
Journal of Internet Services and Applications manuscript No.
(will be inserted by the editor)

Heterogeneous Resource Federation with a Centralized
Security Model for Information Extraction

Milad Daivandy · Denis Hünich · René Jäkel · Steffen Metzger · Ralph

Müller-Pfefferkorn · Bernd Schuller

Received: date / Accepted: date

Abstract With the continuous growth of data gen-

erated in various scientific and commercial endeavors

and the rising need for interdisciplinary studies and ap-

plications in e-Science, easy exchange of information

and computation resources capable of processing large

amounts of data to allow for ad-hoc co-operation be-

comes ever more important. Unfortunately, different

communities often use incompatible resource manage-

ment systems. The goal of this work is to alleviate the

difficulties occurring on bridging the gap between dif-

ferent research eco-systems by federating resources and

thus unifying resource access.

M. Daivandy
Jülich Supercomputing Centre, Forschungszentrum Jülich,
52428 Jülich, Germany
E-mail: j.daivandy@fz-juelich.de

D. Hünich
Center for Information Services and High Performance Com-
puting (ZIH), 01062 Dresden, Germany
E-mail: denis.huenich@tu-dresden.de

R. Jäkel
Center for Information Services and High Performance Com-
puting (ZIH), 01062 Dresden, Germany
E-mail: rene.jaekel@tu-dresden.de

S. Metzger
Max-Planck-Institut for Informatics,
66123 Saarbrücken, Germany
E-mail: smetzger@mpi-inf.mpg.de

R. Müller-Pfefferkorn
Center for Information Services and High Performance Com-
puting (ZIH), 01062 Dresden, Germany
E-mail: ralph.mueller-pfefferkorn@tu-dresden.de

B. Schuller
Jülich Supercomputing Centre, Forschungszentrum Jülich,
52428 Jülich, Germany
E-mail: b.schuller@fz-juelich.de

To this end, our solution presented in this paper out-

lines a secure, simple, yet highly interoperable and flex-

ible architecture using RESTful Web services and Web-

DAV. While, first and foremost in the Grid computing

domain, there are already standards and solutions in

place addressing related problems, our solution differs

from those approaches by allowing for federating data

storage systems that are not aware of being federated.

Access to these is enabled by our federation layer using

storage system specific connectors. Hence, our feder-

ation approach is intended as an abstraction layer on

top of existing storage or middleware solutions, allowing

for a more uniform access mechanism. Additionally, our

solution also allows for submission and management of

computational jobs on said data, thereby federating not

only data but also computational resources. Once re-

source access is unified, information from different data

formats can be semantically unified by information ex-

traction methods. It is our belief that the work in this

paper can complement existing Grid computing efforts

by facilitating access to data storage system not in-

herently available via commonly used Grid computing

standards.

Keywords Grid Computing · Data Federation ·
Metadata Federation · Resource Federation · WebDAV ·
Single Sign-On · Identity Federation · Centralized

Security · Identity Management · Trust Delegation ·
Interoperability · Uniform Access · Information

Extraction · Knowledge Extraction

1 Introduction

In recent years, the transparent and secure handling of

large data sets has become increasingly important for a



2 Milad Daivandy et al.

broad range of different scientific and commercial appli-

cations [7,23], in particular for handling huge amounts

of scientific data for simulation or analysis in various

research fields [6]. In the past years, Grid computing

[17] has evolved for many different disciplines, rang-

ing from solving computationally intensive tasks to the

provision of services for application steering, user man-

agement and the creation of complex workflows, but

also of resources for data management [37]. A strong

advantage of Grid computing is the ability to main-

tain distributed and heterogeneous resources using a

middleware layer for distributing computational jobs

or delegating user access to data storage space. The use

of distributed computing resources becomes more and

more important in many research fields using state-of-

the-art information systems to even enable collabora-

tive work over institutional boundaries. To some extent,

Grid and, more recently, Cloud resources can be used

for distributing computing tasks or providing access to

distributed data resources. Since, generally speaking,

the resource demand in scientific computing is continu-

ously on the rise and the potential for interdisciplinary

work is large, an easy and secure access to computing

resources becomes even more important.

For large-scale projects usually including lots of part-

ners from different organizations, the provision of rel-

evant data can not be assured by a single organiza-

tion alone, but has to be organized among partners

across organizational boundaries. In the past, these ef-

forts were often realized by nation-wide or even inter-

national cross-linking of computing centers providing a

Grid of computing resources [17]. For the scientific com-

munity, this has led to a rather large provision of ac-

cess to High Performance Computing (HPC) and High

Throughput Computing (HTC) resources by large data

centers. Examples for this are XSede [41] in the U.S. or

the EGI federation [11] supported by the EU. Other ap-

proaches, such as the national German Grid Initiative

D-Grid [10], emphasised and spread the idea of using

Grid resources and methods of distributed computing

in general in the their local scientific communities. In

this context, we have examined capabilities for further

decreasing hurdles typically faced by user groups in-

tending to adopt Grid computing to their daily work.

The WisNetGrid [40] project of the aforementioned D-

Grid initiative has investigated a more general approach

for facilitating access to distributed storage solutions in

general, ranging from traditional Grid middlewares over

databases to Web-based resources.

By extending the range to additional data and in-

formation resources in general, the WisNetGrid project

aims at furthering the potential for using data across

different scientific disciplines and related fields, such as

physics, biology, medicine, geographic information and

humanities. Some of the aforementioned knowledge re-

sources are publicly available via the Internet, others

require authentication due to project-specific or com-

mercial constraints. The common theme is that these

resources, sometimes provided by governmental author-

ities [31,36], are often offered as databases or ontolo-

gies and thus might be of interest to interdisciplinary

studies. However, these data are usually not accessible

to Grid computing in a traditional and standardized

manner. By having our access layer support a broader

range of resource types and different underlying access

control mechanisms, our solution is capable of provid-

ing uniform access to most distributed storage systems,

both traditional Grid and non-Grid.

In this paper, we introduce a system for federat-

ing multi-organizational and heterogeneous computer

resources into a uniform namespace and making them

accessible by way of a uniform interface using the widely

supported WebDAV standard. We understand resource

federation as logically joining resources, primarily data

resources, from different distributed heterogeneous re-

sources without moving or copying data from these re-

sources to the resource federation system. Our resource

federation system contrasts from related work in so far

as the resources to be federated are not aware of being

used in a federation context. This means, that a partic-

ular storage system is still being operated by the indi-

vidual institutions or operators and that access modal-

ities already in place are not modified. Our solution

federates storage systems by way of storage system spe-

cific connectors (e. g. a MySQL connector for federating

a MySQL database) running in the federation system

backend and making use of our security model based on

delegated authentication by way of supplied user cre-

dentials. Hence, it is safe to classify our approach as

user-centric. See section 3 for more details regarding

both the architecture and the realization of this feder-

ation mechanism.

