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The calculation of a few interior eigenvalues of a matrix has not received much
attention in the past, most methods being some spin-off of either the complete
eigenvalue calculation or a subspace method designed for the extremal part of
the spectrum. The reason for this could be the rather chaotic behaviour of most
methods tried. Only ’shift and invert’ and polynomial iteration seemed to have
a predictable behavior. However, polynomial iteration is reasonably fast only for
extremal eigenvalues of a matrix where all eigenvalues are close to a known line,
and inverting a large sparse indefinite system is tricky, while any inaccuracy in the
inverse carries through to the eigenvector.

By now, subspace methods have been developed to a state where they can be ap-
plied with benefit to the calculation of inner eigenpairs (eigenvalues and -vectors).
This is achieved by using a combination of improved approximate residual correc-
tion (Jacobi-Davidson method) with new methods to extract approximations to
inner eigenvectors of a large (dimension n) matrix from a low dimensional (dimen-
sion m < 4/n) subspace. Suited to the needs of practical applications, the selection
of eigenpairs requested may be specified by very different means - an eigenvalue
range, closeness of the eigenvectors to a given selection of approximate eigenvec-
tors, or special patterns of the eigenvectors like the number of local extrema of the
components. Depending on information generated with little overhead relative to
standard subspace computations, the extraction method may be switched between
standard Ritz projection, inverse Ritz projection and residual minimization. Tests
indicate reliable and predictable convergence, while performance depends heavily
on the quality of the approximate inverse applied.

Some applications are in theoretical chemistry and from accelerator design. In
these cases, the eigenpairs requested are typically from the lower part of the spec-
trum, but too far from the end to be solved by conventional subspace methods.

AMS CLASSIFICATION: 65F15, 65F50

1 Introduction

The problem of computing some or all eigenvalues and -vectors of a large matrix appears in
a wide range of applications from biology (meta stable states of ecosystems) to mechanical
engineering (oscillations of suspension bridges). As eigenvalue problems make up a fair share
of the supercomputer usage, there is good reason for analyzing and improving the algorithms
and implementations as well as for teaching users to make the most of the method chosen.



The classification of eigenvalue problems distinguishes between different matrix structures
(general, hermitian, complex symmetric, sparse, ...), different requirements (eigenvalues only,
eigenvectors too, all eigenvalues, only extremal eigenvalues, certain part of spectrum, eigen-
vector similar to excitation vector, ...) and numerical properties (normal, diagonally domi-
nant, ...). While these are extremely important for issues of efficiency and implementation,
there are only three basic principles involved in the solution of eigenvalue problems:

Similarity transformations A = S~'JS converting A into some normal form (usually
diagonal or Jordan) where eigenvalues can be extracted immediately and eigenvectors are
given by columns of S. S is built up iteratively as a product of simple matrices.

Nonlinear equation methods treat the problem directly as an (n+1)-dimensional nonlinear
equation, searching for a solution in the neighborhood of A\. Methods in use are ’shift and
invert’” and polynomial iteration 2" = P,(A)z" !, where the polynomials P, are chosen such
that the sequence x™ converges, e.g. to the eigenvector of the largest eigenvalue.

Subspace methods where A is projected onto a low (e.g. m) dimensional subspace V.
Instead of looking for z € R*, A € C with Ax = Az for x € V, A € C some kind of relaxed
condition is applied to define an approximate eigenvector, e.g. Ar — Az Ly \Vy € V or
Az — Az minimal in V. There is a wide range of methods to construct V (vector updates)
as well as a choice of relaxed conditions to apply (eigenpair extraction) which we will look
into in detail.

