001     134678
005     20210129211718.0
024 7 _ |a 10.3389/fpls.2013.00200
|2 doi
024 7 _ |a 2128/5199
|2 Handle
024 7 _ |a WOS:000330166900001
|2 WOS
024 7 _ |a altmetric:1564148
|2 altmetric
024 7 _ |a pmid:23785380
|2 pmid
037 _ _ |a FZJ-2013-02778
082 _ _ |a 580
100 1 _ |a De Schepper, V.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a 11C-PET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling
260 _ _ |a Lausanne
|c 2013
|b Frontiers Media
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 134678
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a Carbon transport processes in plants can be followed non-invasively by repeated application of the short-lived positron-emitting radioisotope 11C, a technique which has rarely been used with trees. Recently, positron emission tomography (PET) allowing 3D visualization has been adapted for use with plants. To investigate the effects of stem girdling on the flow of assimilates, leaves on first order branches of two-year-old oak (Quercus robur L.) trees were labeled with 11C by supplying 11CO2-gas to a leaf cuvette. Magnetic resonance imaging gave an indication of the plant structure, while PET registered the tracer flow in a stem region downstream from the labeled branches. After repeated pulse labeling, phloem translocation was shown to be sectorial in the stem: leaf orthostichy determined the position of the phloem sieve tubes containing labeled 11C. The observed pathway remained unchanged for days. Tracer time-series derived from each pulse and analysed with a mechanistic model showed for two adjacent heights in the stem a similar velocity but different loss of recent assimilates. With either complete or partial girdling of bark within the monitored region, transport immediately stopped and then resumed in a new location in the stem cross-section, demonstrating the plasticity of sectoriality. One day after partial girdling, the loss of tracer along the interrupted transport pathway increased, while the velocity was enhanced in a non-girdled sector for several days. These findings suggest that lateral sugar transport was enhanced after wounding by a change in the lateral sugar transport path and the axial transport resumed with the development of new conductive tissue.
536 _ _ |a 242 - Sustainable Bioproduction (POF2-242)
|0 G:(DE-HGF)POF2-242
|c POF2-242
|f POF II
|x 0
588 _ _ |a Dataset connected to
700 1 _ |a Bühler, Jonas
|0 P:(DE-Juel1)5963
|b 1
|u fzj
700 1 _ |a Thorpe, Michael
|0 P:(DE-Juel1)129411
|b 2
|u fzj
700 1 _ |a Roeb, Gerhard
|0 P:(DE-Juel1)129390
|b 3
|u fzj
700 1 _ |a Huber, Gregor
|0 P:(DE-Juel1)129333
|b 4
|u fzj
700 1 _ |a van Dusschoten, Dagmar
|0 P:(DE-Juel1)129425
|b 5
|u fzj
700 1 _ |a Jahnke, Siegfried
|0 P:(DE-Juel1)129336
|b 6
|u fzj
700 1 _ |a Steppe, K.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.3389/fpls.2013.00200
|0 PERI:(DE-600)2687947-5
|n 200
|p 1-9
|t Frontiers in Plant Physiology
|v 4
|x 1664-462X
856 4 _ |y Published under CreativeCommons License
|z Published final document.
856 4 _ |y OpenAccess
|z Published final document.
|u https://juser.fz-juelich.de/record/134678/files/FZJ-134678.pdf
856 4 _ |u https://juser.fz-juelich.de/record/134678/files/FZJ-134678.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/134678/files/FZJ-134678.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/134678/files/FZJ-134678.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:134678
909 _ _ |p OA
|o oai:juser.fz-juelich.de:134678
909 C O |o oai:juser.fz-juelich.de:134678
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)5963
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129411
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129390
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129333
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129425
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129336
913 2 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-589H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-242
|2 G:(DE-HGF)POF2-200
|v Sustainable Bioproduction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Peer review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a VDB
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21