Operators of our resource federation system do not

necessarily have to own the distributed resources to be

federated, but have to take care of two matters. First,

they need to negotiate and manage collaborative agree-

ments for partners who wish to participate in the feder-

ation system. Second, they need to provide a connector

element for each storage system to be federated. Al-

though the main focus lies on the federation of data re-

sources, our system also supports submission and man-

agement of jobs operating on these data resources. Also,

this work outlines how essential information contained

in federated data can be further unified and leveraged

by applying information extraction methods. While in-

formation extraction is computationally intensive, our



Heterogeneous Resource Federation with a Centralized Security Model for Information Extraction 3

architecture allows for parallelizable computational re-

sources to be used.

To illustrate how higher-level applications can eas-

ily make use of uniform data access and to provide an

example for data federation and information unifica-

tion, we discuss a use case from the humanities. In this

use case, the information extraction module is a higher-

level application that benefits from uniform access to

data resources provided by the system described in de-

tail in section 3. This enables the extraction module to

provide the user with a uniform representation of infor-

mation found in source files of multiple origins without

the user having to deal with the particular storage sys-

tems involved himself.

In particular, assume a humanities-oriented applica-

tion scenario, where the research community is trying to

link works of and about particular authors. Such works

might be available in digital form, but held by differ-

ent legal entities. In adopting our solution, each group

agreeing to share information only needs to integrate

its data into the federation system, and all commu-

nity members who are granted the corresponding per-

missions can access sources from all participating data

providers via a uniform interface.

Additionally, the extraction system, acting on be-

half of a particular user, can access all files the user

holds access rights for. Thus, it can, for instance, lift en-

tity mentions, i.e. mentions of persons, places etc. onto

a semantically unambiguous level, linking e.g. different

writings of a name or even different names for the same

thing or person. This allows, for instance, to trace a

particular semantic entity in different contexts without

the need for expert users who know all possible ways

the semantic entity could be addressed in these con-

texts. This also allows for interdisciplinary work and

linking sources of different research communities. For

instance, places or persons occurring in literary texts

could be linked with information retrieved from his-

torical or geological information sources. This use case

and the interaction between the high-level extraction

services with the resource federation component is de-

scribed in section 5.

In the following section 2, we discuss our approach

regarding an infrastructural centric view of larger con-

sortia and focusing on technical aspects of related so-

lutions with similar approaches to realizing federated

access to distributed storage systems. We intend for

our resource federation system to strongly support the

user with accessing the resources required for his use

case. To fulfill the aforementioned goals, developing a

flexible and highly interoperable security solution was

essential. Section 4 discusses how our solution is able

to federate different distributed resources by accessing

data from those resources while conforming to respec-

tive resource-specific authentication and authorization

mechanisms.

2 Related Work

In the Grid and Cloud computing domains, middleware

solutions are used as abstraction layers to facilitate ac-

cess to and enable interoperability between (geograph-

ically) distributed computing infrastructures such as

super computers, high-performance clusters and larger

computing centers [18]. For accessing these computing

resources, every middleware offers different services for

job submission and management, data management on

the application level, or user administration for Grid

access and support.

Today, larger consortia have been established to fo-

cus efforts from individual data centers towards a more

service-oriented approach for scientific communities to

use larger computing resources, such as XSede [41] in

the U.S. or data centers unified under the European

Grid Infrastructure (EGI) [11]. This range of services is

provided by a management layer to local data centers

(service providers) running individual HPC or Grid re-

sources. Typically, this does not mean that every provider

offers the same services, either for accessing data stor-

age space or for computing resources. Furthermore, ser-

vices of different middleware solutions might not be

compatible with each other.

The respective types of middleware solutions at par-

ticular data centers might also represent a technical

hurdle to be taken by new user groups, or by trying

to combine existing technical solutions from different

user groups to enable collaborative work between these

groups. Typical hurdles are different security infrastruc-

tures (e. g. authentication via username/password or

X.509 certificates [8]) or differing data representations

(e. g. database or file systems), which are handled dif-

ferently by various middlewares.

Within the context of our project, we have inves-

tigated a more generalized approach for addressing a

broad range of resources, not only Grid middlewares.

Therefore, we do not compete with well-established Grid

computing middlewares. Instead, we offer an additional

way for accessing distributed resources by providing an

additional access mechanism and do not intend to re-

place existing Grid solutions.

A different, but interesting approach to distributed

Grid resources is the access mechanism via science gate-

ways, which also hides the technical details of the spe-

cific data access mechanism or its clients from users and

provides a transparent interface. Several approaches are



4 Milad Daivandy et al.

available to address Grid resources [42,12], but often

with a strong focus on community-only requirements

and services. Sharing data or services among different

groups is still not the main focus of these efforts.

Addressing the latter point, the data integration

layer of three Grid projects from the German Grid ini-

tiative has been analyzed in terms of standardization [30]

on the architectural level, but to our knowledge this

work remains on the conceptual level. To tackle these

interoperability concerns, the EMI project [14] aims at

standardizing services of four different middleware so-

lutions on a technical level. However, while the scope

of the EMI project shares related goals with our work,

EMI solely focuses on Grid resources, whereas our work

additionaly considers non-Grid based data sources.

Using Grid computing, either for data or computing

relevant concerns, also necessitates user authentication

and authorization [22] mechanisms. To facilitate ac-

cess and to increase usability of project-specific Grids,

the development of Web browser based services, called

Grid portals, was observed [15]. This combination of

Web browser access and Grid computing requires pass-

ing user credentials throughout the federation system

to transport user requests from the HTTP layer to

the middleware execution layer. This concept of Sin-

gle Sign-On was first adopted to the Grid computing

domain by using proxy certificates [26,35]. In general,

this concept is also integrated in science gateways as

mentioned before, and is realized in various community

based projects, e.g. as described for PolarGrid [20] or

other community based projects, such as MosGrid [25,

19] (also a D-Grid project). Apart from the authenti-

cation federation via OpenID [32], PolarGrid supports

a more general non-OpenID based mechanism to also

support further authentication services, albeit these are

still in development [20]. Nonetheless, this marks an

interesting approach to extend access and visibility of

Grid computing systems to other access mechanisms

like Social Networks.

