001     134747
005     20210129211724.0
024 7 _ |a 10.3389/fpls.2013.00392
|2 doi
024 7 _ |a 2128/5203
|2 Handle
024 7 _ |a WOS:000331365600001
|2 WOS
024 7 _ |a altmetric:1816536
|2 altmetric
024 7 _ |a pmid:24137168
|2 pmid
037 _ _ |a FZJ-2013-02841
082 _ _ |a 570
100 1 _ |a Faget, Marc
|0 P:(DE-Juel1)140577
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Disentangling who is who during rhizosphere acidification in root interactions: combining fluorescence with optode techniques
260 _ _ |a Lausanne
|c 2013
|b Frontiers Media
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 134747
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a Plant–soil interactions can strongly influence root growth in plants. There is now increasing evidence that root–root interactions can also influence root growth, affecting architecture and root traits such as lateral root formation. Both when species grow alone or in interaction with others, root systems are in turn affected by as well as affect rhizosphere pH. Changes in soil pH have knock-on effects on nutrient availability. A limitation until recently has been the inability to assign species identity to different roots in soil. Combining the planar optode technique with fluorescent plants enables us to distinguish between plant species grown in natural soil and in parallel study pH dynamics in a non-invasive way at the same region of interest (ROI). We measured pH in the rhizosphere of maize and bean in rhizotrons in a climate chamber, with ROIs on roots in proximity to the roots of the other species as well as not-close to the other species. We found clear dynamic changes of pH over time and differences between the two species in rhizosphere acidification. Interestingly, when roots of the two species were interacting, the degree of acidification or alkalization compared to bulk soil was less strong then when roots were not growing in the vicinity of the other species. This cutting-edge approach can help provide a better understanding of plant–plant and plant–soil interactions.
536 _ _ |a 242 - Sustainable Bioproduction (POF2-242)
|0 G:(DE-HGF)POF2-242
|c POF2-242
|f POF II
|x 0
588 _ _ |a Dataset connected to
700 1 _ |a Bloßfeld, Stephan
|0 P:(DE-Juel1)129286
|b 1
|u fzj
700 1 _ |a von Gillhaußen, Philipp
|0 P:(DE-Juel1)129426
|b 2
|u fzj
700 1 _ |a Schurr, Ulrich
|0 P:(DE-Juel1)129402
|b 3
|u fzj
700 1 _ |a Temperton, Vicky
|0 P:(DE-Juel1)129409
|b 4
|u fzj
773 _ _ |a 10.3389/fpls.2013.00392
|0 PERI:(DE-600)2613694-6
|n 392
|p 1 - 8
|t Frontiers in plant science
|v 4
|x 1664-462X
856 4 _ |y Publishers version according to licensing conditions.
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/134747/files/FZJ-2013-02841.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/134747/files/FZJ-2013-02841.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/134747/files/FZJ-2013-02841.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/134747/files/FZJ-2013-02841.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:134747
909 C O |o oai:juser.fz-juelich.de:134747
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)140577
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129286
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129426
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129402
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129409
913 2 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-589H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-242
|2 G:(DE-HGF)POF2-200
|v Sustainable Bioproduction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Peer review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a VDB
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21