000134492 001__ 134492
000134492 005__ 20240708133016.0
000134492 0247_ $$2doi$$a10.1016/j.memsci.2008.07.058
000134492 0247_ $$2ISSN$$a1873-3123
000134492 0247_ $$2ISSN$$a0376-7388
000134492 0247_ $$2WOS$$aWOS:000262946700036
000134492 0247_ $$2altmetric$$aaltmetric:21820368
000134492 037__ $$aFZJ-2013-02666
000134492 082__ $$a570
000134492 1001_ $$0P:(DE-Juel1)129950$$aZhao, Li$$b0$$ufzj
000134492 245__ $$aA parametric study of CO2/N2 gas separation membrane processes for post-combustion capture
000134492 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2008
000134492 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1376987323_16547
000134492 3367_ $$2DataCite$$aOutput Types/Journal article
000134492 3367_ $$00$$2EndNote$$aJournal Article
000134492 3367_ $$2BibTeX$$aARTICLE
000134492 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000134492 3367_ $$2DRIVER$$aarticle
000134492 520__ $$aCapture of CO2 from flue gases produced by the combustion of fossil fuels and biomass in air is referred to as post-combustion capture. Chemisorbent processes are considered to be the most feasible method and are already at an advanced stage of development, but gas separation membranes are attracting more and more attention as a possible alternative. This paper describes a detailed parametric study of mass and energy balances for a simulated single membrane process. Typical operating conditions (CO2 concentration in the flue gas, pressure and temperature etc.) together with the influence of the membrane quality (permeability, selectivity) and membrane area on membrane performance (CO2 separation degree and CO2 purity) are simulated in a wide range of parameters.
000134492 536__ $$0G:(DE-HGF)POF2-125$$a125 - Energy-efficient Processes (POF2-125)$$cPOF2-125$$fPOF II$$x0
000134492 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000134492 7001_ $$0P:(DE-Juel1)129912$$aRiensche, Ernst$$b1$$ufzj
000134492 7001_ $$0P:(DE-Juel1)VDB1906$$aMenzer, R.$$b2
000134492 7001_ $$0P:(DE-Juel1)129828$$aBlum, Ludger$$b3$$ufzj
000134492 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4$$ufzj
000134492 773__ $$0PERI:(DE-600)1491419-0$$a10.1016/j.memsci.2008.07.058$$gVol. 325, no. 1, p. 284 - 294$$n1$$p284 - 294$$tJournal of membrane science$$v325$$x0376-7388$$y2008
000134492 909CO $$ooai:juser.fz-juelich.de:134492$$pVDB
000134492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129950$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000134492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129912$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000134492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129828$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000134492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000134492 9131_ $$0G:(DE-HGF)POF2-125$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vEnergy-efficient Processes$$x0
000134492 9141_ $$y2013
000134492 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000134492 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000134492 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000134492 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000134492 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000134492 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000134492 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000134492 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000134492 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000134492 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000134492 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000134492 980__ $$ajournal
000134492 980__ $$aVDB
000134492 980__ $$aUNRESTRICTED
000134492 980__ $$aI:(DE-Juel1)IEK-3-20101013
000134492 981__ $$aI:(DE-Juel1)ICE-2-20101013