A further solution to pass user credentials via Web

Single Sign-On across organizational boundaries is Shib-

boleth [21]. It is based on SOAP Web services [39] and

uses SAML 2.0 [29] to interact with arbitrary iden-

tity providers. Apart from authentication, SAML 2.0

also provides means for authorization and for user at-

tributes (key-value pairs of arbitrary data). In use cases

where components are not based on platforms SOAP

Web services are easily available for or applicable to,

the SOAP Web service dependency of SAML 2.0 can be

a drawback, especially regarding our intention to pro-

vide a highly interoperable system. The GridShib [27,

2] project combined Shibboleth and the Globus Toolkit

to map SAML assertions to X.509 certificates [28]. How-

ever, the drawback is the restriction to the Globus Toolkit.

Concerning Web Single Sign-On in general, [33] out-

lines weaknesses of security protocols based on insecure

properties of Public Key Infrastructure and the Domain

Name System. Furthermore, a more secure cookie type

is introduced and used as part of a proposal for a more

secure Single Sign-On protocol. In contrast to usual

cookies, it also contains a list of public keys denoting

eligible target servers. During the SSL handshake be-

tween a Web browser with such a cookie and the target

server, the target server needs to match one of the afore-

mentioned public keys. A subsequent proof-of-concept

with security evaluation regarding multiple attack types

is given and shows that this concept secures against a

malicious website impersonating a valid target server.

3 Resource Federation

Accessing and manipulating data stored in different

data storage systems such as databases, Grid data man-

agement or file systems within the context of a sin-

gle use case can be difficult and time-consuming. First,

there are many possible data representations (e.g. en-

tries in a database vs. file documents), access and se-

curity protocols. Second, a use case requiring collect-

ing and analyzing data from different data storage sys-

tems must know how to communicate with all of them

and how to interpret the received data. Adding sup-

port for a new type of data storage system necessitates

some sort of connector extension with regard to the re-

quired communication and security protocols, but also

requires support for new data formats. This becomes

increasingly inconvenient as more resources of different

resource types need to be integrated.

In Grid environments, heterogeneous resources are

mostly hidden from the user by a middleware layer

which provides a uniform view on the resources. The

middleware communicates with the underlying resources

and is responsible for transforming client requests into

formats consumable by the actual requested resources

and vice versa. In our case, the aforementioned resources

might be different data storage systems, as described in

the beginning of this section.

3.1 Uniform Access

The resource federation system described in this pa-

per realizes such a middleware layer. It provides uni-

form access by using the WebDAV protocol1, which

1 The specifications can be found online:
http://webdav.org/specs/



Heterogeneous Resource Federation with a Centralized Security Model for Information Extraction 5

is an extension of the HTTP/1.1-protocol2. Although

the HTTP/1.1 protocol already supports methods for

reading (GET), writing (POST/PUT) and deleting

(DELETE) resources, our resource federation system

requires additional methods.

WebDAV provides further operations such as lock-

ing (LOCK/UNLOCK), copying (COPY) and moving

(MOVE) resources on the respective data storage sys-

tems. Furthermore, methods for reading (PROPFIND)

and updating (PROPPATCH) metadata of resources

are supported which allows to represent resources and

corresponding arbitrary metadata with one URI3 even

when they are stored at different locations. The increas-

ing amount of data necessitates the use of data man-

agement systems with metadata management support.

In the context of our work, we identified WebDAV as

a suitable building block for our resource access and

federation system, both regarding data and metadata

management.

To provide the aforementioned uniform access our

architecture consists of the following four components:

SSO Database Stores user information, authentication

data and credentials

SSO Server Central access point of the security infras-

tructure

Credential Manager Graphical user interface for man-

agement of external credentials

Resource Federator Interface between the user and re-

sources

Figure 1 shows how the four components interact with

each other.

Fig. 1 Interaction between the components

2 http://www.w3.org/Protocols/rfc2616/rfc2616.html
3 Unique Resource Identifier

The SSO Database stores user information (e.g. name

or e-mail address), the authentication data for access-

ing the SSO Server (username and password) and ex-

ternal credentials used by the Resource Federator for

delegated user authentication on connected (i. e. fed-

erated) resources. The credential type depends on the

underlying security model of the resource in question

(e. g. a password for a MySQL database or a X.509

certificate for a Grid resource). Credentials are stored

plain or encrypted with the public key provided by the

server running the Resource Federator. The encryption

allows the resource providers to hide security relevant

data from third party systems.

The SSO Server is the only component, which is di-

rectly accessing the SSO Database and is the starting

point for other components requiring security mecha-

nisms. The SSO Server provides both a graphical user

interface and a Web service interface. See section 4.2

for more details.

The federation of resources in our namespace is done

by the Resource Federator instances. Each of those is

able to integrate and process CRUD operations on re-

sources (represented via URIs) depending on the user

privileges and supported functions of the used Connec-

tors (see section 3.2 for further details). The privileges

required to use an integrated resource are composed of

the authentication data (verified by the SSO Server)

and the credentials (verified by the service provider of

the resource).

The Credential Manager provides a graphical user

interface to the external credential management part

of the SSO Server Web service interface. Therefore, the

Credential Manager is populated with URIs to all Re-

source Federator instances in the federation used to

build an internal collection of all federated resources

with corresponding types (e. g. MySQL, IRODS, UNI-

CORE, local file system etc.). This information is used

to generate corresponding input masks for external cre-

dential management. A MySQL input mask provides

fields for username and password specification, whereas

a UNICORE input mask provides a Java Applet (which,

by default, runs locally on the user’s computer) to is-

sue a signed SAML 2.0 trust delegation token using

the user’s private key. Optionally, the user can encrypt

his external credential with the public key of the corre-

sponding Resource Federator instance. Section 4.1 sheds

more light on this security model.

3.2 Resource Federation

The aforementioned resource federation system is com-

posed of three components:



6 Milad Daivandy et al.

– Web Server

– Routing Engine

– WebDAV Server

and is illustrated in Figure 2.

The Web Server interacts with the client according

to the HTTP 1.1 protocol. A request is forwarded to

the Routing Engine and the system’s response is sent

back to the client. The Routing Engine allows to define

routes and to process routed messages using a set of

intermediaries. The resource federation system defines

a route by two endpoints (start and end points) and a

certain number of intermediaries (elements for manip-

ulating messages, from here on individually referred to

as Process). The start point creates an exchange object

(Message), stores the client request and an empty re-

sponse in it and sends it to the endpoint. Before the

message reaches the endpoint it is processed by the fol-

lowing Processes:

Preparation Sets the name of the requested source and

the relative path of the data

Location Loads information about the respective data

storage system

Credential Connects to the Single Sign-On server to

retrieve a user’s external credentials (see section 4.1)

for the data storage system hosting the requested

resource

Connector Provides the interface between the WebDAV

server and the specified data storage system

Exception Aborts the route and provides detailed error

handling for the responses

Preparation scans the requested URI, takes the data

storage system name and the relative path of the re-

quested resource and stores both in Message. Using the

data storage system name, Location loads information

(defined in a configuration file) about this data stor-

age system and adds this information to the Message.

