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Abstract

The first installed ATLAS BLAS library on ZAMpano, release 3.0 beta,
only contained single processor BLAS for Pentium II processors. It showed
good performance and could be used in combination with OpenMP. Now
there is a version 3.2.1 for Pentium III multiprocessor machines which is al-
ready parallel. We compare the parallel version from ATLAS with the single
processor ATLAS with OpenMP.
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1 Introduction

The Basic Linear Algebra Subroutines BLAS [2] are the key to good performance
of many numerical programs on today’s computers. On many but not on all com-
puters there are vendor optimized versions available. As an alternative there is
the ATLAS (Automatically Tuned Linear Algebra Subroutines) [3] project which
provides automatically tuned versions of the BLAS for a lot of architectures. ZAM-
pano [1] is a cluster of eight 4-processor Pentium III nodes with Linux operating
system. The only BLAS on that computer were delivered with the Portland Group
Fortran compiler, and they are not optimized. The performance of DGEMM there
is up to 10 times slower than the performance of ATLAS BLAS.
The ATLAS BLAS, release 3.0 beta from December 1999, installed on ZAMpano
in spring 2000, did not contain a version for multiprocessor Pentium IIIs. The only
available architecture was a single processor version for Pentium II. As we wanted
to study shared memory parallelism during a guest student program [5] we wrote
an OpenMP [4] version of DGEMM, the routine for matrix-matrix multiplication.
The matrix-matrix multiplication routine is the one with the highest performance
as the computation to load ratio is best for this routine. So parallelization makes
sense for this routine. OpenMP parallelization worked fine with the single proces-
sor ATLAS BLAS.
Now there is a new release, 3.2.1, available which contains a version for Pen-
tium III 4 processor nodes like the ZAMpano nodes. There is a single-processor
and a shared-memory parallel library. We compared the shared-memory parallel
DGEMM from ATLAS 3.2.1, arch=PIII 4 with the OpenMP parallelized versions
both with ATLAS 3.0 beta and 3.2.1 single processor. Additionally we compared
the single processor versions from release 3.0 beta and 3.2.1. There were no sig-
nificant differences.
We measured execution times and MFLOPS for DGEMM:

C = αop(A) × op(B) + βC

for square matrices A, B, and C and all cases for op:

• NN = no matrix transposed

• NT = first matrix not transposed, second matrix transposed

• TN = first matrix transposed, second matrix not transposed

• TT = both matrices transposed

The times were measured with the routine rtc written in ZAM based on the run-
time-clock. This was the only way to get high resolution timings. Additionally
small problems were run 10-20 times and the execution time of running the routine
several times was divided by the number of repetitions.
The MFLOPS were computed dividing the number of floating-point operations
needed for a general matrix-matrix multiplication, 2n3 for square matrices of size
n, by the execution times measured.
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2 Results of Single-processor ATLAS DGEMM

Figures 1 and 2 show the same pattern for small matrices although the new release
is slightly slower than the old one. Whereas the old version reaches about 400
MFLOPS for some matrix sizes smaller than n = 108 and the second matrix trans-
posed the new version reaches only less than 390 MFLOPS. The difference gets
smaller for matrix sizes between n = 108 and n = 120 and almost vanishes for
n = 128 where the performance of both versions breaks in slightly in all cases.
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Figure 1: MFLOPS, small problems (n = 100 − 130), all cases, ATLAS release 3.0 beta
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Figure 2: MFLOPS, small problems (n = 100 − 130), all cases, ATLAS release 3.2.1
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On the other hand with the new release the differences between the four cases
become smaller.
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Figure 3: MFLOPS, medium size problems (n = 120 − 1100), all cases, ATLAS release
3.0 beta
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Figure 4: MFLOPS, medium size problems (n = 120 − 1100), all cases, ATLAS release
3.2.1

From figures 3 and 4 it can be seen that for matrix sizes between n = 100 and
n = 800 both versions show comparable results and that for larger n the new
release becomes slightly faster.
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Figures 5 and 6 both show significant performance degradations for n = 1024 and
n = 2048, the latter is even stronger in the new release of ATLAS. The case with
both matrices transposed becomes less efficient than the other cases for n ≥ 1800
with ATLAS release 3.0 beta and for n > 1400 with ATLAS release 3.2.1. We
don’t have an explanation for this behaviour.
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Figure 5: MFLOPS, large problems (n = 1000−2200), all cases, ATLAS release 3.0 beta
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Figure 6: MFLOPS, large problems (n = 1000− 2200), all cases, ATLAS release 3.2.1
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3 Results of 4-processor ATLAS DGEMM

