and Nc is the total number of solvent particles in
that cell.62–64 Despite discretization of space, Galilean invari-
ance is reestablished by a random shift of the collision-cell
lattice.79 The algorithm preserves mass, momentum, and en-
ergy in a collision step, which leads to correlations between
the particles and gives raise to hydrodynamic interactions. A
local Maxwellian thermostat is used to maintain the temper-
ature of the fluid at the desired value.91 The fluid-polymer
coupling is achieved by taking the monomers into account in
the collision step.25, 64, 92

We implement our simulations on Graphics Processing
Units (GPUs), which enhances the performance significantly
over an equivalent simulation on a single CPU processor.93

Thereby, we use a hybrid approach, where MPC is performed
on the GPU and the molecular dynamics simulations of the
polymers are performed on a CPU.

C. Simulation parameter

Simulation parameters for the various system sizes are
listed in Tables I and II. Length and time are scaled by the
collision-cell size a and t̂ =

√
ma2/(kBT ), respectively. The

MPC rotation angle is chosen as α = 130◦, and the mean num-
ber of fluid particles per collision cell is 〈Nc〉 = 10. For the
polymer, we set l = σ = a, kBT/ε = 1, and M = m〈Nc〉. The
spring constant κ is set to κ = 100 kBT/l2. The molecular dy-
namics simulation time step is chosen as hp/t̂ = 2 × 10−3.

V. SIMULATION RESULTS

We consider a wide range of polymer lengths. The actual
values are summarized in Tables I and II for the Gaussian and
self-avoiding polymers, respectively. Averages are taken over
time and various initial conditions. We consider between 30
and 150 independent realizations of length 104 − 6 × 105

TABLE I. Simulation parameters and results for Gaussian phantom chains.
Nm denotes the number of monomers, L is the length of the simulation box,
Rg is the radius of gyration, and τ r is the end-to-end vector relaxation time.

Nm L/l h/t̂ R2
g/ l τr /t̂

40 50 0.1 6.8 1300
80 40, 75, 140 0.1 13 3430

160 100 0.1 27 10 820
320 140 0.1 54 27 950
640 150 0.1 105 67 000

1280 140, 248 0.1 214 199 520
1280 248 0.02 211 1 112 940

TABLE II. Simulation parameters and results for self-avoiding polymers.
Nm denotes the number of monomers, L is the length of the simulation box,
Rg is the radius of gyration, and τ r is the end-to-end vector relaxation time.

Nm L/l h/t̂ R2
g/ l τr /t̂

40 75 0.1 20 4800
80 120 0.1 47 15 600

160 160 0.1 110 50 000
320 140 0.1 250 168 000
640 140 0.1 525 527 000

time units for a particular parameter set, where less but longer
simulations are performed for the shorter polymers.

A. Center-of-mass velocity-autocorrelation function

Simulation results for the polymer center-of-mass veloc-
ity correlation function (53) are shown in Fig. 4 for two col-
lision time steps. At t = 0, the correlation functions assume
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FIG. 4. Polymer center-of-mass velocity autocorrelation functions.
(a) The polymer length is Nm = 160 and the collision time step h/t̂

= 0.1 (μ/
√

kBT a2/m = 0.87). The inset shows the data in semilogarithmic
representation. (b) The polymer length is Nm = 80 and h/t̂ = 0.02
(μ/
√

kBT a2/m = 4.12). The negative parts of Cv are shown by dashed
lines. The simulation results are displayed by red lines, the analytical results
(33) by black lines, and the transverse contributions by green lines. The
blue line in (a) indicates the correlation function of MPC particles.65 The
maximum mode numbers are (a) nm = 33 and (b) nm = 25 [cf. Eq. (60)].
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the value
〈
v2

cm

〉 = 3 kBT /(MNm). After a very few MPC col-
lisions, inertia effects disappear and the polymer dynamics
is governed by hydrodynamic interactions. Correspondingly,
the correlation functions reflect the theoretically predicted be-
havior and the theoretical expression describes the simulation
result very well for t/t̂ � 10. As discussed in Ref. 65, the lat-
tice structure of the MPC method with its collision cells leads
to a largest k-value, or smallest length scale, above hydrody-
namic correlations disappear. Hence, we have to introduce an
upper cut-off

km = 2πnm

L
(60)

in the calculation of the correlation function (33). The cor-
responding values nm, which yield the best match between
theory and simulations, are listed in the figure caption.

For short times, we observe deviations between the theo-
retical description and the simulation data, which are related
to MPC specific aspects, and therefore cannot be captured by
the fluctuating hydrodynamics approach. In any case, for the
description of the equilibrium behavior at t = 0, polymer in-
ertia has to be taken into account in order to obtain the proper
equilibrium average of the center-of-mass kinetic energy.

Figure 4 confirms that the strength of the sound effect
depends on the collision step size and increases with decreas-
ing h, in agreement with the theoretical prediction presented
in Fig. 3. For t/t̂ > 100, the polymer contribution to the cor-
relation function disappears evidently [cf. Fig. 4(a)] and Cv

is determined entirely by the MPC fluid. As discussed in
Sec. III E, sound influences the correlation function on the
time scale t ≈ τ c = Rg/c. In Fig. 4, another sound effect
is visible for t � L/c due to the periodic boundary condi-
tions. The boundary conditions imply a reoccurrence of fluid
sound waves after traversing the periodic system. This has
been discussed in detail in Ref. 65. As expected, the sound
modulations are also well described by the theoretical expres-
sion. For even longer times, the correlation functions decay
exponentially.65 The inset of Fig. 4(a) displays the simula-
tion result in a semilogarithmic plot. Evidently, the correlation
function is not decaying exponentially, neither for short times
t/t̂ � 5 nor for longer times. In Ref. 92, an initial exponential
decay is predicted, however, with no clear time-scale separa-
tion. A non-exponential decay was also obtained in Ref. 24
by Dissipative Dynamics Simulations (DPD).