Then, the external credential required to access the re-

quested resource on behalf of the user is retrieved from

the Single Sign-On server and stored in Message. Con-

nector loads the connector for the requested data stor-

age system with the collected credential and location

information and hands it over to Message. The connec-

tor provides methods to process data and metadata: it

is specialized for a certain type of resource and acts as

an interface between the resource and WebDAV Server.

The endpoint of the route creates the WebDAV Server

environment with the collected data in Message and

starts it. WebDAV Server processes the request with

the help of the Connector and generates a response,

which is sent to the Java Servlet in Web Server.

The generic resource federation supports the intro-

duction of new connector types and Process implemen-

Fig. 2 Structure of the Resource Federator.

tations (e.g. a billing process). Therefore, extensibility

does not necessitate source code changes. Instead the

Camel route, defined in the configuration file, must be

changed. It is also possible to use other WebDAV server

implementations or even a completely different proto-

col as endpoint. It is up to the specific user group which

process has to be provided.

3.3 Submission and Management of Computational
Jobs

The architecture just described is not restricted to data

access and manipulation. Other types of resources can

be integrated as well. As a particularly important case,

we have integrated data processing capabilities into our

system. We chose to do this by implementing an con-

nector which can submit jobs to the UNICORE Grid

middleware. The user interacts with this job connector

via a WebDAV directory. Job description documents

can be uploaded (via HTTP POST) into this directory,

while each submitted job corresponds to a file in the

directory. Viewing these job files in a browser or down-

loading them allows to check job status.

The security system described in section 4 is per-

fectly suited to integrate UNICORE resources, since

UNICORE uses a trust delegation system based on

signed SAML 2.0 assertions [3]. UNICORE jobs can

participate in an active security session, and manipu-

late data through the WebDAV interface.



Heterogeneous Resource Federation with a Centralized Security Model for Information Extraction 7

4 Security Federation

As a multi-user distributed system comprised of multi-

ple applications and potentially spanning multiple orga-

nizational boundaries, authentication (identity verifica-

tion) and authorization (access control after successful

authentication) are core requirements of the security

infrastructure to apply.

Both for usability and administration considerations,

a centralized Single Sign-On authentication approach is

suitable for our resource federation system (see section

3). In this context, Single Sign-On is briefly described

as follows: on accessing any given application within the

resource federation system, a yet unauthenticated user

is prompted to supply only one and the same valid secu-

rity credential (a username and password combination)

whereupon he is authenticated to the whole system.

All applications thus protected form a shared Single

Sign-On domain. Single Sign-Off specifies the reverse

property where a user signing off at any given appli-

cation within a Single Sign-On domain automatically

terminates his access to all other applications within

the same Single Sign-On domain.

Authorization comes into play after successful au-

thentication: each subject has a set of roles that are

used for access control.

In addition to this traditional sequence of authenti-

cation and authorization, we needed a trust delegation

mechanism allowing our resource federation system to

act on behalf of users to access federated external re-

sources (see section 3). To this end, our security model

is required to allow a user to manage his respective

resource credentials, giving him the means necessary

to add, configure and remove them. Also, our security

model had to support users interacting with the system

using both Web browsers and WebDAV clients, thereby

necessitating two different security interfaces.

In addition to the aforementioned requirements, our

security model had to accommodate the heterogeneous

and distributed characteristics of the system described

in chapter 3 and thus be interoperable. Finally, we in-

tended our security solution to also be applicable to

similar use cases aiming at heterogeneous resource fed-

eration, albeit without necessitating a complex security

stack imposing too much of an interoperability over-

head (e. g. SOAP-based, which is merited in SAML-

based trust delegation scenarios, but not necessary for

this scenario).

4.1 Security Model

Our security model consists of four actors: security provider,

subject, service provider, and external system. Obvi-

ously, the security provider is the server-side part of

our central security system we labeled ’Single Sign-On

server’. Both terms are used interchangeably.

To define what a subject exactly encompasses, a def-

inition is in order: in the course of this work, we regard

any entity that can make requests to resources secured

by the security provider as a subject. According to this,

a subject can be a human, i. e. a user, or a non-human

entity like a service, an application or, more generally, a

computer system. A principal is an identifying attribute

(or a set thereof) of an authenticated subject, such as a

unique key or a user account. In our security model, it

consists of a unique id, a password, roles, external cre-

dentials and further optional attributes, such as user

details should the subject be a user.

A service provider is an application that delegates

security to a Single Sign-On domain. Situated outside

of a Single Sign-On domain are external systems con-

taining resources a subject has access tokens to. This

signifies use cases where a service provider acts as an

intermediary between a subject and an external system

containing resources requested by the subject. To ful-

fill this function, an intermediary service provider uses

the corresponding external credential of the subject,

thereby making it a necessity for the subject to trust

the service provider with his extended credentials.

An external credential consists of a resource name

denoting the external resource (e. g. a database), the

subjects’s ID on that external system (if applicable)

and the actual credential (e. g. a password). Since the

latter is persisted in serialized form, its format can be

arbitrary. It can be a plain text password, a X.509 cer-

tificate [8] or even a SAML assertion [29].

In this security model, the combination of subject

ID and password is used for authentication to the Sin-

gle Sign-On domain. After successful authentication,

the security provider can map the subject to its corre-

sponding principal and thus provide respective service

providers with its roles for access control and external

credentials for trust delegation. Once authenticated, a

subject is also identified by a unique session, itself con-

sisting of a unique ID and the aforementioned princi-

pal. Said unique session ID is returned to a subject after

successful authentication to be used as an identification

token for subsequent requests. Its validity can be ter-

minated on the client and server sides (see section 4.2

of this chapter).

For trust delegation to work, a subject must pro-

vide external credentials for the external resources he

intends to access. This needs to be done beforehand and

only once, unless the actual access token is changed on

the external system’s side. Optionally, the subject can

opt to encrypt each external credential with the public



8 Milad Daivandy et al.

key of a service provider, thereby restricting access to

that service provider alone that can decrypt this cre-

dential using its private key.