If only a few eigenpairs are required, one problem is to define which ones. Mathematical
treatment has been restricted to searching for a certain range of eigenvalues. This is fine
for the convergence considerations, as in the final stages of calculations the eigenvalue ap-
proximations will by necessity be sufficiently precise. At the start, an approximation of an
eigenvector may be available that allows a definite identification of the eigenvector, e.g. from
a similar problem with different material properties or slightly different geometry or from
a low resolution calculation, but the precision of the eigenvalue approximation may not be
sufficient to define a window containing only a small number of eigenvectors. So the starting
procedure needs some new considerations.

2 Update procedures

The update procedure creates V&1 from V& by adding some directions and possibly
reducing the dimensions again. The reduction of dimensions is increasing the number of
iteration steps, but as the steps get computationally cheaper, there will usually be some gain
in computing time. Even if not, the reduction in memory requirement may be helpful. The
reduction - sometimes termed restart - usually retains the approximations to the eigenvectors
required plus those to neighboring eigenpairs.

2.1 Starting out

Few problems really have to start from scratch, usually a similar problem has been solved
before, so a random start is a matter of convenience, not necessity. For extreme eigenpairs,
the gain in starting with a crude approximation to an eigenvector instead of random is only
moderate. For inner eigenpairs, the extraction procedure is difficult until the eigenvalue
approximations have converged into the proper range, so here starting with an approximation
to an eigenvector is really helpful.

Another consideration concerns the dimension of V0. With most update procedures,
the updates to an eigenvector approximation contain large components in the direction of
neighboring eigenvectors. Therefore, it is efficient to start out small - just enough directions



to get the right multiplicity of eigenvectors, not enough to %et all eigenvectors wanted - and
increase the dimension of the subspace during the process %14,

2.2 Krylow space updates of subspace

The simplest sequence of subspaces V® is given by the Krylow construction
V& = span(zy, Axg,...,A®zy). This is the basis of the methods of Lanczos and
Arnoldi, which are about the best possible for black box solvers for a few extreme eigen-
values. The Krylow space allows a construction of an orthogonal basis via a three term
recurrence which is extremely efficient. There are quite a number of computational shortcuts
available with this choice of updates, such that the performance is better than an iteration
count would suggest. If only eigenvalues are required, they need little storage, while the
computation of eigenvectors is either very memory-consuming or needs a second pass. There
are stabilitg problems, but those can be dealt with nicely, and efficient implementations are
available 451,

A related choice is V&Y = span( Au,® | ..., Aw,,*), w;® a Basis of V&), This has
the advantage of a search subspace with constant (small) dimension which reduces memory
requirement and enhances stability, but converges only to the largest eigenvalues!3. Im-
provements use polynomial acceleration V&) = span( P(A)w,®, ... P(A)w,,®) 131614,
The construction of the optimal polynomial needs some information on the spectrum of A,
and will be efficient only when the spectrum is a ( possibly curved ) line. For eigenvalues
alone, polynomial acceleration cannot beat the methods of Lanczos and Arnoldi, for
eigenvectors it may be faster.

2.3  Approzimate inverse updates of subspace

Approximate inverse updates make use of special features of the matrix and can therefore be
very efficient if properly implemented. The idea is to define a linearized correction equation
of the eigenvalue approximation and utilize a computationally cheap approximation of this
equation. With A\ = x;fFAxi and e; the correct eigenvector, this equation reads (A —
MID)(e; + ¢) =~ (A — M)z, which with Ay = A, (A — AM)e; = 0 seems to give a
reasonable way to construct improved subspace updates. Let B, be an (easy to compute)
approximation to (A — X\;7)~!. Add the approximate inverses applied to the residue to the
search space: V&) = span(V® By 7y, ..., By, 7m), where 7; = (A—al Az; I)x; with
the best eigenvector approximations available. An alternative is using B),x; directly, thus
approximating ’shift and invert’, but this obviously gives almost parallel basis vectors.
Until recently, the only practical method making use of approximate inverses was Davidson’s
method which simply uses the diagonal entries of A to compute B, and it was useful only for
matrices from theoretical chemistry. While convergence was demonstrated to be rather fast,
no analysis was available, and attempts to improve it by using better approximate inverses
failed. In hindsight, the reason for this is quite clear, and some idea was there right from the
start. If B is exact, then B),m; = =;, obviously not a good choice. So B must not be too
good. On the other hand, if B is a poor approximation, this is not much better than taking
r; itself, which is the Krylow subspace calculation without the computational shortcuts.



