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1 The Basics of Scattering Theory
Each of the scattering probes that we discuss here, be they particles or waves, permit, according
to the tenets of quantum mechanics, a description of either sort. In fact, the wave theory is
the best adapted as the unified framework that we will set up here. The incident beam will be
treated as monoenergetic and unidirectional – and thus as a plane wave, with incident wave field

Ψinc(r) = Aeik·r (1)

→

→
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k’

Fig. 1: A schematic of the scattering process from an atomic target. The incident plane
wave (wavy line) has wavevector k; its constant-phase fronts are shown as straight lines.
The scattered wave is an outgoing spherical wave (circles) going out in all directions, in-
cluding in the wavevector direction k′.

The energy of the incident scatterer is a function of the magnitude of the wavevector |k|; for
nonrelativistic electrons or neutrons, E = ~2k2/2m, and for light, E = ~ck. The direction of
propagation is of course the direction of the vector k, which will be conveniently described in
spherical polar coordinates using angles (θ, ϕ) = Ω. We assume that there is a small scattering
target fixed at the origin. In the relevant wave equation, this scatterer will be described by a
potential energy function V (~r). The “interaction region“ |r| < r0 is assumed to be the only
region in which V (~r) 6= 0. Outside this interaction region the wave field also contains an
outgoing spherical wave of the form

Ψscat = Af(Ω)
eikr

r
(2)

We have specialized to elastic scattering (appropriate for most of the scattering experiments
considered in this chapter), so that the magnitude of the incident and scattered wavevectors k
are the same.
The quantity f(Ω) is the central focus of our attention, describing the amount of scattering in
the direction of the solid angle Ω. Note that the complex quantity f has units of length – it is a
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Fig. 2: Geometry of the scattering process.

”scattering length”. It in fact directly indicates the normalized scattering flux ∆σ(Ω) in a cone
of solid angle ∆Ω (see Fig. 2), in the direction Ω, for unit incident wave flux density:

∆σ = |f(Ω)|2dΩ (3)

The total scattering cross section is

σ =

∫
|f(Ω)|2dΩ (4)

We see that the phase of the complex scattering length f(Ω) does not appear in any of our
expressions; however it is very important in the interference that occurs in scattering from two
different scattering centers. This effect is beyond the scope of the present chapter.
For completeness, we note the other important quantity, the differential scattering cross section,
which is simply the integrand of the quantity above:

dσ

dΩ
= |f(Ω)|2 (5)

We end this section with a simple physical picture of the scattering cross section. Naturally,
the above discussion implies that the full wave field is given by the sum of the incident and
scattered waves, which is correct in the Born approximation:

Ψtot(r) = A

(
eik·r + f(Ω)

eikr

r

)
(6)

This Born approximation expression does not take account of the fact that the flux of the incident
beam is affected (and depleted) by scattering. The amount by which it is depleted is exactly the
flux density through the area σ. One can have a simple picture of this result: the depleting effect
of the scatterer is exactly the same as that of a fully absorbing screen with area σ (Figure 2).
The common unit for σ in scattering physics is the barn, which, at 10−28m2, is actually a large
unit of area in many areas of particle and nuclear physics. The term originates from the 20th
century American taunt to a poor thrower, “You couldn’t hit the broad side of a barn.”
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Fig. 3: A schematic of the square of ther real part of the polarizability (χ′(ω))2 versus
frequency ω. We see the low frequency, Rayleigh part (frequency independent), a complex
intermediate frequency range in which anomalous dispersion and absorption occur, and
then a high-frequency, Thompson part (going line 1/ω4).

