000133628 001__ 133628
000133628 005__ 20240610115428.0
000133628 0247_ $$2doi$$a10.1557/opl.2012.1754
000133628 037__ $$aFZJ-2013-02043
000133628 082__ $$a670
000133628 1001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b0$$eCorresponding author$$ufzj
000133628 245__ $$aMetadislocations: The case of pure glide
000133628 260__ $$aWarrendale, Pa.$$bMRS$$c2013
000133628 3367_ $$2DRIVER$$aarticle
000133628 3367_ $$2DataCite$$aOutput Types/Journal article
000133628 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1497012419_12113
000133628 3367_ $$2BibTeX$$aARTICLE
000133628 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000133628 3367_ $$00$$2EndNote$$aJournal Article
000133628 520__ $$aMetadislocations are highly complex and pivotal defects mediating plastic deformation in complex metallic alloys. Here, we review recent results on the structure of metadislocations in the phases T-Al-Mn-Pd, T-Al-Mn-Fe and o-Al13Co4. In these materials, metadislocation motion is of particular interest as it takes place by pure glide in contrast to most other complex metallic alloys. Recently, novel metadislocations were found in the T-phase [1]. They have Burgers vectors (n = 2, 3, 4) and are associated to two, four and six planar defects, respectively. The type of planar defect depends on the deformation geometry. Metadislocation glide creates (1 0 0) stacking faults and climb creates (0 0 1) phason planes. Metadislocation glide was observed in the o-Al13Co4 phase, as well [2]. The close structural relation of metadislocations in the phases T-Al-Mn-Pd, T-Al-Mn-Fe, Al13Co4 and ε6-Al-Pd-Mn is discussed
000133628 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000133628 7001_ $$0P:(DE-Juel1)130637$$aFeuerbacher, Michael$$b1$$ufzj
000133628 773__ $$0PERI:(DE-600)2451008-7$$a10.1557/opl.2012.1754$$p$$tMRS online proceedings library$$v1517$$x1946-4274$$y2013
000133628 909CO $$ooai:juser.fz-juelich.de:133628$$pVDB
000133628 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review
000133628 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000133628 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000133628 9141_ $$y2013
000133628 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000133628 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130637$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000133628 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000133628 920__ $$lyes
000133628 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000133628 980__ $$ajournal
000133628 980__ $$aVDB
000133628 980__ $$aI:(DE-Juel1)PGI-5-20110106
000133628 980__ $$aUNRESTRICTED
000133628 981__ $$aI:(DE-Juel1)ER-C-1-20170209