The anno%/ing problem that improving B might reduce convergence was understood and
overcome in °, where it was proved that the exact way to define a correction equation is to
project the correction problem into the space orthogonal to e;, and e; not being available,
the space orthogonal to any approximation e;, notably x; to will do fine, too. This leads to
the improved definition of ¢;:  [(I — x; ;7)) By, (I — z;2,7)] q; = 4

The projection (I — x; ;1) is not easy to incorporate into the matrix, but there is no
need to do so. A rank-1 update of B/\_i1 r; is sufficient. The cost of this update is with

band matrix inverse one extra right hand side, one scalar product and one vector update per
inverse, with CG inverse one multiplication of preconditioner times vector per inverse plus
one scalar product and one vector update per CG-step.

There is no need to use the same type of approximate inverses throughout the computa-
tion. In some finite element test cases, the best efficiency has been achieved by starting out
with a rather crude and simple choice for B (diagonal only) and getting more accurate as
the eigenvector approximations improve?®. This leaves the field of tuning the algorithm wide
open.

Approzimate inverses are, strictly speaking, not part of the eigenvalue algorithm but only
a plug-in, but of course of highest importance for the efficiency. Therefore a few words on
the topic seem appropriate. A standard choice is CG methods (QMR, MINRES, ...). They
do the job, but for inner eigenvalues - strongly indefinite problems - may need quite a few
inner iterations. Multiscale methods promise to be faster, but suffer from differences in the
eigenvalues at different resolution, so that an eigenvalue that is slightly bigger than the one
required on the scale of A may be smaller on the coarse scale, causing convergence to slow
down or even stall. This can be overcome by projecting the equation on the coarse scale
onto a space orthogonal to all nearby eigenpairs of the coarse scale, which again is tricky.

3 Eigenvalue extraction

The goal of the extraction part is to find in a given subspace vectors that are good approxi-
mations of eigenvectors of A as well as the corresponding approximations of the eigenvalues.
The description is independent of the update method, while the implementation shows strong
interdependence.

3.1 Ritz projection

The Ritz projection is the most important approach to extract eigenvalue and -vector ap-
proximations from a given subspace. The basic idea'® is: May V&) be a subspace of R" at

iteration step k with an orthonormal basis W (1k), N 1) 57’? and W®) the matrix with columns
wﬁ»k), Sk = (WENT AWKk, /_\g-k) the eigenvalues of S®), and T® a matrix with the
eigenvectors of S*) as columns. The columns # Ek) of W) T®*) (the Ritz vectors) are ap-

proximations to eigenvectors of A with the Ritz values 5\5-]“) = (7 gk))TAf gk) approximating

eigenvalues of A. If the subspace allows a good approximation of the extremal eigenvectors
of A, the corresponding Ritz vectors will be close to optimal approximations!3.



Ezample 1: Let A be a diagonal matrix and let V& contain a good approximation to
the largest eigenvector of A:

—1000000 0.001 —0.005
0 400 w0 0.1 —1.0
A= V&= span (
0 050 0 1.0
0 006 1 0.001

The Ritz projection will calculate the approximation [.00066, .0320,.0677,.9972] to [0, 0,0, 1],
near optimal, and the Ritz value will be 5.9929.
For hermitian A, the Ritz vectors are forced to be orthogonal, while the projections of the

eigenvectors of A onto V¥ will not be orthogonal. Now, the Ritz vector & §’“) to the smallest

argest) Ritz value may be askew to all eigenvectors of A. 5 will be orthogonal to 7",
1 Ritz val be ask 1l ei fA. 2% will be orth lto zM

therefore even if a non extremal eigenvector of A has a good approximation in V¥ this may
not be orthogonal to & §’“’ and therefore not be close to a Ritz vector. Therefore, the second
eigenvector of A can be expected to be well approximated only if the extremal one has at
least a decent approximation, and inner eigenvectors of A may be poorly approximated even
if a good approximation is contained in V& This effect is pronounced when there appear
numerically multiple Ritz values.

