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Emergent motion of condensates in mass-transport models
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We examine the effect of spatial correlations on the phenomenon of real-space condensation in driven mass-
transport systems. We suggest that in a broad class of models with a spatially correlated steady state, the
condensate drifts with a nonvanishing velocity. We present a robust mechanism leading to this condensate drift.
This is done within the framework of a generalized zero-range process (ZRP) in which, unlike the usual ZRP, the
steady state is not a product measure. The validity of the mechanism in other mass-transport models is discussed.
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I. INTRODUCTION

Nonequilibrium condensation, whereby a macroscopic
fraction of microscopic constituents of a system accumulates
in a local region, is a common feature of many mass-
transport systems. Examples include shaken granular gasses
[1], vehicular traffic [2—4], the macroeconomics of wealth
distribution [5,6], and others [7,8]. Mechanisms that can lead
to the formation of condensates have been studied extensively
in recent years, mainly by analyzing prototypical toy models.
A primary role in these studies was played by the zero-range
process (ZRP), an exactly solvable model in which particles
hop between sites with rates that depend only on the number of
particles in the departure site [9—11]. Extensions and variations
of the ZRP have been used to study the emergence of multiple
condensates [12], first-order condensation transitions [13,14],
and the effect of interactions [15] and disorder [16] on
condensation. Moreover, one-dimensional phase separation
transitions in exclusion processes and other driven diffusive
systems can quite generally be understood by a mapping on
ZRPs [17].

The dynamics of condensates is less well explored. In the
ZRP, where condensation takes place when a macroscopic
fraction of particles occupies a single site, the resulting con-
densate does not drift in the thermodynamic limit [14,18-20].
It is shown below that this is related to the fact that the
steady state of the ZRP is a product measure. In some
real-world systems, however, condensates are in continual
motion. For example, traffic jams, which can be viewed
as condensates, are known to propagate along congested
roads [11,21,22]. Recently, two variants of the ZRP were
also found to relax to a time-dependent state in which the
condensate performs a drift motion: one is a ZRP with
non-Markovian hopping rates [23,24], and the other is a
model with “explosive condensation” [25]. To date, there is
no systematic understanding of the mechanism by which a
macroscopic condensate motion emerges from the underlying
nonequilibrium microscopic dynamics.

In this paper, we study how spatial correlations in the steady
states may lead the condensate to drift with a nonvanishing
velocity. We do so by introducing a generalization of the ZRP
whose steady state does not factorize. Within its framework,
we identify the mechanism that generates the drift. The
analysis is based on numeric simulations and on a mean-field
(MF) approximation which captures the essential effect of
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correlations in the condensed phase, and thus elucidates the
different observed modes of condensate motion. The drift
mechanism that we identify is robust and therefore it is
expected to be valid in a broad class of spatially correlated
mass-transport systems.

II. MODEL

We focus on a class of stochastic one-dimensional models
defined on a ring with L sites. At any given time, each site i is
occupied by n; particles with Y, n; = N, n; > 0. The model
evolves by a totally asymmetric hopping process whereby
particles hop from site i to i + 1 with a rate that depends on
the occupation numbers n; and n;_;. This is a generalization
of the usual ZRP in which the rate depends only on n;. More
specifically, we choose the hopping rates to be of the form

w(n;—u(n;)

1,0, ni—1,n; — Linjg + 1, (1)
with rates
b 1 ni_q ?ﬁ 0
un) =1+ —, wn;_1) = )
n; oa ni_;1=0

The particular form of u(n) is motivated by the fact that in
the usual ZRP, which corresponds to o = 1, this choice with
b > 2 leads to a condensation transition [26]. The rate w
witha # 1 represents an interaction between nearest-neighbor
sites. According the dynamical rules (1) and (2), at every short
time interval dt, each site i whose occupation n; > 1 may
eject a particle with a probability u(n;)dt, as long as the
preceding site (i — 1) is occupied. If the preceding site is
empty, this probability changes to «u(n;)dt. The model has
three parameters: b, «, and the density p = N/L, which is
conserved by the dynamics.

