000134936 001__ 134936
000134936 005__ 20210129211744.0
000134936 0247_ $$2doi$$a10.1021/jp3020029
000134936 0247_ $$2ISSN$$a1932-7447
000134936 0247_ $$2ISSN$$a1932-7455
000134936 0247_ $$2WOS$$aWOS:000309375700001
000134936 037__ $$aFZJ-2013-02968
000134936 082__ $$a540
000134936 1001_ $$0P:(DE-HGF)0$$aManheller, M.$$b0
000134936 245__ $$aElectrical Transport through Single Nanoparticles and Nanoparticle Arrays
000134936 260__ $$aWashington, DC$$bSoc.$$c2012
000134936 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1439366676_2027
000134936 3367_ $$2DataCite$$aOutput Types/Journal article
000134936 3367_ $$00$$2EndNote$$aJournal Article
000134936 3367_ $$2BibTeX$$aARTICLE
000134936 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000134936 3367_ $$2DRIVER$$aarticle
000134936 500__ $$3POF3_Assignment on 2016-02-29
000134936 520__ $$aIn order to achieve the next generation of nanometer-sized electronic devices, a detailed understanding and control of electrical transport is essential. One approach to fabricate nanodevices based on functional components is to assemble a 3D array of nanoparticles on electrode structures, while another method is to bridge the gap between two nanoelectrodes by a single nanoparticle. Here we report on electronic transport measurements of biphenylpropanethiol-capped gold nanoparticles with a diameter of 4 nm used as functional units studied in both setups. The resulting conductance measurements reveal different types of transport mechanisms depending on temperature, such as hopping, superexchange coupling, and tunneling. In addition, Coulomb blockade behavior is shown in the single-nanoparticle device at 4 K and at room temperature. Moreover, a discontinuity in the conductance as a function of temperature is discussed in terms of a possible structural crossover in particle morphologies.
000134936 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000134936 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000134936 7001_ $$0P:(DE-Juel1)130751$$aKarthäuser, Silvia$$b1$$eCorresponding author
000134936 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b2
000134936 7001_ $$0P:(DE-HGF)0$$aBlech, Kerstin$$b3
000134936 7001_ $$0P:(DE-HGF)0$$aSimon, Ulrich$$b4
000134936 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/jp3020029$$gVol. 116, no. 39, p. 20657 - 20665$$n39$$p20657 - 20665$$tThe @journal of physical chemistry <Washington, DC> / C$$v116$$x1932-7455$$y2012
000134936 8564_ $$uhttps://juser.fz-juelich.de/record/134936/files/jp3020029.pdf$$yRestricted
000134936 8564_ $$uhttps://juser.fz-juelich.de/record/134936/files/jp3020029.gif?subformat=icon$$xicon$$yRestricted
000134936 8564_ $$uhttps://juser.fz-juelich.de/record/134936/files/jp3020029.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000134936 8564_ $$uhttps://juser.fz-juelich.de/record/134936/files/jp3020029.jpg?subformat=icon-180$$xicon-180$$yRestricted
000134936 8564_ $$uhttps://juser.fz-juelich.de/record/134936/files/jp3020029.jpg?subformat=icon-640$$xicon-640$$yRestricted
000134936 8564_ $$uhttps://juser.fz-juelich.de/record/134936/files/jp3020029.pdf?subformat=pdfa$$xpdfa$$yRestricted
000134936 909CO $$ooai:juser.fz-juelich.de:134936$$pVDB
000134936 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000134936 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130751$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000134936 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000134936 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000134936 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000134936 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000134936 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000134936 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000134936 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000134936 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000134936 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000134936 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000134936 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000134936 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000134936 920__ $$lyes
000134936 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000134936 9201_ $$0I:(DE-Juel1)VDB881$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000134936 980__ $$ajournal
000134936 980__ $$aVDB
000134936 980__ $$aI:(DE-Juel1)PGI-7-20110106
000134936 980__ $$aI:(DE-Juel1)VDB881
000134936 980__ $$aUNRESTRICTED
000134936 981__ $$aI:(DE-Juel1)VDB881