2 The Scattering of Electromagnetic Radiation from Atoms
While we will in this school primarily be concerned with high-energy scattering probes such
as X-rays, we begin this discussion at the low-energy (that is, the low-frequency) end of the
spectrum. An electromagnetic wave comprises transverse, perpendicular oscillating electric
and magnetic fields. We first consider the effect of the electric fields on a target atom. At low
frequencies, below that of any atomic resonances, the applied field will polarize the electrons
bound to the atom, producing an electric polarization P proportional to the strength of the
electric field:

P (ω) = χ(ω)E(ω) (7)

At low frequencies, the electric polarizability of the atom χ(ω) is independent of frequency
ω. The resulting electric dipole oscillating with angular frequency ω, P (ω)eiωt, will radiate
an outgoing spherical wave – this is the scattered wave of our general scattering theory. From
classical electromagnetic theory, the efficiency with which this dipole radiates energy scales like
the fourth power of the frequency; the net result for the scattering cross section is the formula
for Rayleigh scattering:

σR(ω) =
8π

3

ω4

(4πε0c2)2
(χ(0))2 (8)

Recall that this ω4 dependence gives Rayleigh’s explanation that the sky is blue.
Passing over the visible and ultraviolet region of the spectrum where atoms show complex
resonant behavior in their scattering cross section (Figure 3), we consider a regime where the
frequency is high enough that the binding of the electron to the atom is irrelevant; the electron
oscillates as if it were in free space. In this regime a calculation of the oscillating dipole P (ω)
is again straightforward, since it simply requires the calculation of the periodic displacement of
a free particle subject to a sinusoidal force. The result in this regime is
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χ(ω) =
e2

meω2
(9)

The higher the frequency, the smaller the polarizability, because the electron has a shorter time
in which to move. The scattering formula Eq. (8) still applies, so we get the simple, frequency-
independent result for the cross section contribution per electron:

Fig. 4: Polar plot of the Klein-Nishina formula for the differential scattering cross section
of X-rays by electrons. At low frequency the scattering goes to that of a classical dipole; at
high frequency (the Compton regime) the cross section becomes more and more forward
directed, best described as energy- and momentum-conserving photon-electron collisions.
From [1].

σT =
8π

3
r2e (10)

This is the regime of Thompson scattering. Here

re =
1

4πε0

e2

mec2
≈ 2.8× 10−13cm (11)

is the so-called classical electron radius.
Even though the binding of the electron to the atomic nucleus is irrelevant in the Thompson
scattering regime, it should be understood that, in the regime of low excitation intensity, the
nevertheless remains associated with the atom, so long as the distance over which the electron
travels under the influence of the time-oscillatory force is much smaller than the atomic radius.
In this regime, X-ray scattering is non-destructive. Naturally, if the excitation intensity is raised
to the point where this oscillation distance becomes comparable to or greater than the atomic
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radius, we enter the regime of high-intensity effects, which can very realistically be achieved
with strong X-ray sources such as the free-electron laser (FEL). In that case the X-ray probe
is destructive, causing ionization and disruption of chemical structure, so the time available for
this scattering probe to give useful information about condensed matter is limited.
Of course a more complete calculation is possible; the result for the differential cross section is

dσ

dΩ
=
r2e
2

(
1 + cos2 θ

)
. (12)

The angular dependence appears in Fig. 3, showing the dipolar form that is also characteristic of
the Rayleigh scattering regime. This figure shows the result of a much more general calculation
due to Klein and Nishina [1], who calculated this scattering taking quantum and relativistic
effects into account. The Klein-Nishina formula for the differential cross section is

Fig. 5: Scattering geometry for discussion of atomic form factor.

dσ

dΩ
=
r2e
2
P (ω, θ)2

(
P (ω, θ) + P (ω, θ)−1 − 1 + cos2 θ

)
. (13)

Here the factor
P (ω, θ) =

1

1 + (~ω/mec2)(1− cos θ)
(14)

has a simple kinematical interpretation when we take the quantum point of view and consider
the light to consist of particles (photons): it is the ratio of the photon energy after the scattering
event to its original energy before scattering. Note that in the limit of small ω, P (ω, θ) = 1
and this expression reduces to the one for Thompson scattering. At high frequencies, when the
photon energy ~ω becomes comparable to the rest energy of the electron mec

2 = 511keV, the
scattering takes on a different character, and we enter the regime of Compton scattering. The
scattering cross section becomes much more forward-directed, as we can see from the figure;
the energetic photon suffers less and less of a deflection during the scattering from the electron,
the higher its energy is.
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3 Atomic Form Factor for X-rays
The Thompson scattering formula is clearly not the whole story of X-ray scattering from an
atom. Even in the (considerable) frequency range in which The scenario for Thompson scatter-
ing applies (scattering from quasi-free electrons), we need to take account of the fact that the
scattering is from the cloud of electrons that is bound to the atom. This means, in short, that the
scatterers are not all at the origin of the coordinate system, and we must do a calculation to sum
up their contributions.