In the usual ZRP (the case of o = 1), the stationary
distribution is known to factorize into a product of single
site terms, and so can be exactly calculated [9,27,28]. This
factorization property renders the ZRP quite special, as slight
variations of the ZRP dynamics result in nonfactorizable
models. To probe the effect of spatial correlations on the
condensate, we choose for simplicity w to be of the form
(2), which leads to a spatially correlated steady state when
o # 1. The same drift motion which is described below is also
found for other forms of w(n), such as cases where w(n) # 1
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FIG. 1. (Color online) The location (top) and occupation (bottom) of the most occupied (e) and second most occupied (o) sites for several
values of «. (a) @ = 1, i.e., the usual ZRP. The condensate is stable for long times, and relocates to random distant sites. (b) @ = 1.5. The
condensate advances through a slinky motion from one site to the next. (¢) « = 1.05. The condensate remains on each site for a long time
before “spilling” to the next. The definitions of Tyqrier and Ty are indicated. (d) @ = 0.5. The condensate skips every other site. In all cases

b =3, p=10,and L = 1000, except (a) where L = 400. Note the different time scales.

for finitely many values of 7, and for other choices of u(n)
which give rise to condensation [29].

The model (1) and (2) exhibits, as is evident in numerical
simulations, a condensation transition with a drifting conden-
sate. We have carried out Monte Carlo simulations of the model
for several values of « in a system of size L = 1000 and density
p = 10. After the system has relaxed to its steady state, the
dynamics of the condensate was examined by tracking the
position of the most occupied sites over time. The results
are presented in Fig. 1 and in videos in the Supplemental
Material [30]. In the usual asymmetric ZRP [Fig. 1(a)], it is
known that the condensate is static up to time scales of order
L" and then it relocates to a random site due to fluctuations
[14,18-20]. There is a striking qualitative difference in the
dynamics of model (1) and (2) when « # 1 [Figs. 1(b)-1(d)],
where the condensate is clearly seen to drift along the lattice.
The condensate is seen to move from one site to the next
when @ > 1 [Fig. 1(b)], or to skip every other site when o < 1
[Fig. 1(d)]. In both cases, when « is not too close to 1 the
motion is slinkylike, with the condensate “spilling” from an
old site to a new one immediately after the previous spilling
has completed. The drift becomes somewhat less regular when
« is close to 1. In this regime, the slinky motion is interrupted
by periods of time when the condensate occupies a single
site, before the spilling process is initiated [Fig. 1(c)]. This,
however, is argued below to be a crossover mode, and the
interval in « in which it is observed shrinks in the large L
limit.

III. MODEL ANALYSIS

A. Mean-field approximation

To understand these results we propose a mean-field
analysis of the model in which the occupations of all sites
are considered independent, but might not be identically
distributed. Within this approximation, the current that arrives
into site i from site i — 1 is a Poisson process whose rate we
denote by J;. The probability P;(n;) to find n; particles in site
i thus evolves according to

dP;(n;)
dt

= Pi(ni — DJi + Pi(n; + D{wi)u(n; + 1)

— Pi(nj)(J; + (w;)un,)), 3)

where

(w;) = Z Pioimwm) =1+ (@—-DP(0) @

n=0

encodes the mean effect of site i — 1 on the hopping rate out of
site i. Equation (3) is valid also when n; = 0 with the definition
P;(—1) = 0. Equations (3) and (4) are to be solved with the
self consistency condition J; | = Zn P;(n){w;)u(n).

At low density, the system is in a subcritical, disordered
phase (this will be shown below). In this homogeneous phase,
P;(n) = P(n) and J; = J for all sites i. At higher densities,
however, condensation takes place, where the translational
symmetry is spontaneously broken and both P;(n) and J;
depend on the distance of site i from the condensate. This
dependence of P and J on i is a result of the correlations
that exist in the steady state of the model, and it provides
the mechanism for the condensate drift: a nonhomogeneous
J; implies that in some sites the outflowing current is smaller
than the incoming current, leading these sites to accumulate
particles while other sites are similarly being depleted of
particles. We shall now demonstrate that this occurs in our
model.