Example 2: Let A be as before and exchange the last two rows in the basis vectors of V&),
which now contains a good approximation to an inner eigenvector of A. The approximations
to [0,0,1,0] calculated by Ritz projection will be [—.00184, —.4423,.7338, .5156], which is
almost 43° off the desired eigenvector and much inferior to the starting approximation. The
Ritz value of 4.92 is almost correct. The situation is not necessarily improved by improving

the subspace. Changing the first column of V¥ to [0.0001,0.01, 1,0] does not help.

3.2 Methods for interior eigenvalues

If Ritz projection performs poorly, inner eigenvalues may be approximated from a subspace
containing a good approximation of the eigenvector by either of two methods depending
on information available. Instead of calculating the projection of A onto V¥ an inverse
projection of (A — AI)~" onto W := (A — XI)V® is calculated with only marginally
increased effort. Now the formerly interior eigenvalues transform to extremal ones, and
if A is chosen properly, the corresponding eigenvector approximations (in W(k)) are good.
Applying (A — AI)~! to these approximations is easy, just a linear combination of the ba-
sis vectors in V& and yields good approximations to eigenvectors in the neighborhood
of A (harmonic Ritz projection, '*19). However, A must not be an eigenvalue of A, oth-
erwise the projected problem degenerates. With A = 4.9, the previous example returns
[0.0017,0.2390, .9605, —0.1429], a much better but not optimal approximation. Changing A
to 4.995 gives [0.0013,0.1630,0.9845, —0.0646], quite good. This will work fine when eigen-
values in a well-known range are looked for.

There are, however, problems where the eigenvalues are not known with sufficient accuracy.
The required eigenvalues may be specified e.g. from low accuracy computations, from ob-
servations, or from certain geometric patterns of zeroes or extrema. In this case, a residual
minimization gives better results:

Calculate {xg-k), A} as the local minima of |[(A — Az I)z|| for all z € V®_ [|z|| = 1. From



these, choose the vectors that match the desired properties.

As this is a (low dimensional) nonlinear problem, some approximation is needed. If an ap-
proximate eigenvector v is known, a simple but almost always sufficient linearization is mini-
mizing ||(A— 0T Av I)(v+z)|| over 275 = 0. This yields [0.00006, —0.0861,.9791, .1840]" for
the above example, only slightly less accurate than harmonic Ritz projection with A = 4.995.
Changing V'[1,2] to 0.0001 changes the picture, the harmonic Ritz projection will perform
only slightly better than simple Ritz projection, while the residual minimization will be
nearly perfect.

If no approximate eigenvector is known, a slightly more elaborate procedure is required.

3.3  Combining the methods for interior eigenvalues

The optimal way to handle interior eigenvalues is a combination of the above methods. This
can be done at the cost of a some extra calculations in R™ only. All three methods require
similar calculations in R” for different basis sets:

Ritz projection needs an orthogonal basis of VX, harmonic Ritz projection an orthogonal
basis of (A — AI)V¥, and the residual evaluation requires a combined orthogonal basis of VX

and AVX. Instead of actually building these bases in R, it is sufficient just to calculate the
necessary transformation from a Cholesky decomposition of the scalar product matrix of a
basis. Let V := [v1,...,v,] be a non-orthogonal basis of VX CTC = VIV | R = C7!,
then W = V R and RT (AV)TV)R = WTAW.