4.2 Components and Interaction

The Single Sign-On server was implemented with the

Java programming language as was the Single Sign-On

client library used by service providers. Furthermore,

principals and corresponding authenticated sessions are

persisted using an extensible persistence layer allowing

for both local and remote databases and thereby im-

plicitly supporting data replication depending on the

specific persistence backend.

The Single Sign-On server offers Web browser and

Web service [39] interfaces, both relying on Transport

Layer Security for channel security. The former uses

Simple Transport Layer Security, the latter requires

mutual authentication using the client-authenticated

extensions.

Fig. 3 Security components

The Web browser interface is required for initial ac-

count registration and for account self-management. It

also serves as the single point of Single Sign-On and

Single Sign-Off for Web browser users and provides ad-

ministrative functions, such as listing, locking, deleting

user accounts and assigning user roles. The aforemen-

tioned unique session ID used as an identification to-

ken is stored as a Cookie in the user’s Web browser,

thereby rendering that Cookie a client-side reference to

the user’s actual session in the Single Sign-On server.

The Cookie is secured by both the ’Secure’ and ’HttpOnly’

options, together limiting Cookie communication to en-

crypted HTTP connections. Cookie validity is termi-

nated by the Single Sign-On server after a session’s

idle time exceeds a customizable global session lifetime.

Client-side Cookie termination is either directly per-

formed by the user via the Web browser interface Sin-

gle Sign-Off, thereby triggering the subsequent dele-

tion of the corresponding session in the Single Sign-On

server. This also leads to the Cookie being deleted in the

user’s Web browser. Closing the Web browser without

performing Single Sign-Off will also delete the Cookie,

but with the session still existing in the Single Sign-On

server until it expires. For Web browser Single Sign-On

to work, a user’s Web browser needs to store one clone

of the aforementioned Cookie for each service provider.

Since Cookies are inherently bound to WWW domains,

we implemented the cross-domain Cookie sharing algo-

rithm outlined in [4].

For our Web service interface, we employed the Rep-

resentational State Transfer (REST) [16] paradigm, since

it uses HTTP methods, thereby only requiring a very

basic and practically ubiquitous Internet protocol. This

design choice was further influenced by the availability

of open-source HTTP client libraries for a plethora of

programming languages and systems, thereby strongly

supporting our goal of providing a highly interoperable

security solution for resource federation and similar use

cases. One of those open-source HTTP client libraries

[38] supports 42 programming and scripting languages.

The Web service interface also provides Single Sign-

On (see figure 4) and Single Sign-Off, but goes fur-

ther by adding means for role and external credential

retrieval. Also, external credentials can be added, up-

dated and deleted. The aforementioned session ID is

supplied as part of the URI of the Web service re-

quest from a Single Sign-On client instance to the Sin-

gle Sign-On server. In the same vein, we decided to use

Javascript Object Notation [9] as data interchange for-

mat, a lightweight text-based open format that lends

itself to data serialization and transmission over com-

puter networks. This combination of HTTP-based Web

service and text-based data interchange format makes

the security provider highly interoperable.

Security delegation for service providers is facili-

tated by way of a high-level Java-based Single Sign-

On client library abstracting from lower-level Web ser-

vice data transformation and transmission technicali-

ties. Thus, each service provider can use its Single Sign-

On client to authenticate and authorize user requests

without having to provide its own fully-fledged secu-

rity system. Non-Java-based service providers need to

provide Single Sign-On client implementations of their

own, which in itself only constitutes a low barrier given

the aforementioned highly interoperable nature of the

Web service interface.



Heterogeneous Resource Federation with a Centralized Security Model for Information Extraction 9

Fig. 5 External credential - based trust delegation

Fig. 4 A yet unauthenticated subject being prompted to au-
thenticate via Single Sign-On during a resource request

To reduce architectural complexity, we opted for

delegating external credential management to a service

provider of its own that makes use of the aforemen-

tioned Web service interface as opposed to integrate it

within the Single Sign-On server. This service provider,

labeled Credential Manager, is a small Java-based Web

application using the aforementioned Single Sign-On

client library to authenticate and authorize users. Once

a user is authenticated, he can use the Credential Man-

ager to create, modify and remove his external creden-

tials.

4.3 Caching

Given the security validation necessary for every sub-

ject request (see figure 4), it is easy to see why this

interaction pattern constitutes a potential bottle neck,

since a service provider needs to verify every request

on secured resources with the security provider. At the

very least, a service provider has to verify that a re-

questing subject is authenticated. It is safe to assume,

that a service provider needs to verify a subject’s roles

for authorization purposes. If trust delegation is em-

ployed, a service provider also has to retrieve a sub-

ject’s external credential(s) from the security provider.

Thus, depending on the security verification pattern re-

quired by a service provider (see figures 4 and 5), one

subject request can necessitate three different request

types with differently sized response data payloads to

be made by a service provider to the security provider.

In the context of a multi-user system where every user

can make concurrent requests, it follows that the net-

work connection between a service provider and the

security provider constitutes a potential bottle neck.

Hence, we decided on a client-side caching approach to

reduce the amount of necessary security verification re-

quests. To this end, each Single Sign-On client caches

Client Session instances, a client-side representation of

the session concept is outlined in section 4.1 of this

chapter. Whenever a user is signed on to the Single

Sign-On domain via a Single Sign-On client, the Sin-

gle Sign-On client creates a corresponding Client Ses-

sion instance containing that subject’s authentication

state, roles and external credentials and puts it into the

cache. This cache is periodically refreshed with fresh

values from the Single Sign-On server. Also, each client

session is only populated with external credentials the

service provider currently requires to fulfill respective



10 Milad Daivandy et al.

subject requests requiring trust delegation towards ex-

ternal systems. Additionally, invalid cached sessions are

detected and disposed of. The client session refresh and

the cache clean-up intervals can be customized by the

service provider. While this approach reduces the time

spent on security verification requests, there is a dis-

connect between cached security state on the service

provider’s side and actual security state on the security

provider’s side. Thus, it is the service provider’s concern

to choose respective values to strike a good balance be-

tween performance and security state consistency.

5 Interactive Information Extraction

In the past two sections, we explained how the feder-

ation layer allows to access distributed data resources

in a uniform way. In this section, we illustrate how the

federated data can also be semantically unified using an

extraction framework that provides semi-supervised ex-

traction methods. In addition, this serves as a use case

to illustrate how higher-level services can make use of

the federation layer to access large heterogeneously dis-

tributed data sets.