In the homogeneous (subcritical and critical) phases, the
model eventually reaches a steady state. In the nonhomoge-
neous supercritical phase, however, the condensate location
keeps moving with time. The analysis of this time-dependent
phase is based on one key observation: the time scale of the
microscopic dynamics, which for the rates (2) is of order 1,
is much faster than that of the condensate motion. As shown
below, the time scale of the spilling process is of order L,
validating this observation in the thermodynamic limit. Due to
this time-scale separation, while the condensate (i.e., the most
occupied site) is static all other sites reach a quasistationary
distribution.

In both phases, by equating the LHS of Eq. (3) to zero the
(quasi)stationary distribution is found to be

1

Pi(n) = P;(0) z; 1 w)

with  z; = Ji/(wi).  (5)

Here, z; plays the role of a “fugacity” of site i. For rates of the
form (2), the normalization of P;(n) yields

Pi0) = LF(1,1;6+ 1;z)] 7", (6)
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where ,F; is a hypergeometric function [note that P;(0)
depends on the exact form of u(n) and not just on its large
n asymptotics]. The occupation probability is asymptotically
given by P;(n) ~ n=z.

We first examine the solution (5) in the subcritical and crit-
ical phases, and show that the model undergos a condensation
transition. Since the system is homogenous in these phases, the
subscript i may be dropped from Egs. (4)—(6). The fugacity
can now be determined in terms of the density by inverting the
relation

2F1(2,2;b + 2;2) .
(1+b)F(1,1;b+1;2) 7

p(2)=) nP(n)= @)

where the RHS is obtained by substituting Eq. (5) in the sum.
Similarly, Eq. (4) for (w) reads in the homogeneous phases
(w)y=1+ (- DLF1,1;b6+1;2)]7"

The density (7) is an increasing function of z that attains its
maximum at z = 1, which is its radius of convergence about
the origin. A finite density at z = 1 indicates a condensation
phase transition, which is mathematically similar to Bose-
Einstein condensation [9]. By substituting z = 1 in (7) it is
seen that condensation takes place when b > 2, in which
case the critical density is p, = 1/(b — 2), the same value
as that of the usual ZRP. The critical current is similarly
found to be J. = (w),; =1+ (@ — 1)b/(b — 1). As long
as p < p., the system remains in a homogeneous subcritical
phase. When p is increased, the current J increases until p
and J reach their critical values and all sites of the system are
in a homogenous critical phase. When the density is further
increased, condensation sets in, breaking the translational
invariance of the system.

Let us now discuss the nonhomogeneous supercritical phase
and the mechanism of the condensate motion. We focus on the
case of o« > 1. In this case, the condensed phase is composed
of a condensate, which at any given time consists of two
macroscopically occupied consecutive sites (say 1 and 2),
while the rest of the sites are microscopically occupied. This
differs from the usual ZRP where the condensate is typically
supported by a single site. We show that J, > 1 and J; =1
for i # 2. This results in an increase of the occupation of
site 2 at the expense of site 1 over a macroscopic O(L)
time scale, while the rest of the sites are in a quasistationary
state. Therefore, the condensate drifts with a velocity of
order L™,

