000134817 001__ 134817
000134817 005__ 20240712112837.0
000134817 0247_ $$2doi$$a10.1063/1.4811268
000134817 0247_ $$2ISSN$$a1077-3118
000134817 0247_ $$2ISSN$$a0003-6951
000134817 0247_ $$2WOS$$aWOS:000320962400080
000134817 0247_ $$2Handle$$a2128/17355
000134817 037__ $$aFZJ-2013-02892
000134817 082__ $$a530
000134817 1001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b0$$eCorresponding author$$ufzj
000134817 245__ $$aInteractions of defect complexes and domain walls in CuO-doped ferroelectric (K,Na)NbO3123
000134817 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2013
000134817 3367_ $$2DRIVER$$aarticle
000134817 3367_ $$2DataCite$$aOutput Types/Journal article
000134817 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1372661684_17916
000134817 3367_ $$2BibTeX$$aARTICLE
000134817 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000134817 3367_ $$00$$2EndNote$$aJournal Article
000134817 500__ $$3POF3_Assignment on 2016-02-29
000134817 520__ $$a“Lead-free” piezoelectric sodium potassium niobate has been studied with respect to its defect structure when doping with CuO. The results indicate that two kinds of mutually compensating charged defect complexes are formed, (Cu′′′Nb−VO••)′ and (VO••−Cu′′′Nb−VO••)•. Concerning the interplay of these defect complexes with the piezoelectric materials properties, the trimeric (VO••−Cu′′′Nb−VO••)• defect complex primarily has an elastic dipole moment and thus is proposed to impact the electromechanical properties, whereas the dimeric (Cu′′′Nb−VO••)′ defect possesses an electric dipole moment in addition to an elastic distortion. Both types of defect complexes can impede domain-wall motion and may contribute to ferroelectric “hardening.”
000134817 536__ $$0G:(DE-HGF)POF2-152$$a152 - Renewable Energies (POF2-152)$$cPOF2-152$$fPOF II$$x0
000134817 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x1
000134817 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000134817 7001_ $$0P:(DE-HGF)0$$aErünal, Ebru$$b1
000134817 7001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b2$$ufzj
000134817 7001_ $$0P:(DE-HGF)0$$aKörbel, Sabine$$b3
000134817 7001_ $$0P:(DE-HGF)0$$aElsässer, Christian$$b4
000134817 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b5$$ufzj
000134817 7001_ $$0P:(DE-HGF)0$$aAcker, Jéro^me$$b6
000134817 7001_ $$0P:(DE-HGF)0$$aHoffmann, Michael J.$$b7
000134817 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.4811268$$gVol. 102, no. 24, p. 242908 -$$n24$$p242908 -$$tApplied physics letters$$v102$$x0003-6951$$y2013
000134817 8564_ $$uhttp://link.aip.org/link/?APL/102/242908&aemail=author
000134817 8564_ $$uhttps://juser.fz-juelich.de/record/134817/files/FZJ-2013-02892.pdf$$yOpenAccess
000134817 909CO $$ooai:juser.fz-juelich.de:134817$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000134817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000134817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000134817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000134817 9132_ $$0G:(DE-HGF)POF3-139H$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vAddenda$$x0
000134817 9131_ $$0G:(DE-HGF)POF2-152$$1G:(DE-HGF)POF2-150$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vRenewable Energies$$x0
000134817 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x1
000134817 9141_ $$y2013
000134817 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000134817 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000134817 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000134817 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000134817 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000134817 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000134817 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000134817 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000134817 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000134817 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000134817 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000134817 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000134817 920__ $$lyes
000134817 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000134817 9801_ $$aFullTexts
000134817 980__ $$ajournal
000134817 980__ $$aVDB
000134817 980__ $$aUNRESTRICTED
000134817 980__ $$aI:(DE-Juel1)IEK-9-20110218
000134817 981__ $$aI:(DE-Juel1)IET-1-20110218