The agreement between the analytical result and the
simulation data over a wide range of time scales leads
to an important conclusion on the influence of the finite
simulation-box size on the velocity correlation function.
Namely, the finite box size does not affect the correlation
function for t < L/c, because the correlation function of the
finite system is identical to that of an infinite system, as we
have shown for a MPC fluid in Ref. 65. Only for t � L/c,
finite-size effects appear due to sound. In particular, for t
� L2/[(2π )2μ], only the value k = 2π /L remains in the sum
over k in (33), which implies an exponential decay of the cor-
relation function.

Correlation functions for Gaussian and self-avoiding
polymers of various polymer lengths are presented in
Fig. 5. For self-avoiding polymers, we determine the respec-
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FIG. 5. (a) Simulation results for polymer center-of-mass velocity autocor-
relation functions of Gaussian polymers of lengths Nm = 40, 80, 160, 320,
640, and 1280 (top to bottom), and (b) self-avoiding polymers of lengths Nm

= 40, 80, 160, 320, and 640 (top to bottom). The black lines correspond to the
analytical approximation (33) with the maximum mode numbers (a) nm = 15,
25, 33, 50, and 40 for the two longer polymers, and (b) nm = 27, 43, 57, and
50 for the longer ones, respectively. The straight lines indicate the long-time
tail, and the magenta lines, for the longest polymers, the correlation functions
for infinite systems.

tive structure factors from the simulations and use them in the
evaluation of the analytical expression (33). The longitudinal
contribution CL

v is clearly visible for short polymers and grad-
ually vanishes with increasing polymer length. In any case,
the simulation data are very well described by the analyti-
cal prediction (33); even the finite-size corrections are repro-
duced at long times.

Remarkably, the correlation functions for self-avoiding
polymers are also very well described by the analytical theory
above t/t̂ ≈ 7, i.e., approximately for times where the lon-
gitudinal contribution becomes negative. The polymer prop-
erties are captured by the structure factor S(k) in Eq. (33).
At long times, the correlation functions are determined by
small k values, i.e., by large-scale properties of the struc-
ture factor. On such scales, S(k) is determined by the ra-
dius of gyration. Hence, the radius of gyration is the only
polymer property, which appears in the correlation function
at long times, for both, phantom and self-avoiding polymers.
For shorter times, self-avoidance is reflected in the time de-
pendence of CT

v (t). As discussed in Appendix C, we predict

Downloaded 16 May 2013 to 134.94.122.141. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



144902-10 Huang, Gompper, and Winkler J. Chem. Phys. 138, 144902 (2013)

an intermediate power-law regime with the time dependence
Cv ∼ (μt)−3/10, in the limit of very long polymers.

Additionally, in Fig. 5, the correlation functions of the
longest polymers are presented for L → ∞. For Gaussian
polymers, Cv can easily be obtained, since the structure fac-
tor is known (43). For self-avoiding polymers, in the calcula-
tion of the integrals (36) and (41), either the simulation result
for the structure factor S(k) can be used, or, as we do, the
expression (43) is fitted to the simulation data, which yields
the radius of gyration, and is used in the integral. As men-
tioned before, this applies because the long-time behavior of
the velocity correlation function is determined by small k val-
ues. We then achieve an accurate descriptions on time scales
t > R2

g/(4π2μ). Note that naturally the time R2
g/(4π2μ) has

to be larger than the sound time τ x. Independent of the ap-
plied (flexible) polymer model, the correlation function of the
MPC fluid is assumed for t � τμ in the asymptotic limit of
large simulation boxes. As displayed in Fig. 5, the infinite-
system-size correlation function describes the simulation data
and the analytical result for the finite-size simulation box very
well on the appropriate time scale.

The scaling properties of the center-of-mass velocity cor-
relation function of Gaussian phantom polymers have been
addressed in Ref. 24, where a characteristic time τ̂c was intro-
duced to achieve universal long-time scaling, with the length
dependence τ̂c ∼ √

Nm. As noticed in Ref. 24 and is evident
from our calculations, the length dependence of τ̂c is sig-
nificantly different from τμ ∼ Nm [cf. Sec. III E], which is
the appropriate characteristic time suggested by theory and
confirmed by simulations. The inconsistence of the predic-
tion τ̂c ∼ √

Nm has been discussed in Ref. 24, but has not
been resolved. From our studies, we conclude that this scal-
ing does not apply for polymers and is a consequence of the
rather short chains considered in Ref. 24.

B. Diffusion coefficient

As pointed out in Sec. III C, the longitudinal center-of-
mass velocity correlation function does not contribute to the
diffusion coefficient. However, it is not a priori evident how
quickly the integral over the sound contribution vanishes. To
analyze how the asymptotic long-time limit is reached, we
consider the time-dependent function

D(t) = 1

3

∫ t

0
〈vcm(t ′) · vcm(0)〉dt ′, (61)

which turns into the diffusion coefficient (45) in the limit
t → ∞.59 Figure 6 shows simulation results for Gaussian
polymers for various collision time steps, i.e., various viscosi-
ties. We present the product μD(t), which is independent of
viscosity for t → ∞. The various curves approach the same
asymptotic value within the accuracy of the simulations. How
fast the limiting value is reached depends on the viscosity.
Thereby, the trend is non-monotonic. A decreasing h leads to
a faster approach of the asymptotic value, with a simultane-
ous decrease of the initial non-Brownian regime. The result
for h/t̂ = 0.02 supports this idea. However, for even smaller
h, the sound effect contributes substantially to the correlation
function. μD(t) even exceeds the asymptotic value in a wide
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0D
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FIG. 6. Time integrals of the center-of-mass velocity autocorrelation func-
tions (61) of Gaussian polymers of length Nm = 80 for the collision time
steps step h/t̂ = 0.1 (blue), 0.05 (green), 0.02 (red), and 0.004 (black) (bot-
tom to top). The corresponding kinematic viscosities are μ/

√
kBT a2/m

= 0.87, 1.67, 4.12, and 20.54, respectively. The product μD(t) is scaled by
the kinematic viscosity μ0/