Fig. 6: The atomic form factor f(Q) for several ions and elements, versus sin(θ)/λ. λ is
wavelength, θ is scattering angle; with another 4π factor this expression is the scattering
wavevector Q. Note that f(0) = Z Z = total number of electrons, not nuclear charge).
From top to bottom these curves are for K+, Cl− (note that these have the same number
of electrons), Cl and O. From [2].

Referring to the figure, we consider each volume element d3r′ to be a source of Thompson
scattering with a strength governed by the probability that an electron is found in this volume
element, which is given by the electron density function according to n(r′)d3r′. The spherical
wave that is emitted from that element involves the factor

n(r′)d3r′
eik0|r−r

′|

|r− r′|
eik0·r′ . (15)

Note that the final factor comes from the phase of the incident plane wave at the scattering point
r′. The overall scattering strength is given by integrating this quantity over the electron cloud:∫

d3r′n(r′)
eik0|r−r

′|

|r− r′|
eik0·r′ . (16)
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Fig. 7: Schematic of X-ray absorption structure, including many edges, for a typical atom
with many inner shells. From [3].

Note that the angular factor from, e.g., the Thompson differential cross section formula will not
appear inside this integral, since we will consider only the far field (i.e., |r| >> |r′|, so that the
angular dependence can be put on as an overall factor once the integral is done.
Since |r− r′| = r − r̂ · r′, we can approximate the integrand by

eik0|r−r
′|

|r− r′|
eik0·r′ ≈ 1

r
eik0rei(k0−k1)·r′ . (17)

Here k1 = r̂k0. We see here appearing the scattering wavevector

Q = k0 − k1 (18)

With this we write our scattering amplitude∫
d3r′n(r′)eiQ·r

′ eik0r

r
= fa(Q)

eik0r

r
. (19)

We identify the Fourier transform of the atomic electron density,

fa(Q) =

∫
d3r′n(r′)eiQ·r

′
, (20)

as the atomic form factor for X-ray scattering. It is a factor that must be accounted for in other
applications of the scattering theory (e.g., for Bragg scattering). For example, it appears this
way in the Thompson scattering differential cross section for an atom,

dσ

dΩ
=
r2e
2
|fa(Q)|2

(
1 + cos2 θ

)
(21)
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We can see several features of the atomic form factor from Fig. 6. It is of course isotropic for
atoms, so this it depends only on |Q|. Its value at zero is very simple:

fa(0) = Z (22)

Z being the total electron number of the atom or ion. The figure shows two cases for which this
number is the same, namely for the ions K+ and Cl−. The extension of these functions is the
reciprocal of the extent of the atomic electron cloud in real space; thus we can observe that the
Cl− ion is considerably more extended than K+.

Fig. 8: Electron inelastic mean free path versus incident electron energy, for a range of
materials. After [4].

4 X-ray Absorption and Dispersion
Our discussion above has so far ignored the phenomenon of absorption of radiation. We can
trace this to our implicit assumption in Eq. (7) that the polarization vector is in-phase with the
applied electric field, so that the polarizability function χ(ω) is real. In fact the polarization has
an out of phase component as well; elementary electromagnetic theory shows that a polarization
oscillating out of phase with the electric field results in absorption of energy. Thus, we write
the polarizability function as the sum of the real and an imaginary part:

χ(ω) = χ′(ω) + iχ′′(ω) (23)

For atoms, χ′′(ω) in the X-ray regime is fairly featureless, except for sharp X-ray edges that
appear when the radiation can eject electrons from the inner electronic shells of the atom. Figure
7 shows the occurrence of these edges, and how they are interpreted in the shell model.
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Fig. 9: Continuous Stopping Distance Approximation (CSDA) range of electrons vs. elec-
tron energy. After [4].

