000134439 001__ 134439
000134439 005__ 20210129211652.0
000134439 0247_ $$2doi$$a10.1002/jpln.201100262
000134439 0247_ $$2ISSN$$a1522-2624
000134439 0247_ $$2ISSN$$a1436-8730
000134439 0247_ $$2ISSN$$a0044-3263
000134439 0247_ $$2WOS$$aWOS:000304598900003
000134439 037__ $$aFZJ-2013-02638
000134439 082__ $$a570
000134439 1001_ $$0P:(DE-Juel1)136836$$aAltdorff, Daniel$$b0$$eCorresponding author
000134439 245__ $$aCombination of electromagnetic induction and gamma spectrometry using K-means clustering: A study for evaluation of site partitioning
000134439 260__ $$aWeinheim$$bWiley-VCH$$c2012
000134439 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1370267938_5428
000134439 3367_ $$2DataCite$$aOutput Types/Journal article
000134439 3367_ $$00$$2EndNote$$aJournal Article
000134439 3367_ $$2BibTeX$$aARTICLE
000134439 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000134439 3367_ $$2DRIVER$$aarticle
000134439 500__ $$3POF3_Assignment on 2016-02-29
000134439 520__ $$aToday rapid survey methods of proximal soil sensing (PSS) provide an increasing number of different and highly resolved data. These multidimensional data sets can lead to multilayered and complex maps of parameters which are only indirectly related to soil properties and soil functions. However, in applications usually just one clear elementary map is required. It is of increasing importance to tackle this problem utilizing a cluster algorithm for the synthesis and reduction of multidimensional input variables. The cluster algorithm provides a partitioning of the investigated site whereby the units are characterized by the statistics of the PSS data. Therefore, the question that arises is how suitable is the suggested partitioning in terms of the delineation of different soil units. In this study, we investigate the suitability of cluster partitioning through a case study at a medium-scale test site (≈ 50 000 m2). Two common PSS methods: electromagnetic induction (EMI) and gamma spectrometry (GS) will be employed to create a data set for partitioning by a K-means cluster. The result of the cluster analysis is a delineation of three different parts. In contrast to previous studies, we evaluate the generated partitions by independent soil properties such as grain size, horizon thickness, and color of stratified randomly taken soil samples. The soil analyses show that one of three clusters significantly differs from the others in terms of grain-size distribution and horizon thickness. The partitioning of the other two clusters could not be confirmed by the considered soil parameters. Nevertheless, the case study demonstrates the combination of different PSS data by K-means clustering as a potential approach for site partitioning. An evaluation of the results of the cluster analysis through the collection and analysis of soil samples is highly recommended.
000134439 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000134439 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000134439 7001_ $$0P:(DE-HGF)0$$aDietrich, Peter$$b1
000134439 773__ $$0PERI:(DE-600)1481142-x$$a10.1002/jpln.201100262$$gVol. 175, no. 3, p. 345 - 354$$n3$$p345 - 354$$tJournal of plant nutrition and soil science$$v175$$x1436-8730$$y2012
000134439 8564_ $$uhttps://juser.fz-juelich.de/record/134439/files/FZJ-2013-02638.pdf$$yRestricted
000134439 909CO $$ooai:juser.fz-juelich.de:134439$$pVDB:Earth_Environment$$pVDB
000134439 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136836$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000134439 9101_ $$0I:(DE-588b)5008462-8
000134439 9101_ $$kFZJ
000134439 9101_ $$aForschungszentrum Jülich GmbH
000134439 9101_ $$6P:(DE-Juel1)136836
000134439 9101_ $$b0
000134439 9132_ $$0G:(DE-HGF)POF3-259H$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vAddenda$$x0
000134439 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000134439 9141_ $$y2013
000134439 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000134439 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000134439 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000134439 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000134439 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000134439 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000134439 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000134439 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000134439 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000134439 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000134439 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000134439 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000134439 980__ $$ajournal
000134439 980__ $$aVDB
000134439 980__ $$aUNRESTRICTED
000134439 980__ $$aI:(DE-Juel1)IBG-3-20101118