001     134490
005     20210129211656.0
024 7 _ |a 10.3389/fnhum.2013.00232
|2 doi
024 7 _ |a WOS:000319862700001
|2 WOS
024 7 _ |a 2128/5182
|2 Handle
024 7 _ |a altmetric:1476247
|2 altmetric
024 7 _ |a pmid:23755001
|2 pmid
037 _ _ |a FZJ-2013-02664
082 _ _ |a 610
100 1 _ |0 P:(DE-Juel1)136848
|a Bzdok, Danilo
|b 0
|e Corresponding author
245 _ _ |a Segregation of the human medial prefrontal cortex in social cognition
260 _ _ |a Lausanne
|b Frontiers Research Foundation
|c 2013
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 134490
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a While the human medial prefrontal cortex (mPFC) is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region's brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained (“resting”) cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in bottom-up-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in top–down-driven, probabilistic-scene-informed, and metacognition-related processing in social cognition.
536 _ _ |0 G:(DE-HGF)POF2-333
|a 333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333)
|c POF2-333
|f POF II
|x 0
536 _ _ |0 G:(DE-Juel1)HGF-SystemsBiology
|a HASB - Helmholtz Alliance on Systems Biology (HGF-SystemsBiology)
|c HGF-SystemsBiology
|f HASB-2008-2012
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)131693
|a Langner, Robert
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Schilbach, Leonhard
|b 2
700 1 _ |0 P:(DE-Juel1)144558
|a Engemann, Denis A.
|b 3
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Laird, Angela R.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Fox, Peter T.
|b 5
700 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, Simon
|b 6
773 _ _ |0 PERI:(DE-600)2425477-0
|a 10.3389/fnhum.2013.00232
|g Vol. 7
|n 232
|p 1-17
|t Frontiers in human neuroscience
|v 7
|x 1662-5161
856 4 _ |u https://juser.fz-juelich.de/record/134490/files/FZJ-2013-02664.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/134490/files/FZJ-2013-02664.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/134490/files/FZJ-2013-02664.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/134490/files/FZJ-2013-02664.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 _ _ |o oai:juser.fz-juelich.de:134490
|p VDB
909 _ _ |o oai:juser.fz-juelich.de:134490
|p OA
909 _ _ |o oai:juser.fz-juelich.de:134490
|p OA
909 C O |o oai:juser.fz-juelich.de:134490
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)136848
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131693
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144558
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131678
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-579H
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Addenda
|x 0
913 1 _ |0 G:(DE-HGF)POF2-333
|1 G:(DE-HGF)POF2-330
|2 G:(DE-HGF)POF2-300
|a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|v Pathophysiological Mechanisms of Neurological and Psychiatric Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0020
|2 StatID
|a No Peer review
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 1
980 _ _ |a journal
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a VDB
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)INM-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21