√
kBT a2/m = 0.87 and the diffusion coefficient

D/
√

kBT a2/m = 2.2 × 10−3 for the collision time step h/t̂ = 0.1.

time-range and assumes Dz at long times only. A similar effect
has been found in backtracking of colloids in a MPC fluid.59

As is well known, finite system sizes severely affect the
center-of-mass diffusion coefficient21, 24, 25, 67, 94–98 as a con-
sequence of the suppression of long-wavelength hydrody-
namic modes by the periodic boundary conditions.65 The self-
diffusion coefficient D of a spherical particle of (hydrody-
namic) radius Rh in a periodic system can be written as

DL = D − kBT

6πηL

(
2.837 − 4πR2

h

3L2

)
(62)

up to third order in the simulation box size L−1.97–99 D itself
is related to the hydrodynamic radius Rh according to

D = kBT

6πηRh

(63)

for no-slip boundary conditions on the sphere surface. At
large distance, we expect the flow field around a polymer
to be similar to that around a spherical particle.98 Therefore,
Eq. (62) should also apply to polymer systems.

Typically, simulations for various box sizes are per-
formed at constant ratio Rg/L (or Rh/L), and D is obtained by
extrapolation to infinite box size. Here, we suggest an alter-
native and more efficient way to obtain the infinite system-
size diffusion coefficient. As discussed, the polymer center-
of-mass velocity correlation function can quantitatively be
described by the theoretical expression (33) on time scales
t/t̂ � 10. Moreover, Fig. 7(a) illustrates that the correlation
function is independent of system size on that time scale and
for t ≤ L/c, where the latter shifts to infinity with increasing
L. As pointed out before, finite-system-size effects are caused
by the exponential decay of the correlation function at long
times [cf. Fig. 7(a)].

To obtain the infinite-system-size correlation function,
we suggest the following approach. A simulation of a moder-
ately large system is performed and the finite-system-size cor-
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FIG. 7. (a) Center-of-mass velocity correlation functions of polymers of
length Nm = 80. The lengths of the simulation boxes are L/a = 40 (green)
and 140 (blue). At short times the two correlations are indistinguishable.
The black and light blue lines are the corresponding theoretical results. The
dashed line is the infinite system limit. (b) Integrated correlation functions.
The same color code is applied as in (a). The black line follows as integral
over the correlation function of the simulations up to t/t̂ = 12 and the theo-
retical correlation Cv(t) beyond that time. The asymptotic value of the diffu-
sion coefficient of the infinite system is D/

√
kBT a2/m = 2.2 × 10−3.

relation function is calculated. The theoretical velocity corre-
lation function is determined using the structure factor (43)
of the phantom polymer chain by fitting the theoretical ex-
pression to the simulation results in the vicinity of kRg ≈ 1.
For phantom chains the theoretical expression describes the
actual structure factor exactly. As discussed, in general, the
long-time behavior of the velocity correlation function is de-
termined by small k values only and we achieve an accurate
descriptions of Cv on time scales t > R2

g/(4π2μ) even for
self-avoiding polymers [cf. Fig. 5]. We replace then the (oscil-
lating) tail of the finite-size simulation result by the analytical
result and integrate the combined correlation function to ob-
tain D(t) and the asymptotic value D for t → ∞.

An example for this procedure is provided in Fig. 7(b).
The analytical result matches the simulation data for L/a =
140 above t/t̂ ≈ 12 [cf. Fig. 7(a)]. From that time on, we re-
place the simulation result by the analytical correlation func-
tion and integrate the new combined function. The obtained
result is shown as black line in Fig. 7(b). The asymptotic

value of the diffusion coefficient of the infinite system is
D/
√

kBT a2/m = 2.2 × 10−3, which is approximately 15%
smaller than the diffusion coefficient Dz = 2.5 × 10−3 of the
Zimm model [cf. Eq. (46)].

C. Mean square displacement

The dynamics of a polymer is further characterized by its
center-of-mass MSD (50). The dynamics of the monomers is
discussed in terms of their total average MSD,

�r2
t = 1

Nm

Nm∑
λ=1

〈(rλ(t) − rλ(0))2〉, (64)

and their MSD in the center-of-mass reference frame

�r2
m = 1

Nm

Nm∑
λ=1

〈([rλ(t) − rcm(t)] − [rλ(0) − rcm(0)])2〉.

(65)

1. Gaussian polymer

Figure 8 displays MSDs �r2
i (t), with i ∈ {m, t, cm},

of Gaussian polymers of various lengths. For a clear presen-
tation, �r2

m(t) is shown separately in Fig. 8(b). The MSDs
are scaled by twice the radius of gyration, the asymptotic
long-time limit of �r2

m(t) predicted by the Zimm model [cf.
Eq. (51)].7, 12, 45 Time is scaled by the longest polymer relax-
ation time τ r, extracted from the simulation data. The values
are listed in Table I. For short polymers, we determine the re-
laxation time from the end-to-end vector correlation function,
which decays exponentially for long times. For the longest
polymer, the relaxation time is quite long and the calculation
of a satisfactory precise value is extremely time consuming,
even with a massively parallel simulation code. Therefore, we
determine its relaxation time by a rescaling of the time such
that �r2

m(t) superimposes with the corresponding MSDs of
the shorter polymers for t/τ r � 10−3.

Figure 8 demonstrates that a universal behavior is
obtained in the vicinity of t/τ r ≈ 1 for all polymer
lengths, in close agreement with the theoretical prediction of
Eq. (51). Moreover, we observe a length-dependent (short)
time regime, where �r2

m(t) displays a power-law behavior
close to t2/3, as predicted by the Zimm model for non-draining
polymers [cf. Fig. 8(b)]. At short times, initial inertia effects
play a role and for t/τ r > 10−2 we observe a broad crossover
regime to the asymptotic plateau value. Hence, much longer
polymers are required to observe Zimm behavior over several
orders of magnitude in the MSDs. The MSDs �r2

t (t) seem
to follow the time dependence t2/3 over a wider time range.
However, this is a coincidence, because the crossover effect
in the displacements �r2

m(t) is (partially) compensated by the
center-of-mass MSDs.