The analysis begins at site 1, whose occupation we assume
is ny = O(L) > 1, and thus it emits a mean current J, =
(w1)(1 + (b/ny)) =~ (wy). At the moment, (w;) is unknown.
It is determined self-consistently at the end of the calculation.
Since P (0) # 0, as is established below, it is seen that J, > 1
(since o > 1). We now proceed to examine the second site.
As long as site 1 accommodates the condensate it is never
empty, i.e., P(0) = 0. It follows from (4) that (w,) = 1. The
fugacity of the second site is then z, = J/(w,) >~ J, > 1,and
therefore its occupation distribution (5) cannot be normalized.
This means that as long as site 1 is highly occupied, site 2
tends to accumulate particles, implying that its occupation
too becomes macroscopic (of order L) for a long period
of time [31,32]. We call such a site with fugacity z; > 1
supercritical.
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The analysis now continues site by site in a similar fashion.
For each site i, (w;) is calculated using (4) from the known
value of P;_;(0). The fugacity of site i (5) is then calculated
from (w;) and the incoming current into the site J;. Once
the fugacity is known, P;(0) and J;;; are determined from
(6) and from J;4; =Y, P;(n){w;)u(n), and the process is
repeated in the next site. Performing this analysis reveals
that site 3 is critical (i.e., z3 = 1) and sites i =4,...,L
are subcritical (z; < 1), with J; =1 and (w;y1) =1 4+ (@ —
1)/2Fi(1,1;b 4+ 1;1/(w;)) for all i > 3. This recursion rela-
tion defines a sequence (w;), which converges (exponentially
rapidly) to a unique fixed point w*(«,b), which is the solution
of the equation

a—1
+ ,
2F1(1,1;0+ 15 1/w)

and thus satisfies w*(«,b) > 1 for all @ > 1. When L > 1,
the periodic boundary conditions imply that (w;) >~ w* > 1,
and thus Eq. (5) confirms that P;(0) > 0. This closes the
loop self-consistently and completes the calculation of the
quasistationary distribution for the nonhomogenous phase.

A natural order parameter for the condensation transition
is the bulk density of the “background fluid” ppg, which
can be defined as the mean density of all but the two most
occupied sites (since the condensate is typically carried by
two sites). Below the transition, pgg = p, which approaches
pc = 1/(b —2) as the transition is approached from below.
Above the transition, all sites outside of a finite boundary layer
around the condensate are subcritical with a mean occupation
of pgg =~ p(z = 1/w*) < p(1) = p, since the function p(z),
Eq. (7), increases monotonically with z. Therefore, the
condensation transition is found to be a discontinuous (first
order) one. This is in contrast to the usual ZRP with rates
(2) and @ = 1 where the transition is continuous. A similar
discontinuity exists in the current, which jumps from J, > 1
just below p, to J = 1 just above it.

We now discuss the emergent dynamics of the condensate
and identify two distinct modes of motion: a regular slinky
motion, and an irregular motion through a barrier. The motion
of the condensate from one site to the next consists of two
stages: a “spilling” stage during which it is supported on
two sites, and a period before this spilling is initiated, when
the condensate is carried by a single site. We first consider
the spilling process. According to the calculation above, the
number of particles that accumulate in the second condensate
site per unit time is on average J, — J3 = w* — 1. As there
are Ncong = (p — pg)L particles in the condensate, the total
spilling time Ty scales, to leading order, linearly with
the system size: Typin = (0 — ppg)L/(w* — 1). This justifies
the assumption of time-scale separation which underlies the
existence of a quasistationary state. The condensate velocity
equals ngih, and therefore scales as L~!. In the limitof « — 1,
the spilling time diverges.

Once a spilling is complete, there is a moment that the con-
densate is located solely on a single site. We now relabel this
site as site 1. At this moment, the occupation of the following
site is ny & pgg = O(1). The rate at which particles leave the
second site is, at this stage, approximately J3 = 1 + b/ ppg,
which should be compared with the rate of incoming particles,
Jo >~ w*. According to Eq. (8) and the definition of ppg, the

w' =1

®)
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two rates are equal when o = «* which is the solution of the
equation o« =1+ b,F(1,1; b + 1; 1 /w*(b,a*))/ pc(b,a™).
The mode of condensate motion now depends on whether « is
larger or smaller than o*.

(1) When o > «*, the initial current into site 2 is larger
than the mean current out of this site, and a spilling of
the condensate is initiated immediately. In this case, the
condensate drifts continuously in a slinky motion as in
Fig. 1(b).