To explore the needs of users in real application sce-

narios, we work together with user groups from the hu-

manities, for which large repositories of digitized tex-

tual data became available in recent years. In an ex-

ample setting, we integrated their data into our fed-

eration layer and developed an interactive knowledge

extraction system to help with the analysis of these

large data sets. One goal in this domain is to cross-

analyze the works of, or about particular figures, like
famous authors. By identifying differently formulated

references to semantical identical entities underlying se-

mantic links between documents of different authorship

can be discovered. For instance, when investigating the

life, works and journeys of the famous writer Johann

Wolfgang von Goethe in historical texts, references to

the person Goethe may vary in different texts. In bib-

liographical texts he may be referenced by his full or

partial name. In many letters, however, he is referred

to as ”Herr geheimer Rat”, a reference to an official po-

sition he held. Similarly, names of cities and places can

change over time and even the formulations used to ex-

press certain facts can differ depending on the author’s

writing style, the target audience of a text and the time

of its creation.

Information extraction methods can link these vari-

ations by lifting entity references and statements indi-

cating relations between such entities onto a semanti-

cally canonicalized level, where each entity as well as

relations between entities are uniquely identifiable, i.e.

it allows to represent knowledge expressed in texts in

an ontological form.

This helps, for instance, to categorize and investi-

gate large document collections and make them discov-

erable for non-experts, e.g. allowing to search or cluster

documents by the referenced entities. It also allows to

link information from different research areas, e.g. to

enrich places mentioned by Goethe in his writings with

geographical or historical information.

While information extraction on its own aims at se-

mantic unification of varying textual representations,

our federated framework allows for easier access to het-

erogeneously stored source data within a community

as well as across different communities. By integration

into the unified security and data access model, the ex-

traction system needs not to be aware of the concrete

file system, nor does it need to support different secu-

rity methods. For instance, a user of one community

may have access to files within its community stored

on different Grid systems, but also may cooperate with

another community and thus have separate credentials

to access some files of the other community. Since the

federation level deals with all security issues, the ex-

traction system only needs to know the Single Sign-On

(SSO) credentials to access files across both communi-

ties. This would, for instance, allow a researcher from

the humanities to have access, and thus apply the ex-

traction machinery, to works of or about Goethe held

by different research groups or even data of other disci-

plines. Using the federation system he would only need

his personal SSO account, given that the data owners

granted access permissions and integrated their data

with the federation system.

In the following we briefly discuss the extraction ap-

proach, what information it needs to function and how

this information can be provided in an interactive way.

Finally, we also discuss how the extraction components

interact with the federation layer.

5.1 Knowledge Extraction Approach

The extraction framework we provide supports two lev-

els of knowledge extraction. The first level, commonly

referred to as named entity recognition (NER), is usu-

ally understood as the problem to identify referenced

entity types. For instance, occurrences of the strings

“London” and “Frankfurt” in a text can be identified

as references to locations and for occurrences like “Ein-

stein” and “Goethe” the reference type could be a per-

son.

However, recent work in this field allows for uniquely

identifying individual entities referenced in texts, given



Heterogeneous Resource Federation with a Centralized Security Model for Information Extraction 11

some background knowledge about the domain enti-

ties [24,43]. This allows for identifying the string “Goethe”

as a reference to the particular historical person named

Johann Wolfgang von Goethe, a famous German writer.

The same holds for other references, e.g. to locations.

For instance, if the string “Frankfurt” appears in the

same text about that particular writer it is probably

a reference to the city Frankfurt on the Main, where

Goethe was born, and not to Frankfurt on the Oder.

The problem to decide which concrete entity is meant

by a reference is called disambiguation.

To semantically unify different references to an iden-

tical entity in such a way, there are several basic require-

ments. First the system needs to have basic knowledge

about the unique entities of a domain, i.e. it needs to

know the famous writer Goethe existed. Secondly, type

information is of importance, i.e. knowing that Goethe

was a human, a writer and so on. Thirdly, the system

needs to know which ‘names’ can potentially refer to

which unique entities, e.g. the string “Frankfurt” could

refer to at least two different cities within Germany.

And finally, any additional relational information, e.g.

where Goethe was born or which plays he wrote, can

help to solve the disambiguation problem.

Based on this first step relations connecting recog-

nized entities can be extracted from texts as well. Such

relations might, for instance, be the birthplace of per-

sons, the books a writer authored, or the movies an ac-

tor participated in. While there are different approaches

[1,5,34], we apply an iterative pattern-based approach

based on [34,13] that aims at extracting instances of a

fixed set of predefined binary relations.

A pattern in the most abstract sense is a recurring

construct, e.g. a word phrasing or a tabular represen-

tation, expressing the abstract relations textually. For

instance, consider the text “Goethe, who was born in

Frankfurt, is one of the most famous German writers.”.

It contains an instance of the textual pattern “X, who

was born in Y”. Assuming the system knows that all

instances of this pattern express an abstract bornIn rela-

tion, it can derive a matching relation instance asserting

that Goethe was born in Frankfurt. In learning relation

instances and the links between patterns and relations

the system follows an iterative approach. Using type

information on relations and entities, the system learns

from given example relation instances which patterns

represent which of these relations by analyzing how well

the instances of an observed textual pattern match the

given instances of individual relations. Once a link be-

tween pattern and relation is established, these patterns

can be applied to extract more relation instances, which

provides the system with more examples to learn more

patterns from and so on.

The approach has the advantage that the actual pat-

terns and their meaning can be learned on the basis of

examples. Thus a user needs no detailed understanding

of the extraction process, he only needs to deal with on-

tological knowledge in which he is interested anyway. As

discussed earlier, the system needs some domain knowl-

edge to function, namely 1) the entities of the domain,

2) the names of the entities, 3) the types of the entities

and relations, 4) example relation instances and 5) as

much other relational information on entities as possi-

ble. While a user may provide all this information up-

front, we find that users are typically more motivated to

provide this information in an interactive way, as they

can observe the impact of their feedback efforts. This

also ensures only information needed by the extraction

system is provided. Thus, in the following section we

shall briefly discuss the interaction between a user and

the extraction system and especially which kind of in-

formation he can provide during the extraction process

in the form of feedback.

5.2 Interface Interaction

Some domain specific background knowledge needs to

be provided beforehand, in particular the type hierar-

chy, the relations of interest (with their range and do-

main types), and at least a basic set of entities along

with some of their reference names. Additionally, the

more relation instances are provided the more efficient

the system can work.

Once this basic domain knowledge is provided, an

interactive workflow allows to grow the knowledge base

in a semi-automatic fashion.

