000134678 001__ 134678
000134678 005__ 20210129211718.0
000134678 0247_ $$2doi$$a10.3389/fpls.2013.00200
000134678 0247_ $$2Handle$$a2128/5199
000134678 0247_ $$2WOS$$aWOS:000330166900001
000134678 0247_ $$2altmetric$$aaltmetric:1564148
000134678 0247_ $$2pmid$$apmid:23785380
000134678 037__ $$aFZJ-2013-02778
000134678 082__ $$a580
000134678 1001_ $$0P:(DE-HGF)0$$aDe Schepper, V.$$b0$$eCorresponding author
000134678 245__ $$a11C-PET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling
000134678 260__ $$aLausanne$$bFrontiers Media$$c2013
000134678 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s134678
000134678 3367_ $$2DataCite$$aOutput Types/Journal article
000134678 3367_ $$00$$2EndNote$$aJournal Article
000134678 3367_ $$2BibTeX$$aARTICLE
000134678 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000134678 3367_ $$2DRIVER$$aarticle
000134678 500__ $$3POF3_Assignment on 2016-02-29
000134678 520__ $$aCarbon transport processes in plants can be followed non-invasively by repeated application of the short-lived positron-emitting radioisotope 11C, a technique which has rarely been used with trees. Recently, positron emission tomography (PET) allowing 3D visualization has been adapted for use with plants. To investigate the effects of stem girdling on the flow of assimilates, leaves on first order branches of two-year-old oak (Quercus robur L.) trees were labeled with 11C by supplying 11CO2-gas to a leaf cuvette. Magnetic resonance imaging gave an indication of the plant structure, while PET registered the tracer flow in a stem region downstream from the labeled branches. After repeated pulse labeling, phloem translocation was shown to be sectorial in the stem: leaf orthostichy determined the position of the phloem sieve tubes containing labeled 11C. The observed pathway remained unchanged for days. Tracer time-series derived from each pulse and analysed with a mechanistic model showed for two adjacent heights in the stem a similar velocity but different loss of recent assimilates. With either complete or partial girdling of bark within the monitored region, transport immediately stopped and then resumed in a new location in the stem cross-section, demonstrating the plasticity of sectoriality. One day after partial girdling, the loss of tracer along the interrupted transport pathway increased, while the velocity was enhanced in a non-girdled sector for several days. These findings suggest that lateral sugar transport was enhanced after wounding by a change in the lateral sugar transport path and the axial transport resumed with the development of new conductive tissue.
000134678 536__ $$0G:(DE-HGF)POF2-242$$a242 - Sustainable Bioproduction (POF2-242)$$cPOF2-242$$fPOF II$$x0
000134678 588__ $$aDataset connected to
000134678 7001_ $$0P:(DE-Juel1)5963$$aBühler, Jonas$$b1$$ufzj
000134678 7001_ $$0P:(DE-Juel1)129411$$aThorpe, Michael$$b2$$ufzj
000134678 7001_ $$0P:(DE-Juel1)129390$$aRoeb, Gerhard$$b3$$ufzj
000134678 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b4$$ufzj
000134678 7001_ $$0P:(DE-Juel1)129425$$avan Dusschoten, Dagmar$$b5$$ufzj
000134678 7001_ $$0P:(DE-Juel1)129336$$aJahnke, Siegfried$$b6$$ufzj
000134678 7001_ $$0P:(DE-HGF)0$$aSteppe, K.$$b7
000134678 773__ $$0PERI:(DE-600)2687947-5$$a10.3389/fpls.2013.00200$$n200$$p1-9$$tFrontiers in Plant Physiology$$v4$$x1664-462X
000134678 8564_ $$yPublished under CreativeCommons License$$zPublished final document.
000134678 8564_ $$uhttps://juser.fz-juelich.de/record/134678/files/FZJ-134678.pdf$$yOpenAccess$$zPublished final document.
000134678 8564_ $$uhttps://juser.fz-juelich.de/record/134678/files/FZJ-134678.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000134678 8564_ $$uhttps://juser.fz-juelich.de/record/134678/files/FZJ-134678.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000134678 8564_ $$uhttps://juser.fz-juelich.de/record/134678/files/FZJ-134678.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000134678 909__ $$ooai:juser.fz-juelich.de:134678$$pVDB
000134678 909__ $$ooai:juser.fz-juelich.de:134678$$pOA
000134678 909CO $$ooai:juser.fz-juelich.de:134678$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000134678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5963$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000134678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129411$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000134678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129390$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000134678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000134678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129425$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000134678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129336$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000134678 9132_ $$0G:(DE-HGF)POF3-589H$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vAddenda$$x0
000134678 9131_ $$0G:(DE-HGF)POF2-242$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vSustainable Bioproduction$$x0
000134678 9141_ $$y2013
000134678 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000134678 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000134678 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000134678 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000134678 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000134678 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000134678 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000134678 980__ $$ajournal
000134678 980__ $$aUNRESTRICTED
000134678 980__ $$aJUWEL
000134678 980__ $$aFullTexts
000134678 980__ $$aI:(DE-Juel1)IBG-2-20101118
000134678 980__ $$aVDB
000134678 9801_ $$aFullTexts