(i) On the other hand, J, < J3 when 1 < a < «*, and
thus particles do not immediately accumulate on site 2. The
incoming current into the site surpasses the outgoing current
and spilling sets in only after fluctuations bring the occupation
of the second site to a value n*(«,b) which is defined by
w* = 1 4 b/n*. The ensuing motion of the condensate is more
irregular, with a stable condensate, which occasionally spills
to the next site as in Fig. 1(c). Note that the mean time Tpyrrier
it takes before a fluctuation brings n, over the barrier n* does
not scale with the system size. Thus, in a large enough system
the condensate regularly drifts and is typically supported by
two neighboring sites for any value of ¢ > 1.

B. Numerical results

The numerical simulations support the qualitative picture
that emerges from the MF analysis presented above. The
existence of two modes of motion, slinkylike and irregular,
and the crossover between them as « is increased conform
with numerical findings (Fig. 1). In particular, the spilling
mechanism between the two condensate sites in which the
accumulation of particles is linear in time is verified [Fig. 1(b)],
thus also implying that the drift velocity scales as L~! as
predicted. Furthermore, the first-order nature of the transition,
as manifested by the ppe(0) curve, and the subcritical nature
of the background fluid are presented in Fig. 2.

As expected, there are quantitative differences between
the the MF predictions and numerical results. For example,
for b =3 and o = 1.5, the simulation values of the critical

—o—L = 250
08 —=—| = 500
—v—L =1000
0.6 —A—L =2000|
D
O
S 04
0.2
0 L
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FIG. 2. (Color online) A first-order phase transition is seen in
the background density pgg as a function of the density p. Numerical
results for several system sizes are plotted, along with an extrapolation
to L = oo (thick black line). Here o« = 1.5 and b = 3. The inset
shows that the occupation of a site far away from the condensate has
a subcritical distribution (i.e., with an exponential tail) when o > 1.
This differs from the usual ZRP where the background fluid is known
to be critical. Results are for L = 1000, p = 10, and b = 3.
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density and the background density in the condensed phase
are p. ~ 0.5 and ppg ~ 0.436 (see Fig. 2). These deviate
from the corresponding MF values p™MP = 1/(b —2) =1
and poa”) = p(1/w*) &~ 0.451 [see Egs. (7) and (8)]. Such
quantitative discrepancies result from correlations between
sites which are neglected in the MF approximation.

IV. CONCLUSION

The mechanism for the condensate drift found in this model
can be summarized as follows: the spontaneous breaking of
translation invariance by the formation of the condensate may
induce an accumulation of particles in a nearby site. This
accumulation results in a continually drifting condensate, since
whenever a condensate is established on a new site, another
one begins to form further ahead. This mechanism holds in
a much more general setting, including when other forms
w(n), partially asymmetric hopping and higher dimensional
lattices are considered, and more widely in other nonfactorized
mass-transport models [29]. Note that the drift discussed here,
in which the two most occupied sites are typically nearest
neighbors, cannot occur in models with a factorized steady
state, the latter being symmetric under site permutations. In
this respect, our mechanism differs from that studied recently
in Ref. [25], where unbounded hopping rates generate a
drift (with infinite velocity) in a model whose steady state
factorizes.

An important point to note is that in general the new
condensate site does not have to be a neighbor of the old one.
For instance, in our model (1) and (2) with @ < 1, a similar
analysis shows that the condensate skips every other site, as
observed in Fig. 1(d) [29]. In this case, the supercritical site
is site 3, rather than 2 (when the condensate is located on
site 1). In principle, it may happen that there is more than
one supercritical site, possibly leading to more complicated
condensate drifts. It may also happen that no other site is
supercritical, in which case the condensate would not drift.
A precise and general classification of the conditions under
which a condensate drift occurs remains an interesting open
problem. However, in many specific models, a study of
condensation and the condensate motion can be carried out
following the mean-field procedure outlined in this paper. For
instance, a recently proposed accelerated exclusion process
(AEP) [33] can be analyzed in a similar fashion, yielding
the phase diagram of the model and revealing that the
AEP condensate drifts in the steady state [34]. It would
be very interesting to explore whether the mechanism for
condensate motion presented in this paper is found in other
mass-transport contexts such as condensation in granular
gases [1], jamming in systems of vehicular and biological
traffic [11], and in models of Brownian and molecular
motors [35-37].
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