000133741 001__ 133741
000133741 005__ 20240711092302.0
000133741 0247_ $$2Handle$$a2128/5121
000133741 0247_ $$2ISSN$$a1866-1793
000133741 020__ $$a978-3-89336-678-5
000133741 037__ $$aFZJ-2013-02140
000133741 041__ $$aEnglish
000133741 1001_ $$0P:(DE-Juel1)138890$$aPecanac, Goran$$b0$$eCorresponding author$$gmale$$ufzj
000133741 245__ $$aThermo-mechanical Investigations and Predictions for Oxygen Transport Membrane Materials$$f2013-01-28
000133741 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2013
000133741 300__ $$a143 S.
000133741 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s133741
000133741 3367_ $$02$$2EndNote$$aThesis
000133741 3367_ $$2DRIVER$$adoctoralThesis
000133741 3367_ $$2BibTeX$$aPHDTHESIS
000133741 3367_ $$2DataCite$$aOutput Types/Dissertation
000133741 3367_ $$2ORCID$$aDISSERTATION
000133741 4900_ $$0PERI:(DE-600)2445288-9$$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v178
000133741 502__ $$aRWTH Aachen, Diss., 2013$$bDr.$$cRWTH Aachen$$d2013
000133741 500__ $$3POF3_Assignment on 2016-02-29
000133741 520__ $$aOne of the most efficient ways to realize an Oxy-fuel process is the utilization of ceramic oxygen transport membranes (OTMs) for air separation, since this process provides a significantly lower efficiency loss compared to conventional cryogenic separation technologies. Driven by the difference in oxygen partial pressure, the oxygen transport takes place via oxygen vacancies in the crystal lattice of the membrane. Thin membrane layers supported by a porous substrate are considered as the most efficient design solution for such air separation units. The porous substrate should provide mechanical stability of the entire membrane structure. The operational temperatures are rather high, since the release of oxygen atoms from the lattice at elevated temperatures aids the transport processes. Due to their favorable permeation properties, which are an essential functional prerequisite, several materials were suggested as promising membrane and substrate materials, namely: Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$, La$_{0.58}$Sr$_{0.4}$Co$_{0.2}$Fe$_{0.8}$O$_{3-\delta}$, Ce$_{0.9}$Gd$_{0.1}$O$_{1.95-\delta}$ and as alternative substrate material, the novel Fe21Cr7Al1Mo0.5Y alloy. The current study aims at the thermo-mechanical characterization and comparison of those materials. Fundamental mechanical characteristics such as elastic behavior and fracture properties were evaluated to warrant the long-term functionality of these materials. However, the long-term reliability of the component does not only depend on its initial strength, but also on strength degradation effects. In particular, the sensitivity to environmentally enhanced crack propagation at subcritical stress levels was assessed and also used as a basis for a strength–probability–time lifetime prediction. Creep behavior and time to rupture were characterized, since at operation relevant (elevated) temperatures long-term failure may occur due to creep damage. The mechanical limit of the thin membrane layer and its effect on the stability of the substrate material was also addressed. Complementary numerical simulations were carried out to permit an assessment of the experimentally obtained mechanical characteristics since standard analytical relationships (ASTM C 1499) are limited to flat mono-layer specimens. The mainly experimentally based work was additionally supported by numerical simulations to assess the effects of the final membrane´s geometrical arrangement (i.e. tubular and planar) and thickness ratios of particular layers, in order to optimize the membrane design.
000133741 536__ $$0G:(DE-HGF)POF2-122$$a122 - Power Plants (POF2-122)$$cPOF2-122$$fPOF II$$x0
000133741 650_7 $$0V:(DE-588b)4012494-0$$2GND$$aDissertation$$xDiss.
000133741 8564_ $$uhttps://juser.fz-juelich.de/record/133741/files/Energie%26Umwelt_178.pdf$$yOpenAccess
000133741 8564_ $$uhttps://juser.fz-juelich.de/record/133741/files/Energie%26Umwelt_178.ps$$yOpenAccess
000133741 8564_ $$uhttps://juser.fz-juelich.de/record/133741/files/Energie%26Umwelt_178.gif?subformat=icon$$xicon$$yOpenAccess
000133741 8564_ $$uhttps://juser.fz-juelich.de/record/133741/files/Energie%26Umwelt_178.gif?subformat=icon-700$$xicon-700$$yOpenAccess
000133741 8564_ $$uhttps://juser.fz-juelich.de/record/133741/files/Energie%26Umwelt_178.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000133741 8564_ $$uhttps://juser.fz-juelich.de/record/133741/files/Energie%26Umwelt_178.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000133741 8564_ $$uhttps://juser.fz-juelich.de/record/133741/files/Energie%26Umwelt_178.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000133741 909__ $$ooai:juser.fz-juelich.de:133741$$pVDB
000133741 909CO $$ooai:juser.fz-juelich.de:133741$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000133741 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000133741 9141_ $$y2013
000133741 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138890$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000133741 9132_ $$0G:(DE-HGF)POF3-119H$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vAddenda$$x0
000133741 9131_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000133741 920__ $$lyes
000133741 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000133741 9801_ $$aFullTexts
000133741 980__ $$aphd
000133741 980__ $$aUNRESTRICTED
000133741 980__ $$aJUWEL
000133741 980__ $$aFullTexts
000133741 980__ $$aI:(DE-Juel1)IEK-2-20101013
000133741 980__ $$aVDB
000133741 981__ $$aI:(DE-Juel1)IMD-1-20101013