The occurrence of dispersion, significant variation in the lossless response χ′(ω), is intimately
tied to the appearance of structure in the lossy χ′′(ω) as exemplified by edges. This connection
is embodied in the Kramers-Kronig relations. These relations for the χ′(ω) function are

χ′(ω) =
1

π
PV

∫ ∞
−∞

χ′′(ω)

ω′ − ω
dω′, (24)

χ′′(ω) = − 1

π
PV

∫ ∞
−∞

χ′(ω)

ω′ − ω
dω′. (25)

The derivation of these relations is usually presented as an exercise involving Cauchy’s theorem
from complex analysis. I will take a moment to review a less rigorous but more physically
informative demonstration involving only the elementary features of the Fourier transform. This
derivation makes it more clear that the one and only one premise on which the Kramers-Kronig
relations are based is the causality of the response of the system during scattering. Imagine
that the scattering wave impinges as a wave packet on the scatterer, so that the time dependent
electric field E(t) becomes non-zero only after t = 0. The temporal polarization response is
given using the Fourier transform of the polarizability function:

P (t) =

∫ ∞
−∞

χ(t− t′)E(t′)dt′ (26)

But because such a physical response is causal, P (t) = 0 if t < 0; the response cannot begin
before the excitation has arrived. But for χ, this implies that

χ(t) = 0 for t < 0. (27)
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Now, we write χ(t) = χe(t) + χo(t), that is, we decompose χ into a sum of an even function
of time and an odd function of time. Because of the causality condition these two functions are
related:

χe(t) = sgn(t)χo(t) (28)

Here the “sign function” sgn(t) is +1 for t ≥ 0 and −1 for t < 0. Fourier transforming this
equation immediately gives the first Kramers-Kronig relation: The Fourier transform of χe is
purely real and is in fact the real part of χ(ω), χ′(ω). The Fourier transform of the product is a
convolution, the Fourier transform of χo(t) is iχ′′(ω), and the transform of sgn(t) is −i/(πω).
The other relation is obtained similarly.
Hopefully this little discussion takes some of the mystery out of these relations. What do they
have to do with X-ray scattering? We can see the connection by looking at the model of H. A.
Lorentz for absorption based on a model of a damped resonator with resonant frequency ω0.
This is a good model for an electron bound in an atom; it captures only qualitatively the X-ray
absorption edges, which involve not just the oscillation of the electron but also the ejection of
the electrons into a continuum. But the “Lorentzian lineshape” for the absorption in Lorentz’s
model is very simple:

χ′′(ω) =
e2

me

Γω

(ω2
0 − ω2)2 + Γ2ω2

(29)

Here Γ is a linewidth or damping parameter. The Kramers-Kronig relation above requires that
this absorbtion function be accompanied by the following frequency-dependent in-phase polar-
izability:

χ′(ω) =
e2

me

ω2
0 − ω2

(ω2
0 − ω2)2 + Γ2ω2

. (30)

Note that this expression intepolates between the two low-absorption regimes that we have
discussed above: Rayleigh scattering (for ω � ω0, and Thompson scattering for ω � ω0. The
Kramers-Kronig constraints say that there must be a regime of high loss in between, and that the
in-phase polarizibility much also rise to a much higher value than in either of the two limits (in
fact, χ′(ω)max = e2/m(2Γω0+Γ2) ≈ e2/(2mΓω0) for Γ� ω0). This strong enhancement near
an absorption feature of the real part of the polarizability, and therefore of the scattering cross
section, and its strong frequency dependence, is known as anomalous dispersion. As you will
learn elsewhere in this course, this phenomenon is used to enhance the contrast of one atomic
element relative to another in X-ray scattering.
I conclude this section with a brief discussion of magnetic X-ray scattering. I have so far de-
scribed the X-ray scattering process as involving only the electric field of the incident wave.
Naturally, the electromagnetic wave also has a magnetic component, normal to the direction of
propagation and also normal to the electric field. This magnetic field also induces a response,
and causes an additional contribution to the scattered spherical wave. Most importantly, this
scattering is sensitive to the magnetic state of the target – the scattering from an atom will be
different when its spin is up or down. Thus, such contributions to the scattering can distinguish
the magnetic state (ferromagnetic, antiferromagnetic, etc.) of a material. Generally, this mag-
netic contribution to the scattering is weak; the scattering amplitude has a prefactor ~ω/mec

