001     133590
005     20210129211508.0
024 7 _ |a 10.1111/ele.12348
|2 doi
024 7 _ |a 1461-023x
|2 ISSN
024 7 _ |a 1461-0248
|2 ISSN
024 7 _ |a 1461-023X
|2 ISSN
024 7 _ |a 2128/8016
|2 Handle
024 7 _ |a WOS:000345215900002
|2 WOS
024 7 _ |a altmetric:2668648
|2 altmetric
024 7 _ |a pmid:25205436
|2 pmid
037 _ _ |a FZJ-2013-02010
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Valladares, F.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a The effects of phenotypic plasticity and local adaptation on forecasts pf species range shifts under climate change
260 _ _ |a Oxford [u.a.]
|c 2014
|b Wiley-Blackwell
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 133590
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Species are the unit of analysis in many global change and conservation biology studies; however, species are not uniform entities but are composed of different, sometimes locally adapted, populations differing in plasticity. We examined how intraspecific variation in thermal niches and phenotypic plasticity will affect species distributions in a warming climate. We first developed a conceptual model linking plasticity and niche breadth, providing five alternative intraspecific scenarios that are consistent with existing literature. Secondly, we used ecological niche-modeling techniques to quantify the impact of each intraspecific scenario on the distribution of a virtual species across a geographically realistic setting. Finally, we performed an analogous modeling exercise using real data on the climatic niches of different tree provenances. We show that when population differentiation is accounted for and dispersal is restricted, forecasts of species range shifts under climate change are even more pessimistic than those using the conventional assumption of homogeneously high plasticity across a species' range. Suitable population-level data are not available for most species so identifying general patterns of population differentiation could fill this gap. However, the literature review revealed contrasting patterns among species, urging greater levels of integration among empirical, modeling and theoretical research on intraspecific phenotypic variation.
536 _ _ |a 242 - Sustainable Bioproduction (POF2-242)
|0 G:(DE-HGF)POF2-242
|c POF2-242
|f POF II
|x 0
536 _ _ |0 G:(DE-HGF)POF2-89582
|f POF II T
|x 1
|c POF2-89582
|a 89582 - Plant Science (POF2-89582)
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Matesanz, S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Araujo, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Balaguer, L.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Benito, M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Cornwell, W.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gianoli, E.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Guilhaumon, F.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a van Kleunen, M.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Naya, D.E.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Nicotra, A.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Poorter, Hendrik
|0 P:(DE-Juel1)129384
|b 11
|u fzj
700 1 _ |a Zavala, M.A.
|0 P:(DE-HGF)0
|b 12
773 _ _ |a 10.1111/ele.12348
|g Vol. 17, no. 11, p. 1351 - 1364
|0 PERI:(DE-600)2020195-3
|n 11
|p 1351–1364
|t Ecology letters
|v 17
|y 2014
|x 1461-023x
856 4 _ |u https://juser.fz-juelich.de/record/133590/files/FZJ-2013-02010.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/133590/files/FZJ-2013-02010.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/133590/files/FZJ-2013-02010.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/133590/files/FZJ-2013-02010.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:133590
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129384
913 2 _ |a DE-HGF
|b POF III
|l Key Technologies
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Key Technologies for the Bioeconomy
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-242
|2 G:(DE-HGF)POF2-200
|v Sustainable Bioproduction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF2-89582
|x 1
|v Plant Science
|0 G:(DE-HGF)POF2-89582
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2014
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 3.0
|0 LIC:(DE-HGF)CCBYNCND3
|2 HGFVOC
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21