The center-of-mass MSD approaches the linear depen-
dence rather late. Only for t/τ r ≥ 1, the free diffusion limit is
reached for the collision time step h/t̂ = 0.1. For the smaller
value h/t̂ = 0.02, the asymptotic limit is reached significantly
earlier (t/τ r ≈ 10−3). According to the discussion of the de-
pendence of D(t) on the collision time step [cf. Fig. 6], this is a
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FIG. 8. (a) Means quare displacements of monomers �r2
t (solid lines)

and of polymer centers-of-mass �r2
cm (dashed-dotted lines) for Gaussian

polymers. (b) Monomer MSDs in the center-of-mass reference frame �r2
m.

(c) Local slopes [Eq. (66)] of the MSDs of (a) and (b): ζm(t) (squares),
ζ cm (diamonds), and ζ t (bullets). The polymer lengths are Nm = 80
(red), 160 (blue), 320 (purple), 640 (light-blue), 1280 (with h/t̂ = 0.1)
(orange), and 1280 (with ht̂ = 0.02) (black). The dark-green curves are
theoretical results following from Eqs. (50)–(52). Inset in (b): Polymer-
length dependence of the relaxation times. The solid line shows the
power-law τr ∼ N

3/2
m .

coincidence due to cancellation of sound effects. The slow ap-
proach of the asymptotic long-time limit was already pointed
out in Ref. 54. The inset in Fig. 8(b) shows the length depen-
dence of the relaxation time. The values are consistent with
the scaling relation τr ∼ N

3/2
m of the Zimm model.7

Figure 8(c) presents the local slopes ζ i of the MSDs of
Figs. 8(a) and 8(b), which are calculated according to45

ζi(t) = d[log �r2
i (t)]

d log t
. (66)

Again, we find a small time window, where ζ m ≈ ζ t ≈ 2/3,
particularly for longer polymers. For t/τ r > 10−2, ζ m de-
creases to zero, thereby following closely the dependence pre-
dicted by the Zimm approach. Similar, the slopes ζ t follow
the Zimm prediction above a polymer-length dependent time-
ratio t/τ r.

2. Self-avoiding polymer

The various MSDs for self-avoiding polymers are dis-
played in Fig. 9. Again, we extract the relaxation times of
the two shortest polymers from the end-to-end vector corre-
lation functions. The times of the longer polymers are ob-
tained by matching the dependence of �r2

m(t) for t/τ r � 10−3.
The corresponding relaxation times are listed in Table II and
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FIG. 9. (a) Mean square displacements of self-avoiding polymers: Monomer
MSDs in the center-of-mass reference frame �r2

m (solid lines), total
monomer MSDs �r2

t (dashed lines), and center-of mass MSDs �r2
cm

(dashed-dotted lines). The polymer lengths are Nm = 40 (green), 80 (red),
160 (blue), 320 (purple), and 640 (light-blue). The dark-green curves are the-
oretical results following from Eqs. (50)–(52). (Inset) Polymer-length depen-
dence of the relaxation times. The solid line shows the power-law τr ∼ N2ν

m ,
with ν = 0.6. (b) Local slopes [Eq. (66)] of the MSDs of (a): ζm(t) (squares),
ζ cm (diamonds), and ζ t (bullets).
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displayed in the inset of Fig. 9(a). The length dependence fol-
lows the theoretical prediction τr ∼ N3ν

m , with ν ≈ 0.6.7

The �r2
m(t) indeed seem to show universal behavior

in the vicinity of t/τ r ≈ 1, a behavior which extends to
shorter t/τ r with increasing polymer length. The individual
curves qualitatively follow the theoretical prediction (51).
Since this expression does not apply to self-avoiding poly-
mers in general,7 we adjusted the time scale such that the the-
oretical curve quantitatively matches the simulation data in
the vicinity of t/τ r ≈ 1. This implies a shift of the theoretical
curve along the (logarithmic) t/τ r axis by a factor 1.35. As for
the Gaussian polymer, we obtain a (short) scaling regime over
which ζ m ≈ 2/3 (see also Fig. 9(b)). Much longer polymers
are required to see Zimm behavior over a larger time window.
Figure 9 suggests that the slopes ζ t for �r2

t (t) are nearly con-
stant over a certain time range, but they are somewhat larger
than the Zimm value 2/3. The slopes ζ m are rather similar for
t/τ r � 10−3, where the actual shortest time depends on poly-
mer length, and follow qualitative the prediction of the Zimm
model. Similar to the Gaussian polymer, the center-of-mass
MSDs reach the asymptotic linear regime for t/τ r � 1 only.
We observe near quantitative agreement with the “shifted”
theoretical curves.

VI. SUMMARY AND CONCLUSIONS

We have investigated the influence of time-dependent
hydrodynamic correlations on the dynamical properties of a
polymer in dilute solution. Particularly, the properties of com-
pressible fluids have been addressed. Results of both analyti-
cal calculations and coarse-grained mesoscale hydrodynamic
simulations are presented and compared. In general, the lin-
earized Landau-Lifshitz Navier-Stokes equations, adapted to
the SRD version of the MPC algorithm, describe the simula-
tion results very well above a minimal length scale determined
by the collision lattice of MPC.

As already obtained in Refs. 54 and 55 for incom-
pressible fluids and Gaussian phantom chains, the transverse
center-of-mass velocity correlation function exhibits a distinct
dependence on the polymer properties on time scales t/τμ <

1, where τμ = R2
g/μ. We extended the theoretical calculations

to self-avoiding polymers and find the general dependence
CT

v (t) ∼ (μt)1/2ν−3/2 on the scaling exponent ν. For longer
times, the correlation function is solely determined by fluid
properties and exhibits the long-time tail, which decays as
(μt)−3/2 in three-dimensional space.

