000133834 001__ 133834
000133834 005__ 20210129211540.0
000133834 037__ $$aFZJ-2013-02225
000133834 1001_ $$0P:(DE-Juel1)138870$$aGunel, Yusuf$$b0$$eCorresponding author
000133834 1112_ $$aInternational Conference on the Physics of Semiconductors 2012$$cZürich$$d2012-07-27 - 2012-08-03$$wCH
000133834 245__ $$aSupercurrent and Magnetoresistance Oscillations inNb/InAs-Nanowire/Nb Josephson junctions
000133834 260__ $$c2012
000133834 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1367913869_965$$xAfter Call
000133834 3367_ $$033$$2EndNote$$aConference Paper
000133834 3367_ $$2DataCite$$aOther
000133834 3367_ $$2ORCID$$aLECTURE_SPEECH
000133834 3367_ $$2DRIVER$$aconferenceObject
000133834 3367_ $$2BibTeX$$aINPROCEEDINGS
000133834 520__ $$aOne of the common goals in semiconductor/superconductor hybrid de-vices is to fabricate Schottky barrier free contacts at the interface of  the two materials.[1] The natural formation of an electron accumu-lation layer on InAs surfaces prohibits the formation of a Schottky  barrier. Therefore this material became the most preferred one for  semiconducting weak links in Josephson junctions. This unique prop-erty of InAs in combination with the bottom-up growth approach of  nanowires, led to many interesting experiments, e.g. tunable super-currents or Cooper pair beam splitters.[3]  In these experiments aluminum (Al) was used as a superconducting  material, which has a low critical temperature (Tc) and a low critical  magnetic eld (Bc). As an alternative, we have used superconduct-ing Niobium (Nb) with a high Tc and Bc that oers the advantage  to study Josephson properties in dierent regimes. In this report, we  have used InAs nanowires with two dierent bulk carrier concentra-tions, i.e.  10  18  cm  3  (low doped) and  10  19  cm  3  (highly doped).  The contacting process of Nb electrodes has been realized by standard  electron beam lithography.  We systematically investigated the basic Josephson properties, i.e.  the eect of temperature, magnetic eld and electric eld on the super-current through InAs nanowires. By taking advantage of the high Tc  ( 9:3K) of the superconducting Nb, we were able to measure a super-current up to 4.0K. The highest critical current Ic  100nA has been  measured at 0.4K for a junctions with a highly doped InAs nanowire.  For low doped nanowire Josephson junctions, a full control of the su-percurrent has been achieved by applying a gate bias. We have found  a monotonous dependence of the measured critical current in the pres-ence of a perpendicular magnetic eld rather than a Fraunhofer-like  diraction pattern. The experimental results have been compared to a  recent theoretical model of Ref.[4] In addition, we studied the supercur-rent and conductance   uctuations as a function of gate voltage. Here,  a remarkable enhancement of the conductance   uctuation amplitude  has been observed. In the last part, we have studied the magnetore-sistance oscillations in the voltage state of Josephson junctions.  [1] Th. Schapers, Superconductor/Semiconductor Junctions, 174  (Springer Tracts on Modern Physics, 2001)  [2] Y.-J. Doh, J. A. van Dam, A. L. Roest, E. P. A. M. Bakkers, L.  P. Kouwenhoven, and S. D. Franceschi, Science 309, 272 (2005)  [3] L. Hofstetter, S. Csonka, J. Nygard, and C. Schonenberger, Na-ture 461, 960 (2009)  [4] J. C. Cuevas and F. S. Bergeret, Phys. Rev. Lett. 99, 217002  (2007)
000133834 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000133834 7001_ $$0P:(DE-Juel1)128516$$aBatov, Igor$$b1
000133834 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b2
000133834 7001_ $$0P:(DE-Juel1)128635$$aSladek, Kamil$$b3
000133834 7001_ $$0P:(DE-Juel1)144014$$aWinden, Andreas$$b4
000133834 7001_ $$0P:(DE-Juel1)128645$$aWeis, Karl$$b5
000133834 7001_ $$0P:(DE-Juel1)128715$$aPanaitov, Gregory$$b6
000133834 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b7
000133834 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b8
000133834 909CO $$ooai:juser.fz-juelich.de:133834$$pVDB
000133834 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138870$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000133834 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128516$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000133834 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000133834 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128635$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000133834 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144014$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000133834 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128645$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000133834 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128715$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000133834 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000133834 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000133834 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000133834 9141_ $$y2012
000133834 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000133834 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x1
000133834 980__ $$aconf
000133834 980__ $$aVDB
000133834 980__ $$aUNRESTRICTED
000133834 980__ $$aI:(DE-Juel1)PGI-9-20110106
000133834 980__ $$aI:(DE-Juel1)PGI-8-20110106
000133834 981__ $$aI:(DE-Juel1)PGI-8-20110106