On the four processors of a single ZAMpano node we measured performance
of a self-written DGEMMOMP using BLAS from ATLAS 3.0 beta and single
node BLAS from ATLAS 3.2.1 and OpenMP as well as the 4-processor parallel
DGEMM from ATLAS 3.2.1.
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Figure 7: MFLOPS, no matrix transposed, ATLAS 3.0 and 3.2.1 with OpenMP, ATLAS
3.2.1 parallel version, only highest MFLOPS values (n = 100 − 200).
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Figure 8: MFLOPS, no matrix transposed, ATLAS 3.0 and 3.2.1 with OpenMP, ATLAS
3.2.1 parallel version, highest and lowest MFLOPS values (n = 200 − 220).
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We took the following matrix-sizes:n = 64 to 2048 in steps of 64, n = 100 to
2000 in steps of 100, n = 100 to 120 in steps of 1, n = 1024 to 4096 in steps of
64, n = 4096 to 7680 in steps of 256, n = 100 to 4000 in steps of 100, n = 4200
to 7500 in steps of 300, n = 200 to 220 in steps of 1, n = 210 to 1000 in steps
of 30, n = 100 to 450 in steps of 10. The largest problem we could measure was
n = 7680, for larger n there was not enough memory to allocate all matrices and
the test results.
For n = 180, 450, 10 we measured at least twice and took the fastest and the
slowest execution time and MFLOPS for each n, as in that range those values
often differed very much.
For n = 100 to n = 200 we often did only one measurement or we only took the
fastest time, so the deviations cannot be seen in that range.
From figure 7 it can be seen that for very small problem sizes the MFLOPS values
for parallel execution of the self-written routines can be rather high, whereas fig-
ure 8 shows that for n > 200 the parallel performance decreases strongly for the
self-written routines. The MFLOPS values of the parallel ATLAS routines remain
almost contant from n = 100 to n = 220.
The MFLOPS values of the self-written OpenMP version vary heavily whereas the
parallel BLAS from ATLAS are rather stable for problem sizes between n = 200
and n = 220 and they are in general faster than the self-written ones.
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Figure 9: MFLOPS, no matrix transposed, ATLAS 3.0 and 3.2.1 with OpenMP, ATLAS
3.2.1 parallel version, highest and lowest MFLOPS values (n = 220 − 450).

Figure 9 shows that for n > 220 the self-written OpenMP routines can be faster and
slower than the ATLAS parallel ones as the highest MFLOPS value is often higher
and the lowest lower than the one of the ATLAS parallel routine. The performance
of all versions converge as the matrix size approaches n = 450, so for n > 450 we
only measured once or took the highest performance.
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Figure 10: MFLOPS, no matrix transposed, ATLAS 3.0 and 3.2.1 with OpenMP, ATLAS
3.2.1 parallel version, only highest MFLOPS values (n = 500 − 3000).
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Figure 11: MFLOPS, no matrix transposed, ATLAS 3.0 and 3.2.1 with OpenMP, ATLAS
3.2.1 parallel version, only highest MFLOPS values (n = 3000− 7700).

For n being a power of two, i.e. n = 1024, 2048, and 4096 and also for n = 6144
there is a ”break down” of the performance with all versions. The performance of
the ATLAS parallel routine is generally slower than the performance of the self-
written OpenMP routine for n < 4500 and is higher or the same for larger n.
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For small matrices the results are almost identical for the three cases NN, NT,
and TT. The performance for small matrices changes dramatically in the case TN.
Figures 12 to 14 show that the performance of the self-written OpenMP code is
almost constant and nearly as high as for large matrices. The ATLAS parallel code
performs significantly slower for matrix sizes up to 200 and still slower for matrix
sizes up to 400.
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Figure 12: MFLOPS, first matrix transposed, ATLAS 3.0 and 3.2.1with OpenMP, ATLAS
3.2.1 parallel version, only highest MFLOPS value (n = 100 − 200).
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Figure 13: MFLOPS, first matrix transposed, ATLAS 3.0 and 3.2.1with OpenMP, ATLAS
3.2.1 parallel version, highest and lowest MFLOPS value (n = 200 − 220).
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Figure 14: MFLOPS, first matrix transposed, ATLAS 3.0 and 3.2.1with OpenMP, ATLAS
3.2.1 parallel version, highest and lowest MFLOPS value (n = 220 − 450).

For n ≥ 500 the results are similar in all cases. For n > 4000 there is no significant
difference in performance between the different cases and between self-written
OpenMP code and ATLAS parallelized version.
For very small matrices, i.e. n < 200 and for matrices with 500 ≤ n ≤ 4000 the
self-written OpenMP parallelized routine DGEMMOMP is often faster than the
ATLAS parallelized one, for the rest of the matrix sizes it is the other way round.
So in general it is not necessary to parallelize on ones own, the parallel ATLAS
BLAS are rather good.
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4 Speedups

Speedups were only measured for ATLAS BLAS release 3.2.1 as single processor
BLAS and for matrix sizes up to n = 4200 (as the execution times on one pro-
cessor exceeded 5 minutes for n > 3900). We measured speedup by dividing the
execution time with the single processor ATLAS 3.2.1 by the execution times with
the self-written OpenMP version with ATLAS 3.2.1 single processor Blas and the
parallel version of ATLAS 3.2.1.
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Figure 15: Speedups, no matrix transposed, ATLAS 3.2.1 with OpenMP, ATLAS 3.2.1
parallel version, only shortest execution times (n = 100 − 200).