First a set of relevant files is selected. The auto-

matic extraction system searches for relevant informa-

tion in the selected text basis and afterwards the user

can inspect the recognized entity and relation instance

occurrences and directly provide feedback on these oc-

currences. In particular the user can:

– correct referenced entities

– correct relations expressed between two entities

– add new entity references

– add new relation instance occurrences

In each of the given cases, the system implicitly learns

from these corrections, e.g. by adding new reference

names for an entity when an entity is corrected or di-

rectly derive relation instances when they are added or

corrected. The accumulated knowledge can be applied

when the extraction is re-run on the same or on a differ-

ent data set. Coming back to the above-mentioned ex-

ample the user needs only to indicate once that “Frank-

furt” in a text does indeed reference Frankfurt on the



12 Milad Daivandy et al.

Fig. 6 Interface interaction of the extraction system with the resource and security federation layer

Main, and the engine will very likely get it right in the

whole text.

5.3 Integration into the Resource Federation

Architecture

In sections 3 and 4 we explained how the federation

layer allows to access distributed data sources. By in-

voking a Single Sign-On (SSO) client within software

components, services can be realized that interact with

the system on behalf of the user. We have realized the

previously described interactive knowledge extraction

service to extract knowledge from accessible federated

data using this method. The interaction of the extrac-

tion system with the federation layer is illustrated in

Fig. 6. After the user has registered the relevant cre-

dentials for the data sources in the SSO infrastructure

using a Web Browser interface, the extraction system

can access data sources using the central authentica-

tion and authorization provided by the Single Sign-On

REST interface. All the user needs to provide are his

SSO credentials and WebDAV URLs in the uniform

name-space of the federation layer.

The extraction system can also make use of available

computation power to distribute the extraction process

over the unified job submission interface. To this end

the system is split up in two main components, a mas-

ter and a client part. While the master unit controls

the distribution, the clients are executed as distributed

jobs to parse all documents. Both parts access a cen-

tral ontology store that manages all knowledge, either

extracted or provided by users. This requires that the

client is installed on the Grid nodes and the resource

federation interface for job control is implemented for

the particular Grid engine. After each iteration the ex-

traction master presents the results to the user, who can

provide feedback and re-run the extraction machinery

so it can take the new feedback into account.

For the interaction with the extraction system a

simple Web-based user interface is provided on top of a

Web service API allowing the implementation of more

sophisticated front-ends, e.g. enabling integration into

a particular workflow environment of any community.

6 Conclusion

This paper describes an architecture providing a uni-

form access layer for different resources like Grid data

management systems or databases. Therefore, a com-

bination of Web server, routing engine and WebDAV

environment generates a uniform namespace. The rout-

ing engine processes the client requests, forwarded by

the Web server, in a defined route and directs them to

the WebDAV environment. There, the requests are pro-

cessed by interacting with a resource-dependent connec-

tor that mediates between the resource and the Web-

DAV server and the results are returned in a WebDAV-

compliant response to the requesting entity. This con-



Heterogeneous Resource Federation with a Centralized Security Model for Information Extraction 13

cept is not restricted to data management systems, but

also supports computing resources. An example based

on the UNICORE Grid computing middleware was de-

scribed in section 3.3.

We achieved our goal to provide a scalable and highly

interoperable security system for use cases related to

our resource federation system. The security model, re-

alized by the Single Sign-On server and client compo-

nents outlined in section 4.2, can be used by any ser-

vice provider to access federated resources in a Single

Sign-On manner, allowing for both Web browser and

RESTful Web service access. This flexibility increases

usability and paves the way for running computational

studies on large interdisciplinary data sets as intended

in section 1.

From a security standpoint, future work should be

invested in adopting the findings outlined in [33], most

of all the channel binding proposed in RFC 5929 as well

as cross-domain SLSOP authentication cookies.

Both the resource federation system and the un-

derlying security model form the basis to enable cross-

organizational information extraction among distributed

resources, which also benefits from uniform access to

available computation resources. In addition to the uni-

form access achieved by the federation layer, an extrac-

tion system can provide a unified view on documents

of different times, writing styles and potentially also

languages by providing semantic meta-information.

Also, overall scalability must be put to the test in fu-

ture work to gather significant and reliable performance

data.

Acknowledgements The architecture described in this work
is being developed as part of the German D-Grid project Wis-
NetGrid (http://wisnetgrid.org) and is funded by the German
Federal Ministry of Education and Research (BMBF).

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Ives,
Z.: DBpedia: A Nucleus for a Web of Open Data. In:
ISWC/ASWC, pp. 11–15 (2007)

2. Barton, T., Basney, J., Freeman, T., Scavo, T., Siebenlist,
F., Welch, V., Ananthakrishnan, R., Baker, B., Goode,
M., Keahey, K.: Identity Federation and Attribute-based
Authorization through the Globus Toolkit, Shibboleth,
GridShib, and MyProxy. In: 5th Annual PKI R&D Work-
shop (2006)

3. Benedyczak, K., Baa, P., van den Berghe, S., Menday, R.,
Schuller, B.: Key aspects of the unicore 6 security model.
Future Generation Computer Systems 27(2), 195 – 201
(2011). DOI 10.1016/j.future.2010.08.009

4. Berry, W.: 15 seconds : Sharing cookies across domains.
URL http://www.15seconds.com/issue/971108.htm

5. Brin, S.: Extracting Patterns and Relations from the
World Wide Web. In: WebDB, pp. 172–183 (1999)

6. Bryant, R.: Data-intensive scalable computing for sci-
entific applications. Computing in Science Engineering
13(6), 25 –33 (2011). DOI 10.1109/MCSE.2011.73

7. Cannataro, M., Talia, D., Srimani, P.K.: Parallel data
intensive computing in scientific and commercial appli-
cations. Parallel Computing 28(5), 673 – 704 (2002).
DOI 10.1016/S0167-8191(02)00091-1

8. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Hous-
ley, R., Polk, W.: Internet X.509 Public Key Infrastruc-
ture Certificate and Certificate Revocation List (CRL)
Profile (2008). URL http://tools.ietf.org/html/

rfc5280

9. Crockford, D.: The application/json Media Type for
JavaScript Object Notation (JSON) (2006). URL http:

//tools.ietf.org/html/rfc4627

10. D-Grid: The German Grid Initiative. URL http://www.

d-grid-gmbh.de/index.php?id=1\&L=1

11. EGI: European Grid Infrastructure. URL http://www.

egi.eu/

12. EGI: Science Gateways. URL http://www.egi.eu/

services/support/science-gateways/

13. Elbassuoni, S., Hose, K., Metzger, S., Schenkel, R.: Roxxi:
Reviving witness dOcuments to eXplore eXtracted Infor-
mation. In: Proceedings of the 36th International Con-
ference on Very Large Data Bases, Proceedings of the
VLDB Endowment, vol. 3, pp. 1589–1592. ACM, Singa-
pore (2010)