Fluid compressibility, which implies a finite sound veloc-
ity c, influences the correlation function on time scales com-
parable to τ c = Rg/c. Thereby, the sound effect is stronger for
higher viscosities and may lead to partially negative correla-
tion functions, resembling viscoelastic behavior. In general,
the sound effect decreases with increasing polymer length.
For time scales longer than τμ, the sound correlation func-
tion decreases in a stretched exponential manner. Hence, the
asymptotic long-time behavior is determined by vorticity.
Specifically, for Gaussian polymers, the vorticity correlation
function is a universal function of μt/R2

g , in contrast to vari-
ous other proposed dependencies.24, 25

Based on our analytical considerations, we propose a way
to overcome the problematic in the calculation of the diffu-
sion coefficient of finite-size periodic systems. To obtain the
polymer center-of-mass diffusion coefficient in the limit of
large system sizes, we suggest to amend its numerically de-
termined velocity correlation function by the analytically de-
rived expression on long time scales, where the dynamics is
governed by fluid correlations only. This should be possible
for all kinds of polymers, since the long-time dynamics is
governed by small k values, i.e., length scales larger than the
radius of gyration. The concept should also apply to other di-
lute systems such as colloids, since their long-time dynamics
should also be determined by fluid correlations only.

Finally, we considered the mean square displacements of
monomers and the polymer center of mass, for both Gaussian
and self-avoiding polymers. As expected, the Gaussian poly-
mers exhibit qualitative and quantitative agreement in their
displacements with the prediction of the Zimm model above
a certain time scale. We find the power-law behavior t2/3 for
�r2

m over a length-dependent short time window only. How-
ever, �r2

m closely follows the theoretical prediction for longer
times. Similar features are displayed by self-avoiding poly-
mers. In both cases, we obtain relaxation times, which exhibit
the predicted length dependence τr ∼ N3ν

m , with ν = 1/2 and
ν ≈ 3/5 for Gaussian and self-avoiding polymers, respec-
tively.

We consider the studies of the polymer mean square dis-
placements as benchmark for studies of more concentrated
systems. In the latter systems, screening effects appear for
concentrations exceeding the overlap concentration. Then, the
polymer MSDs should reflect the modified behavior. Theoret-
ical predictions suggest that the MSD should exhibit Rouse
rather then Zimm behavior above a certain time scale.7 Our
studies show that the different time scales and crossovers have
to be considered very carefully in order to extract the correct
scaling-laws in semidilute systems—both in simulations and
experiments.
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APPENDIX A: RANDOM FLUID VELOCITY
CORRELATION FUNCTION

The zeroth-mode random velocity vR
0 (t) (20) can be ex-

pressed as

vR
0 (t) =

∫
ϕ0(s)vR(s, t) ds = 1√

Lp

∫
vR(s, t) ds, (A1)

and correspondingly

vR
0 (ω) = 1√

Lp

∫
vR(s, ω) ds. (A2)
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With the Fourier representation (5),

vR(r, ω) =
∑

k

vR(k, ω)e−ikr , (A3)

we obtain the velocity correlation function

〈
vR

0 (ω) · vR
0 (ω′)

〉 = 1

Lp

∑
k,k′

∫∫
〈e−ikr(s)e−ik′r(s ′)〉

× 〈vR(k, ω) · vR(k′, ω′)〉 dsds ′. (A4)

The stress-tensor correlation functions (3) yield〈
vR(k, ω) · vR(k′, ω′)

〉
= 4πkBT

V
k2δ(ω + ω′)δk,−k′

× (2η|QT (k, ω)|2 + η̃|QL(k, ω)|2). (A5)

The factor two in front of |QT (k, ω)|2 reflects the two trans-
verse components of vorticity. Hence,〈

vR
0 (ω) · vR

0 (ω′)
〉

= 4πkBT

V
δ(ω + ω′)

×
∑

k

k2S(k)(2η|QT (k, ω)|2 + η̃|QL(k, ω)|2), (A6)

where S is the polymer structure factor

S(k) = 1

Lp

∫∫
〈e−ik[r(s)−r(s ′)]〉 dsds ′. (A7)

Due to the Gaussian nature of the polymer model, S is given
by

S(k) = 1

Lp

∫∫
exp

(
−1

6
k2 〈[r(s) − r(s ′)]2

〉)
dsds ′. (A8)

APPENDIX B: HYDRODYNAMIC TENSOR

In Fourier representation, the hydrodynamic tensor
Q(r − r ′, t) reads

Q(r − r ′, t) =
∑

k

e−ik(r−r ′)Q(k, t) (B1)

with Q(k, t) = QL(k, t)P + QT (k, t)(E − P); QT and QL are
defined in Eqs. (10)–(12). P is the projection operator (8).
Preaveraging yields

〈Q(r − r ′, t)〉 =
∑

k

〈e−ik(r−r ′)〉Q(k, t)

=
∑

k

exp

(
−1

6
k2〈[r − r ′]2〉

)
Q(k, t). (B2)

The exponential function as well as QT (k, ω) and QL(k, ω)
depend on the magnitude of k only. Hence, all off-diagonal
components of 〈Q(r − r ′, t)〉 are zero within the preaveraging
approximation. Moreover, our systems are homogeneous and
isotropic. Thus, we obtain 〈Q(r − r ′, t)〉 = Q(s − s ′, t)E,

where

Q(s − s ′, t) = 1

3

∑
k

exp

(
−1

6
k2〈[r(s) − r(s ′)]2〉

)

× [QL(k, t) + 2QT (k, t)]. (B3)

In Fourier space, the zeroth-mode tensor component
Q00(ω) is related to Q(s − s′, ω) according to

Q00(ω) = 1

V Lp

∫∫
Q(s − s ′, ω) dsds ′. (B4)

Inserting the Fourier transform of Eq. (B3) leads to

Q00(ω) = 1

3V

∑
k

S(k)[QL(k, ω) + 2QT (k, ω)]. (B5)

APPENDIX C: CENTER-OF-MASS VELOCITY
CORRELATION FUNCTION: SELF-AVOIDING
POLYMER

The transverse center-of-mass velocity correlation func-
tion (35) can also be evaluated for a self-avoiding poly-
mer in the limit μt/R2

g 
 1. Note that Eq. (35) applies as
long as the underlaying stochastic process is Gaussian (cf.
Appendix A). Assuming self-similar polymer conformations,
the second moment of the 〈(r(s) − r(s ′))2〉 can be written as7