2,
so that this scattering is generically suppressed for X-ray photon energies below 511keV. Wise
use of magnetically-dependent anomalous dispersion can enhance the magnetic signal.
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5 Electron Scattering
The basic physics of the scattering of electrons from matter is the same as that for X-ray pho-
tons: in the quantum theory the electrons have a wave description, and the basic scenario of
scattering, in which there is an incident wave on the target, and an outgoing scattered spherical
wave. The important qualitative distinction between electron scattering and X-ray scattering is
that the strength of electron scattering is much greater than that of X-rays. Electrons will not
penetrate a large thickness of material as X-rays will.
In fact, the scattering cross section for electrons can be deduced directly from the cross sec-
tion for electromagnetic waves, already discussed above. In the electron wave equation (the
Schroedinger equation), the scattering intensity from point r is determined by the potential
function at that point V (r). From a calculation of the scattering problem using this equation,
the scattering form factor is given by the expression

f e(Q) =
2mee

~2

∫ ∞
0

V (r) sin(qr)r2dr

qr
(31)

Note that by convention the form factor for electron scattering also contains the scattering
length; this means that it has units of meters, rather than being dimensionless as the X-ray
form factor is taken to be.
One further step permits f e to be related directly to the X-ray form factor, since we can relate
the scattering potential V (r) to the electron density n(r) whose fourier transform determines
the f(Q) for X-rays. This relation is via the Poisson equation, ∇2V (r) = − e

ε0
n(r). Fourier

transforming this equation and substituting into Eq. (31) gives the Mott-Bethe formula for the
electron form factor for an atom with atomic number Z:

f e(Q,Z) =
mee

2

2π~2ε0

(
Z − f(Q,Z)

Q2

)
(32)

This equation also includes the form factor Z/Q2 for the atomic nucleus.
The principal item of practical interest that I will cover here is the theory of the stopping range
of low-energy electrons in solid matter. For electrons with an incident energy in the range of
5 keV, the basic picture is that electrons slow down by a large sequence of scatterings in the
material, each of which leads to a small loss of energy. We speak of the continuous slowing
down approximation (CSDA) in calculating the electron range. This calculation again involves
the polarizability of constituents χ(ω). When summed over a large number of constituents, this
response is called the dielectric function ε(Q,ω); this expression singles out polarization leading
to a scattering wavevector Q. Then for an electron traveling with energy E, the probability of
energy loss ω over a unit of distance is given by the expression

p(E,ω) =
mee

2

π~2E

∫ q+

q−

Im
(
−1

ε(Q,ω)

)
dQ

Q
(33)

Here ~q± =
√

2mE ±
√

2m(E − ~ω). p(E,ω) is known as the differential inverse mean free
path. The stopping power S(E), which is the energy loss per unit distance travelled along the
electron path, is given by

S(E) =

∫
dE~ωp(E, ~ω) (34)
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Finally, the distance over which the electron is stopped (actually, brought to a nominal kinetic
energy of 10eV) is the CSDA range R0(E), given by

R0(E) =

∫ E

10eV

dE ′

S(E ′)
(35)

In Fig. 8 we show the inelastic mean free path for electrons in a wide variety of solid matierials,
over the range of incident energies from 10 eV to 250 eV. This quantity continues to grow
almost linearly above this energy, up to 2keV. There are two important things to note about this
quantity: it has a minimum at a few tens of eV. Electrons are more penetrating at energies both
above and below this. Second, the scale of this mean free path is very small, being a fraction
of a nanometer over much of this energy range. Just a couple of atomic layers are effective at
blocking the passage of a large fraction of electrons in this energy range.

Fig. 10: Scattering length b for the atomic elements, showing the non-monotone depen-
dence of b on atomic weight, even for isotopes of the same element. See [5].

Finally, Fig. 9 shows a sampling of the total travel range for incident electrons (note the much
greater range of energies than in the previous figure) for several types of solid materials. Note
that the total penetration range never exceeds 1 micrometer for any of the cases shown.