Now we always took only the shortest execution times even in those cases where
shortest and highest execution times differed very much.
For the three cases, no matrix transposed, second matrix transposed, and both ma-
trices transposed, the speedup curves are almost the same which is not surprising
as the MFLOPs rates were almost the same, too.
Figures 15 and 16 show excellent speedup values of often more than 3.5 for very
small problem sizes of n ≤ 180 with the self-written OpenMP parallelized routine.
The speedup then decreases dramatically to often less than 2 and even a slow-down
can be seen in some cases even for the fastest execution of the OpenMP parallel
routine. For n > 250 the speedup starts exceeding 2.5 with some ”break-ins” until
it stabilizes at a value a little larger than 3 for 400 < n < 500.
The speedup of the parallel BLAS routine from ATLAS 3.2.1 on the other hand is
rather stable for all values on n. It starts at 1.5 for n < 120 and remains about 2
until n = 219, then it slightly increases (again with some ”break-ins”) to values
about 3.5-3.6 for n > 2000.
Figure 16 shows that at least for 200 ≤ n ≤ 220 the speedup of the parallel routine
from ATLAS 3.2.1 is higher than the speedup of the self-written OpenMP routine,
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Figure 16: Speedups, no matrix transposed, ATLAS 3.2.1 with OpenMP, ATLAS 3.2.1
parallel version, only shortest execution times (n = 200 − 220).
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Figure 17: Speedups, no matrix transposed, ATLAS 3.2.1 with OpenMP, ATLAS 3.2.1
parallel version, only shortest execution times (n = 220 − 500).

but figures 18 and 19 show that for n > 500 more often the self-written routine
reaches the higher speedups.
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Figure 18: Speedups, no matrix transposed, ATLAS 3.2.1 with OpenMP, ATLAS 3.2.1
parallel version, only shortest execution times (n = 500 − 2200).
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Figure 19: Speedups, no matrix transposed, ATLAS 3.2.1 with OpenMP, ATLAS 3.2.1
parallel version, only shortest execution times (n = 2000 − 4200).

All speedup curves show that a parallelization of BLAS routines on one node of
ZAMpano makes sense for matrix sizes n > 300 and for 100 ≤ n ≤ 120 with
OpenMP using ATLAS single processor BLAS.
Using the parallel BLAS from ATLAS 3.2.1 pays off for matrix sizes of n >

500 and although it is often slightly slower than self-written OpenMP parallelized
BLAS, there is no real need for the self-written routine.
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As expected from the MFLOPS the case with the first matrix transposed shows
different speedup behaviour than the other three cases for n < 500 and almost the
same behaviour for larger n.
The speedup for small problems remains at a value of about 3.5 with the self-
written OpenMP parallelized BLAS and about 2.5 for n ≤ 220 and 3.0 for 220 <

n ≤ 500 with the parallel ATLAS BLAS. With growing n it approaches a value of
3.6 as in all other cases.
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Figure 20: Speedups, first matrix transposed, ATLAS 3.2.1 with OpenMP, ATLAS 3.2.1
parallel version, only shortest execution times (n = 100 − 200).
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Figure 21: Speedups, first matrix transposed, ATLAS 3.2.1 with OpenMP, ATLAS 3.2.1
parallel version, only shortest execution times(n = 200 − 220).
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Figure 22: Speedups, first matrix transposed, ATLAS 3.2.1 with OpenMP, ATLAS 3.2.1
parallel version, only shortest execution times (n = 220 − 500).

References

[1] ZAMpano - ZAM Parallel Nodes
http://zampano.zam.kfa-juelich.de

[2] BLAS - Basic Linear Algebra Subprograms
http://www.netlib.org/blas

[3] ATLAS - Automatically Tuned Linear Algebra Software
http://www.netlib.org/atlas

[4] OpenMP
http://www.openmp.org

[5] T. Betcke, Performance Analysis of various parallelization methods for
BLAS3 routines on cluster architectures, in: Beiträge zumWissenschaftlichen
Rechnen, Ergebnisse des Gaststudentenprogramms 2000 des John von
Neumann-Instituts für Computing, R. Esser, D. Mallmann (Hrsg.), Internal
Report, FZJ-ZAM-IB-2000-15

14