〈(r(s) − r(s ′))2〉 = l2

(
s − s ′

l

)2ν

(C1)

with the scaling exponent ν = 1/2 for a phantom polymer
and ν = 3/5 for a self-avoiding polymer. Then, the correlation
function becomes〈

vT
cm(t) · vT

cm(0)
〉 = kBT

2ρ
√

(πμt)3

×
∫ 1

0

1 − x[
1 + R2

gx
2ν/(μt)

]3/2 dx. (C2)

Here, we introduce the more general radius of gyration
Rg = l(Lp/l)ν/

√
6. By substitution, the integral turns into

〈
vT

cm(t) · vT
cm(0)

〉 = kBT

2ρ
√

π3(R2
g)1/ν

(μt)1/2ν−3/2

×
∫ ∞

0

1

[1 + x2ν]3/2
dx. (C3)

For ν = 1/2, the expression reduces to Eq. (39). For a self-
avoiding polymer with ν = 3/5, we find the time dependence

〈
vT

cm(t) · vT
cm(0)

〉 ∼ (μt)−3/10. (C4)

1J. G. Kirkwood and J. Riseman, J. Chem. Phys. 16, 565 (1948).
2B. H. Zimm, J. Chem. Phys. 24, 269 (1956).
3M. Fixman, J. Chem. Phys. 42, 3831 (1965).
4H. Yamakawa, Modern Theory of Polymer Solutions (Harper & Row, New
York, 1971).

5M. Bixon, Ann. Rev. Phys. Chem. 27, 65 (1976).
6S. F. Edwards and M. Muthukumar, Macromolecules 17, 586 (1984).

Downloaded 16 May 2013 to 134.94.122.141. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.1746947
http://dx.doi.org/10.1063/1.1742462
http://dx.doi.org/10.1063/1.1695847
http://dx.doi.org/10.1146/annurev.pc.27.100176.000433
http://dx.doi.org/10.1021/ma00134a012


144902-15 Huang, Gompper, and Winkler J. Chem. Phys. 138, 144902 (2013)

7M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon
Press, Oxford, 1986).

8M. Fixman, Macromolecules 14, 1710 (1981).
9S. R. Aragón and R. Pecora, Macromolecules 18, 1868 (1985).

10R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of
Polymer Liquids (John Wiley & Sons, New York, 1987), Vol. 2.

11J. des Cloizeaux and G. Jannink, Polymers in Solution: Their Modelling
and Structure (Clarendon Press, Oxford, 1990).

12L. Harnau, R. G. Winkler, and P. Reineker, J. Chem. Phys. 104, 6355
(1996).

13H. C. Öttinger, Stochastic Processes in Polymeric Fluids (Springer, Berlin,
1996).

14K. Kroy and E. Frey, Phys. Rev. E 55, 3092 (1997).
15R. G. Winkler, Phys. Rev. Lett. 97, 128301 (2006).
16R. G. Winkler, J. Chem. Phys. 133, 164905 (2010).
17J. Garcia de la Torre, A. Jimenez, and J. J. Freire, Macromolecules 15, 148

(1982).
18C. Pierleoni and J.-P. Ryckaert, Phys. Rev. Lett. 66, 2992 (1991).
19B. Dünweg and K. Kremer, Phys. Rev. Lett. 66, 2996 (1991).
20C. Aust, M. Kröger, and S. Hess, Macromolecules 32, 5660 (1999).
21N. A. Spenley, Europhys. Lett. 49, 534 (2000).
22P. Ahlrichs, R. Everaers, and B. Dünweg, Phys. Rev. E 64, 040501

(2001).
23R. M. Jendrejack, J. J. de Pablo, and M. D. Graham, J. Chem. Phys. 116,

7752 (2002).
24C. P. Lowe, A. F. Bakker, and M. W. Dreischor, Europhys. Lett. 67, 397

(2004).
25K. Mussawisade, M. Ripoll, R. G. Winkler, and G. Gompper, J. Chem.

Phys. 123, 144905 (2005).
26O. B. Usta, A. J. C. Ladd, and J. E. Butler, J. Chem. Phys. 122, 094902

(2005).
27J. E. Butler and E. S. G. Shaqfeh, J. Chem. Phys. 122, 014901 (2005).
28W. Jiang, J. Huang, Y. Wang, and M. Laradji, J. Chem. Phys. 126, 044901

(2007).
29S. Frank and R. G. Winkler, EPL 83, 38004 (2008).
30M. Hinczewski, X. Schlagberger, M. Rubinstein, O. Krichevsky, and R. R.

Netz, Macromolecules 42, 860 (2009).
31C.-C. Huang, R. G. Winkler, G. Sutmann, and G. Gompper, Macro-

molecules 43, 10107 (2010).
32T. A. King, A. Knox, W. I. Lee, and J. D. G. McAdam, Polymer 14, 151

(1973).
33M. Adam and M. Delsanti, Macromolecules 10, 1229 (1977).
34T. Nose and B. Chu, Macromolecules 12, 590 (1979).
35C. C. Han and A. Z. Akcasu, Macromolecules 14, 1080 (1981).
36U. Böhme and U. Scheler, Colloids Surf., A 222, 35 (2003).
37K. Grass, U. Böhme, U. Scheler, H. Cottet, and C. Holm, Phys. Rev. Lett.

100, 096104 (2008).
38S. S. Sorlie and R. Pecora, Macromolecules 23, 487 (1990).
39W. Eimer and R. Pecora, J. Chem. Phys. 94, 2324 (1991).
40D. E. Smith, T. T. Perkins, and S. Chu, Macromolecules 29, 1372 (1996).
41R. Götter, K. Kroy, E. Frey, M. Bärmann, and E. Sackmann, Macro-

molecules 29, 30 (1996).
42A. E. Nkodo, J. M. Garnier, B. Tinland, H. Ren, C. Desruisseaux, L. C.