14. EMI: European Middleware Initiative. URL http://www.

eu-emi.eu

15. Farkas, Z., Kacsuk, P.: P-grade portal: A generic work-
flow system to support user communities. Future Gener-
ation Computer Systems 27(5), 454 – 465 (2011). DOI
10.1016/j.future.2010.12.001

16. Fielding, R., Taylor, R.: Principled design of the mod-
ern web architecture. In: Software Engineering, 2000.
Proceedings of the 2000 International Conference on, pp.
407 –416 (2000). DOI 10.1109/ICSE.2000.870431

17. Foster, I., Kesselman, C. (eds.): The grid: blueprint for a
new computing infrastructure. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA (1999)

18. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing
and grid computing 360-degree compared. In: Grid Com-
puting Environments Workshop, 2008. GCE ’08, pp. 1
–10 (2008). DOI 10.1109/GCE.2008.4738445

19. Gesing, S., Grunzke, R., Balasko, A., Birkenheuer,
G., Blunk, D., Breuers, S., Brinkmann, A., Fels, G.,
Herres-Pawlis, S., Kacsuk, P., Kozlovszky, M., Krger,
J., Packschies, L., Schfer, P., Schuller, B., Schuster,
J., Steinke, T., Szikszay Fabri, A., Wewior, M., Mller-
Pfefferkorn, R., Kohlbacher, O.: Granular security for a
science gateway in structural bioinformatics. In: 3rd In-
ternational Workshop on Science Gateways for Life Sci-
ences (IWSG 2011), CEUR Workshop Proceedings, vol.
819 (2011). URL http://ceur-ws.org/Vol-819/

20. Guo, Z., Singh, R., Pierce, M.: Building the PolarGrid
portal using Web 2.0 and OpenSocial. In: Proceedings of
the 5th Grid Computing Environments Workshop, GCE
’09, pp. 5:1–5:8. ACM, New York, NY, USA (2009). DOI
10.1145/1658260.1658267

21. Internet2 Middleware Initiative: Shibboleth. URL http:

//shibboleth.internet2.edu/

22. Jie, W., Arshad, J., Sinnott, R., Townend, P., Lei, Z.:
A review of grid authentication and authorization tech-
nologies and support for federated access control. ACM
Comput. Surv. 43, 12:1–12:26 (2011). DOI http://doi.
acm.org/10.1145/1883612.1883619



14 Milad Daivandy et al.

23. Kouzes, R., Anderson, G., Elbert, S., Gorton, I., Gracio,
D.: The changing paradigm of data-intensive computing.
Computer 42(1), 26 –34 (2009). DOI 10.1109/MC.2009.
26

24. Kulkarni, S., Singh, A., Ramakrishnan, G., Chakrabarti,
S.: Collective annotation of Wikipedia entities in web
text. In: KDD, pp. 457–466 (2009). DOI http://doi.
acm.org/10.1145/1557019.1557073

25. MosGrid: Molecular Simulation Grid. URL https://

mosgrid.de/portal

26. Novotny, J., Tuecke, S., Welch, V.: An online credential
repository for the Grid: MyProxy. In: High Performance
Distributed Computing, 2001. Proceedings. 10th IEEE
International Symposium on, pp. 104 –111 (2001). DOI
10.1109/HPDC.2001.945181

27. NSF Middleware Initiative: GridShib. URL http://

gridshib.globus.org

28. NSF Middleware Initiative: GridShib SAML Tools
(2008). URL http://gridshib.globus.org/docs/

gridshib-saml-tools-0.5.0/readme.html

29. OASIS Security Services TC: Security Assertion Markup
Language (SAML) v2.0 (2005). URL http://www.oasis-

open.org/standards\#samlv2.0

30. Plantikow, S., Peter, K., Hgqvist, M., Grimme, C., Pa-
paspyrou, A.: Generalizing the data management of three
community grids. Future Generation Computer Systems
25(3), 281 – 289 (2009). DOI 10.1016/j.future.2008.05.
001

31. PubMed: PubMed. URL http://www.ncbi.nlm.nih.

gov/pubmed/

32. Recordon, David and Fitzpatrick, Brad: OpenID Authen-
tification 1.1 (2006). URL http://openid.net/specs/

openid-authentication-1_1.html

33. Schwenk, J., Kohlar, F., Amon, M.: The power of recog-
nition: secure single sign-on using TLS channel bind-
ings. In: Proceedings of the 7th ACM workshop on Dig-
ital identity management, DIM ’11, pp. 63–72. ACM,
New York, NY, USA (2011). DOI http://doi.acm.org/
10.1145/2046642.2046656

34. Suchanek, F.M., Sozio, M., Weikum, G.: SOFIE: A Self-
Organizing Framework for Information Extraction. In:
WWW (2009)

35. Tuecke, S., Engert, D., Foster, I., Welch, V., Chicago,
U., Thompson, M., Pearlman, L., Kesselman, C.: Internet
X.509 Public Key Infrastructure Proxy Certificate Profile
(2001). Revised July 2002

36. United Nations Environment Programme: Environmen-
tal Data Explorer . URL http://geodata.grid.unep.ch/

37. Venugopal, S., Buyya, R., Ramamohanarao, K.: A tax-
onomy of data grids for distributed data sharing, man-
agement, and processing. ACM Comput. Surv. 38
(2006). DOI http://doi.acm.org/http://doi.acm.org/10.
1145/1132952.1132955

38. W3C Working Group: libcurl - the multiprotocol file
transfer library (2004). URL http://www.w3.org/TR/ws-

arch/

39. W3C Working Group: Web Services Architecture (2004).
URL http://www.w3.org/TR/ws-arch/

40. WisNetGrid: WisNetGrid – Knowledge Networks for
Grids. URL http://wisnetgrid.org. Grid Project
within the German Grid Initiative (D-Grid)

41. XSede: Extreme Science and Engeneering Discovery En-
vironment. URL https://www.xsede.org/home

42. XSede: Science Gateways via User Portal. URL https:

//www.xsede.org/science-gateways

43. Yosef, M.A., Hoffart, J., Spaniol, M., Weikum, G.: Aida:
An online tool for accurate disambiguation of named en-
tities in text and tables. In: H.V. Jagadish, J. Blakeley,
J.M. Hellerstein, N. Koudas, W. Lehner, S. Sarawagi,
U. Röhm (eds.) Proceedings of the 37th International
Conference on Very Large Data Bases, Proceedings of the
VLDB Endowment, vol. 4, pp. 1450–1453. VLDB Endow-
ment, Seattle, USA (2011)