6 Neutron Scattering
The neutron, a particle with no charge, a mass very close to that of the proton, and a spin
magnetic moment about 1000 times smaller than that of the electron, is a very useful scatter-
ing probe. Neutron beams of high intensity and sharply defined energy and direction can be
produced and directed at targets; the neutron’s lack of charge permits low-energy neutrons to
penetrate deeply into matter. The free neutron is unstable; while its decay is fast compared with
many radio-nuclei, at about 10 minutes this time is very long compared with that of the scatter-
ing process and detection, so that this decay can be ignored in discussions of neutron scattering.



A4.14 David P. DiVincenzo

The energy range of the scattering neutrons is usually “thermal”, meaning that the kinetic en-
ergy of the neutrons is reduced by moderation (passage through a non-absorbing material) into
the range of kBT with T ≈ 300K. (Moderation to lower energies is possible.) Monochromators
pick off well defined energies from this moderated collection of neutrons.
Lacking an electric change, the neutron still has two means of interacting significantly with
matter: first, its magnetic moment makes it sensitive to the magnetic scatterers in the target.
Second, the strong nuclear force causes there to be a significant scattering cross section from
each magnetic nucleus. It turns out that these contributions are roughly of the same order of
magnitude, both are very important in the application of neutron scattering.
We will deal first with the scattering arising from the nuclear force. The strong interaction of
the neutron with a many-nucleon atomic nucleus is very complex. However, the description
we need of scattering is very much simpler, because at thermal energies, the wavelength of the
quantum-mechanical (de Broglie) neutron wave is in the vicinity of 0.1 nm, comparable, in
fact, to the internuclear spacings in molecules or solids. This wavelength is very long compared
with the range of the strong nuclear force (about 10−6 nm). Thus, the neutron-nucleus inter-
action may be accurately represented as a delta-function at the origin; this is called the Fermi
pseudopotential. Fermi writes

V (r) =
2π~2

mN

bδ(r) (36)

Here mN is the neutron mass. b has dimensions of a length, and is in fact the s-wave scattering
length; it is also equal to the neutron form factor, since the delta-function form of the potential
means that the form factor has no dependence on the scattering wavevector Q.
In the simplest view b is just a simple scalar number. We must be a little bit more sophisticated,
for several reasons. First, if the target nucleus possesses a non-zero nuclear spin quantum
number I , then the scattering depends on the relative angles of the neutron spin vector s and the
nucleus angular momentum vector I; in general this spin dependence is quite strong. This effect
is included by writing b as

b = bc +
2bi√

I(I + 1)
s · I (37)

Thus, the scattering process takes two parameters to describe; for historical reasons, these pa-
rameters are called the coherent cross section bc and the incoherent cross section bi. In fact both
parameters describe perfectly coherent wave scattering phenomena. However, it is typical in
scattering experiments to have no control over the spin state of the target nucleus (there are now
many exceptions to this); thus it has been traditional to consider the nuclear spin state to be ran-
dom, causing the resulting scattering to be incoherent. We will state shortly the consequences
of this for scattering from atomic crystals.
The second fact about b that we wish to note is that it also possesses an imaginary part ib”.
As with χ′′ above, this constant describes the absorption of neutrons,due to nuclear reactions,
during the scattering. Finally, the b “constants” can also be functions of energy. Generally b′′

has a linear energy dependence, so that in tabulations the scattering energy must be stated. The
real part is in most cases energy independent at thermal energies, although it should be noted
that for a small minority of the atomic nuclei, there are already resonances, with anomalous
dispersion and enhanced absorption, already at low energies.
All these parameters are accurately measured and can be found tabulated, typically with a cou-
ple of digits of accuracy but sometimes much more, for all the isotopes of the periodic table
of elements. Unlike the X-ray and electron scattering lengths, which increase monotonically as



Scattering Interactions A4.15

one moves down the periodic table, the b parameters, which depend on complex details of nu-
clear physics, are already large for the lightest nuclei, and vary tremendously from one element
to the next, and vary to the same degree even for isotopes of the same element. We show this
variation in Fig. 10. So, a crystal of pure He has a perfect periodic structure as seen either by
X-ray scattering or neutron scattering (producing “Bragg peaks”, see Chap B1), because pure
helium consists almost entirely of one spinless isotope, He-4. But a crystal of pure selenium
with equal amounts of Se-74 and Se-76 (these are both natural isotopes of Se, but these are not
the natural abundances) looks highly disordered from the point of view of neutron scattering,
producing a large component of non-Bragg diffuse scattering, because bc for Se-74 and Se-76
are very different (0.8 and 12.2 barns, resp.). On the other hand, a pure crystal of arsenic looks
disordered for the other reason; while there is only one stable isotope As-75, the four different
permitted spin states of the I=3/2 As-75 nucleus scatter with considerably different strengths
(because bi = −0.7 barns).