McCormick, G. Drouin, and G. W. Slater, Electrophoresis 22, 2424 (2001).
43E. Stellwagen, Y. Lu, and N. C. Stellwagen, Biochemistry 42, 11745

(2003).
44R. Shusterman, S. Alon, T. Gavrinyov, and O. Krichevsky, Phys. Rev. Lett.

92, 048303 (2004).
45R. G. Winkler, S. Keller, and J. O. Rädler, Phys. Rev. E 73, 041919 (2006).
46E. P. Petrov, T. Ohrt, R. G. Winkler, and P. Schwille, Phys. Rev. Lett. 97,

258101 (2006).
47M. Hinczewski and R. Netz, EPL 88, 18001 (2009).
48A. Bernheim-Groswasser, R. Shusterman, and O. Krichevsky, J. Chem.

Phys. 125, 084903 (2006).
49R. G. Winkler, J. Chem. Phys. 127, 054904 (2007).
50C. M. Schroeder, E. S. G. Shaqfeh, and S. Chu, Macromolecules 37, 9242

(2004).
51E. S. G. Shaqfeh, J. Non-Newtonian Fluid Mech. 130, 1 (2005).
52C. M. Schroeder, R. E. Teixeira, E. S. G. Shaqfeh, and S. Chu, Phys. Rev.

Lett. 95, 018301 (2005).

53D. Steinhauser, S. Köster, and T. Pfohl, ACS Macro Lett. 1, 541 (2012).
54J. Bonet Avalos, J. M. Rubí, and D. Bedeaux, Macromolecules 24, 5997

(1991).
55V. Lisy, J. Tothova, and A. V. Zatovsky, J. Stat. Mech.: Theory Exp. 2008,

P01024.
56T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi, L. Forró, and

S. Jeney, Nature (London) 478, 85 (2011).
57U. F. Keyser, Nature (London) 478, 45 (2011).
58B. U. Felderhof, J. Chem. Phys. 123, 044902 (2005).
59M. Belushkin, R. G. Winkler, and G. Foffi, J. Phys. Chem. B. 115, 14263

(2011).
60R. Tatsumi and R. Yamamoto, Phys. Rev. E 85, 066704 (2012).
61S. Henderson, S. Mitchell, and P. Bartlett, Phys. Rev. Lett. 88, 088302

(2002).
62A. Malevanets and R. Kapral, J. Chem. Phys. 110, 8605 (1999).
63R. Kapral, Adv. Chem. Phys. 140, 89 (2008).
64G. Gompper, T. Ihle, D. M. Kroll, and R. G. Winkler, Adv. Polym. Sci.

221, 1 (2009).
65C.-C. Huang, G. Gompper, and R. G. Winkler, Phys. Rev. E 86, 056711

(2012).
66M. Hecht, J. Harting, T. Ihle, and H. J. Herrmann, Phys. Rev. E 72, 011408

(2005).
67J. T. Padding and A. A. Louis, Phys. Rev. E 74, 031402 (2006).
68M. K. Petersen, J. B. Lechman, S. J. Plimpton, G. S. Grest, P. J. in’t Veld,

and P. R. Schunk, J. Chem. Phys. 132, 174106 (2010).
69A. Lamura, G. Gompper, T. Ihle, and D. M. Kroll, Europhys. Lett. 56, 319

(2001).
70A. Wysocki, C. P. Royall, R. G. Winkler, G. Gompper, H. Tanaka,

A. van Blaaderen, and H. Löwen, Soft Matter 5, 1340 (2009).
71I. O. Götze and G. Gompper, EPL 92, 64003 (2010).
72S. P. Singh, R. G. Winkler, and G. Gompper, Phys. Rev. Lett. 107, 158301

(2011).
73D. A. Fedosov, S. P. Singh, A. Chatterji, R. G. Winkler, and G. Gompper,

Soft Matter 8, 4109 (2012).
74J. F. Ryder and J. M. Yeomans, J. Chem. Phys. 125, 194906 (2006).
75R. Chelakkot, R. G. Winkler, and G. Gompper, Phys. Rev. Lett. 109,

178101 (2012).
76A. Nikoubashman and C. N. Likos, J. Chem. Phys. 133, 074901 (2010).
77H. Noguchi and G. Gompper, Phys. Rev. Lett. 93, 258102 (2004).
78J. L. McWhirter, H. Noguchi, and G. Gompper, Proc. Natl. Acad. Sci.

U.S.A. 106, 6039 (2009).
79T. Ihle and D. M. Kroll, Phys. Rev. E 63, 020201(R) (2001).
80E. Allahyarov and G. Gompper, Phys. Rev. E 66, 036702 (2002).
81L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, Lon-

don, 1960).
82C. M. Pooley and J. M. Yeomans, J. Phys. Chem. B 109, 6505 (2005).
83E. Tüzel, T. Ihle, and D. M. Kroll, Phys. Rev. E 74, 056702 (2006).
84R. G. Winkler and C.-C. Huang, J. Chem. Phys. 130, 074907 (2009).
85R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymer Liq-

uids (John Wiley & Sons, New York, 1987), Vol. 1.
86P. Espanol, Phys. Rev. E 52, 1734 (1995).
87H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1989).
88I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products

(Academic Press Inc., San Diego, 1980).
89R. G. Winkler, Soft Matter 6, 6183 (2010).
90M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon

Press, Oxford, 1987).
91C.-C. Huang, A. Chatterji, G. Sutmann, G. Gompper, and R. G. Winkler, J.

Comput. Phys. 229, 168 (2010).
92A. Malevanets and J. M. Yeomans, Europhys. Lett. 52, 231 (2000).
93E. Westphal, S. P. Singh, C.-C. Huang, G. Gompper, and R. G. Winkler,

“GPU accelerated particle-based mesoscale hydrodynamic simulations—
multiparticle collision dynamics and its application to star-polymer diffu-
sion” (unpublished).