A similar transformation of (A — Al)v; gives the matrix for the harmonic Ritz projec-
tion, and similarly for residual evaluation. What is needed in R are the calculations of
VIV, (AV)TV and (AV)T AV. With these, the coefficients of the approximation vectors to
the basis [vy, ..., v;,] can be evaluated using matrices and vectors in R™ only, along with the
eigenvalue approximations and the norm of the residual.

The residual minimization needs some further considerations, as standard minimization
methods are not as efficient as required. The problem is the starting heuristic; with a
good starting point, a single linear search will give the approximation vector with sufficient
accuracy.

Obviously, a small residue is possible only if the vector is close to a Ritz vector or to the
subspace spanned by a cluster of Ritz vectors. Therefore, Ritz vectors are calculated first. A
cluster of Ritz vectors may either be an approximation to a cluster of eigenvectors of A or a
combination of an approximation to a subspace spanned by eigenvectors plus some spurious
vectors giving the same Ritz value but forming a linear combination from eigenvectors of A
to larger and smaller values as in the second example above. In this case, neither vector gives
a good starting point for the residual minimization, but a harmonic Ritz projection applied
only to the Ritz vectors in the cluster will show which case is present and isolate all those
directions in the cluster that can be used as starting point for residual minimization. By
this way, all useful local minima of the residue can be found with reasonable effort and then
screened for the conditions describing the desired eigenvalues. In tests even with an eigen-
value range as selection criterion this procedure gave better performance than Sharmonic
Ritz projection alone’.

4 Problems of implementation and parallelization

The eigenvalue computation can be separated into actions in the n-dimensional space and
those in the projected space. . The n-dimensional operations consist of calculation of Ax,
the solution of  [(I —z;z;7) By, (I — z;2;7)] ¢ = m;, calculation of scalar products and



linear combinations of vectors. Except for very peculiar data structure of A, all this is done
best by using the existing efficient implementations of linear algebra, BLAS and LAPACK
for the sequential and PBLAS and ScaLAPACK for parallel computing. The ARPACK and
PARPACK packages 1! give careful implementations of the Lanczos and Arnoldi method
and may serve as a guideline and provide building blocks for other implementations. On
workstations, cache optimized linear algebra operations may perform up to tenfold better
than naively written code .

The implicit orthogonalization saves about half the computations of the explicit one, but
the stability problems that explicit orthogonalization is meant to solve remain. If the pivot
elements of the Cholesky matrix C' indicate a near degenerate basis, the culprit vectors in
R™ have to be transformed to give truly independent directions. This can be organized best
by using an incremental Cholesky decomposition.

The computations in low dimensional space that may be parallelized with benefit are the so-

lution of the eigenvalue problem of A®)| the residual minimization where vectors are treated
independently and the process to choose the approximations that will be put to further use.
All the n-dimensional linear algebra calculations can be distributed with benefit over differ-
ent processors of parallel machines. As they have predictable computational effort, static
load balancing will do. The distribution of A is critical®. It is also possible to treat groups
of vectors on different groups of processors, but this gives more complicated load balancing
and larger volumes of data transport for scalar products. The computations in R”™ may be
parallelized independent of those in R".

There are full codes, building blocks and development tools available for almost any architec-
ture, but writing efficient parallel programs still requires skill and insight. The easy-to-use
methods like HPF or virtual shared memory are considerably less efficient than explicit
message passing, which is not an easy-to-use method. The speedup available depends on
problem size, but there are examples of a speedup of 500 on a 512 processor machine.

5 Conclusion

With the combination of Jacobi-Davidson iteration with harmonic Ritz projection and resid-
ual minimization, the last open problem of eigenvalue calculation - finding specified inner
eigenpairs when the eigenvalue range is not know accurately - can be treated with subspace
methods, and the question of efficiency is reduced primarily to finding an efficient approxi-
mate inverse of the shifted matrix. Implementations are not quite up to the state of theory
yet, but it seems they are going to catch up within a few years.
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