7 Magnetic Neutron Scattering
The neutron is a chargeless particle, but it has a magnetic moment, which is about the same in
magnitude as the protons, and about 100 times smaller than that of the electron. We analyse the
scattering of the neutron from the field arising from the spin of an electron at position r′:

BS =
µ0

4π
∇r ×

(
µe ×∇r

1

|r− r′|

)
, (38)

here µe = geµBse is the electron spin magnetic moment; the Bohr magneton is µB and the
electron spin operator is se. The field arising from electron orbital motion is

BL = −µ0e

4π

ve × (r− r′)

|r− r′|3
(39)

(we use the Biot-Savart law for a particle with charge −e and velocity ve). Here we further
consider only the spin field, yielding the potential

V (r) = −µnBS = −µn
µ0geµB

4π
∇r ×

∫
dr′se(r

′)×∇r
1

|r− r′|
, (40)

µn is the neutron magnetic moment, and se(r
′) is the electronic spin density. The scattering

amplitude requires a calculation of a double integral

I =

∫
dre−iQr∇r ×

∫
dr′se(r

′)×∇r
1

|r− r′|
(41)

We perform this evaluation in the Furier domain

1

r
=

1

2π2

∫
dq

eiqr

q2
.

One obtains

I = − 1

2π2

∫
dr′
∫

dre−iQr

∫
dqq̂× se(r

′)× q̂eiq(r−r
′) (42)

= −4πQ̂×
∫

dr′se(r
′)× Q̂e−iQr′ .
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Note that the application of ∇rs to the exponential term eiq(r−r
′) results in the simple factors

iq = iqq̂. The integration over r gives the delta function δ(Q − q), permitting the integration
over q to be completed. Specializing to the case of constant spin direction se(r

′) = se(r
′)̂s we

get a scattering amplitude

f(Q) = −µn
2mn

~2
µ0geµB

4π
Q̂× ŝ× Q̂Fmagn(Q), (43)

here we see the magnetic form factor

Fmagn(Q) =

∫
dr′eiQr′se(r

′). (44)

Using the usual cross-product identity a× (b× c) = (a · c)b− (a ·b)c one gets Q̂× ŝ× Q̂ =
ŝ − (̂s · Q̂)Q̂; note that this is the component of ŝ perpendicular to Q̂. Thus the scattering
amplitude (44) is related to the Fourier transform of the spin density component perpendicular
to the scattering vector Q. So, magnetic neutron scattering allows a determination of both
the size and the direction of the magnetisation in a material of interest. Originally neutron
scattering was the only practical probe for the determination of the magnetic structure of solids.
In the present time magnetic X-ray scattering with X-rays produced using synchrotron radiation
sources can also deliver such information.
Let us estimate the magnitude of the magnetic scattering length (43). The neutron magnetic
moment is µn = 1

2
gnµNσ, where gn is the neutron g-factor, µN the nuclear magneton and

σ = 2sn is the Pauli spin operator. We can estimate the prefactor in (43) to be

2mn

~2
µ0

4π
gn

e~
2mp

ge
e~

2me

≈ 4
e4

(4πε0~c)2
4πε0~2

mee2
= 4α2a0,

where gn ≈ −4, ge ≈ −2, mn ≈ mp, µ0 = 1/ε0c
2, the Bohr magneton µB = e~/2me, the

nuclear magneton µN = e~/2mp, the fine structure constant α = e2/4πε0~c and the Bohr
radius a0 = 4πε0~2/mee

2 have been used. Note that α2a0 is the classical electron radius re;
this happens to be in the same range as nuclear scattering lengths b. Thus the nuclear and
magnetic scattering are of competitive size (very much unlike the X-ray case); this means that
interference between the two forms of scattering can in practice occur.
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