94B. Dünweg and K. Kremer, J. Chem. Phys. 99, 6983 (1993).
95P. Ahlrichs and B. Dünweg, J. Chem. Phys. 111, 8225 (1999).
96C. Pierleoni and J.-P. Ryckaert, J. Chem. Phys. 96, 8539 (1992).
97I.-C. Yeh and G. Hummer, J. Chem. Phys. B 108, 15873 (2004).
98A. J. C. Ladd, R. Kekre, and J. E. Butler, Phys. Rev. E 80, 036704 (2009).
99A. A. Zick and G. M. Homsy, J. Fluid Mech. 115, 13 (1982).

Downloaded 16 May 2013 to 134.94.122.141. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1021/ma50007a019
http://dx.doi.org/10.1021/ma00152a014
http://dx.doi.org/10.1063/1.471297
http://dx.doi.org/10.1103/PhysRevE.55.3092
http://dx.doi.org/10.1103/PhysRevLett.97.128301
http://dx.doi.org/10.1063/1.3497642
http://dx.doi.org/10.1021/ma00229a030
http://dx.doi.org/10.1103/PhysRevLett.66.2992
http://dx.doi.org/10.1103/PhysRevLett.66.2996
http://dx.doi.org/10.1021/ma981683u
http://dx.doi.org/10.1209/epl/i2000-00183-2
http://dx.doi.org/10.1103/PhysRevE.64.040501
http://dx.doi.org/10.1063/1.1466831
http://dx.doi.org/10.1209/epl/i2003-10299-3
http://dx.doi.org/10.1063/1.2041527
http://dx.doi.org/10.1063/1.2041527
http://dx.doi.org/10.1063/1.1854151
http://dx.doi.org/10.1063/1.1828432
http://dx.doi.org/10.1063/1.2428307
http://dx.doi.org/10.1209/0295-5075/83/38004
http://dx.doi.org/10.1021/ma802017g
http://dx.doi.org/10.1021/ma101836x
http://dx.doi.org/10.1021/ma101836x
http://dx.doi.org/10.1016/0032-3861(73)90108-0
http://dx.doi.org/10.1021/ma60060a014
http://dx.doi.org/10.1021/ma60070a010
http://dx.doi.org/10.1021/ma50005a037
http://dx.doi.org/10.1016/S0927-7757(03)00230-9
http://dx.doi.org/10.1103/PhysRevLett.100.096104
http://dx.doi.org/10.1021/ma00204a022
http://dx.doi.org/10.1063/1.459904
http://dx.doi.org/10.1021/ma951455p
http://dx.doi.org/10.1021/ma9464231
http://dx.doi.org/10.1021/ma9464231
http://dx.doi.org/10.1002/1522-2683(200107)22:12<2424::AID-ELPS2424>3.0.CO;2-1
http://dx.doi.org/10.1021/bi035203p
http://dx.doi.org/10.1103/PhysRevLett.92.048303
http://dx.doi.org/10.1103/PhysRevE.73.041919
http://dx.doi.org/10.1103/PhysRevLett.97.258101
http://dx.doi.org/10.1209/0295-5075/88/18001
http://dx.doi.org/10.1063/1.2244550
http://dx.doi.org/10.1063/1.2244550
http://dx.doi.org/10.1063/1.2753160
http://dx.doi.org/10.1021/ma049461l
http://dx.doi.org/10.1016/j.jnnfm.2005.05.011
http://dx.doi.org/10.1103/PhysRevLett.95.018301
http://dx.doi.org/10.1103/PhysRevLett.95.018301
http://dx.doi.org/10.1021/mz3000539
http://dx.doi.org/10.1021/ma00022a015
http://dx.doi.org/10.1088/1742-5468/2008/01/P01024
http://dx.doi.org/10.1038/nature10498
http://dx.doi.org/10.1038/478045a
http://dx.doi.org/10.1063/1.1992468
http://dx.doi.org/10.1021/jp205084u
http://dx.doi.org/10.1103/PhysRevE.85.066704
http://dx.doi.org/10.1103/PhysRevLett.88.088302
http://dx.doi.org/10.1063/1.478857
http://dx.doi.org/10.1002/9780470371572.ch2
http://dx.doi.org/10.1007/978-3-540-87706-6_1
http://dx.doi.org/10.1103/PhysRevE.86.056711
http://dx.doi.org/10.1103/PhysRevE.72.011408
http://dx.doi.org/10.1103/PhysRevE.74.031402
http://dx.doi.org/10.1063/1.3419070
http://dx.doi.org/10.1209/epl/i2001-00522-9
http://dx.doi.org/10.1039/b821250c
http://dx.doi.org/10.1209/0295-5075/92/64003
http://dx.doi.org/10.1103/PhysRevLett.107.158301
http://dx.doi.org/10.1039/c2sm07009j
http://dx.doi.org/10.1063/1.2387948
http://dx.doi.org/10.1103/PhysRevLett.109.178101
http://dx.doi.org/10.1063/1.3466918
http://dx.doi.org/10.1103/PhysRevLett.93.258102
http://dx.doi.org/10.1073/pnas.0811484106
http://dx.doi.org/10.1073/pnas.0811484106
http://dx.doi.org/10.1103/PhysRevE.63.020201
http://dx.doi.org/10.1103/PhysRevE.66.036702
http://dx.doi.org/10.1021/jp046040x
http://dx.doi.org/10.1103/PhysRevE.74.056702
http://dx.doi.org/10.1063/1.3077860
http://dx.doi.org/10.1103/PhysRevE.52.1734
http://dx.doi.org/10.1039/c0sm00488j
http://dx.doi.org/10.1016/j.jcp.2009.09.024
http://dx.doi.org/10.1016/j.jcp.2009.09.024
http://dx.doi.org/10.1209/epl/i2000-00428-0
http://dx.doi.org/10.1063/1.465445
http://dx.doi.org/10.1063/1.480156
http://dx.doi.org/10.1063/1.462307
http://dx.doi.org/10.1021/jp0477147
http://dx.doi.org/10.1103/PhysRevE.80.036704
http://dx.doi.org/10.1017/S0022112082000627

