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Abstract.  Template libraries such as the STL contain several generic algorithms that
expect functions as arguments and thereby cause a frequent use of  function objects.
User-defined function objects are awkward because they must be declared as a class in
namespace scope before they may be used. In this paper, we describe a lambda function
for C++, which allows users to define function objects on the fly,  without writing class
declarations. We show that, by using expression templates, the lambda function can be
implemented without  hurting  the  runtime performance of  a  program. Expression
templates can also help to overcome the performance penalties that may arise when
using expressions over user-defined types. Thus, we based our approach on PETE
which is a framework that simplifies the addition of expression template functionality to
user-defined classes. 

1. Introduction

The Standard Template Library (STL) [C++]  contains many function objects that mimic Higher
Order Functions (HOFs). These are functions that take function arguments and/or return functions
(e.g. for_each, transform, or find_if). Operations passed to HOFs are often very short in code
and primarily used in a local context. Nevertheless, they have to be defined in namespace scope,
possibly yielding numerous small functions or function objects respectively. The point of  use and
the  point  of  definition  may get more and more dispersed, making code harder to  read and
understand.

This problem even becomes worse, as it is impossible to pass function templates to STL’s HOFs. In
order to mimic rank-2 polymorphism (passing polymorphic function arguments to polymorphic
functions), either function overloading or the definition of a class with an operator() template is
required (like  e.g. in  [FC++] [SM00] ).  Especially the first  approach will  increase namespace
pollution, while the latter also depends on a class representative, thus, the existence of  an object,
which has to be created manually. 

A  better solution would be to define functions on the fly.  This feature is common in  functional
programming languages, which offer a special syntax called lambda to define and use functions in
one go. 

Our  C++  framework FACT!  (Functional Additions to  C++  through Templates and Classes
[FACT] ) offers a similar functionality through a function called lambda , which could be used to
create function objects on the fly  and thereby helps to keep the point of  use and the point of
definition close together. As with its pure functional counterpart, functions obtained by lambda are



free of side effects and therefore may be used in parallel environments as well. 

In  this  article  we  discuss  the  implementation  of  our  lambda  functions  and  show  how  to  add
expression template functionality to user-defined classes. After giving a short introduction into the
lambda functions, we will show how to build lambda expressions by using the Portable Expression
Template Engine (PETE). We will then concentrate on how evaluation is done and conclude with a
discussion of performance and possible future work. 

2. The Lambda Function

The  lambda  function  takes  a  list  of  variables  (called  the  lambda  list ),  an  expression  that  may
contain  any  of  this  list’s  variables  (called  the  lambda  expression )  and  returns  a  function  which
usually  has  the  same number  of  arguments  as  there  are  elements  in  the  lambda list.  Consider  the
following example: 

  lambda(x,y, x + y)

x  and  y  form  the  lambda  list ,  x + y  is  the  lambda  expression .  Since  the  lambda  list  has  two
members, a binary function is returned. 

Applying  a  function  returned  by  lambda  to  some  arguments  is  done  as  follows:  first,  arguments
passed to the function get associated with the variables of the lambda list - this is done from left to
right. Second, all occurrences of lambda variables in the lambda expression get substituted by their
associated  values.  Finally,  the  expression  gets  evaluated  and  the  result  is  returned.  For  instance,
applying lambda(x,y, x + y) to 3 and 4 results in: 

1. x is bound to 3 and y is bound to 4 
2. substitution yields 3 + 4 
3. evaluation leads to 7 

Thus, lambda(x,y, x + y) represents a function that calculates the sum of its arguments. 

Functions returned by lambda are polymorphic, thus, x and y may be bound to values of type int,
float ,  complex ,  string ,  or  any  other  type  that  is  compatible  with  operator+ .  As  long  as  an
appropriate operator+ exists, x and y even may be bound to values of different type. 

Lambda expressions may contain calls to other functions, e.g.: 

  lambda(a,b,c, sqrt( sqr(a) + sqr(c) + sqr(b) ) )
  lambda(a,b, sin(a) / cos(b) )

Additionally,  lambda variables  may be bound to functions and lambda may return a function that
returns a function as well: 

  lambda(f,x,y, f(x,y) )       // f is a placeholder for a function
  lambda(x, lambda(y, x + y) ) 

Moreover, functions returned by lambda are presented in a curried form, which makes them capable
of taking their arguments one at a time and thereby offers the opportunity of partial application. 

  lambda(x, pow(x) ) // partially applying pow - return unary function that
                     // returns unary function   



At least four things are needed to develop the lambda function: 

functions  of  varying  signature  (e.g.  lambda(x1,  expression) ,  lambda(x1,x2,

expression), etc. ), 
mechanisms to build and store a lambda list, 
mechanisms to store and manipulate the expression; along with 
methods to do the evaluation 

Multiple  variants  of  lambda  functions  are  needed,  each  one  taking  a  different  number  of  lambda
variables - this can be solved through function overloading. Building and storing the lambda list can
be  avoided.  Provided  that  we  can  rediscover  the  ordering  information  of  the  lambda  list,  it  is
sufficient to store lambda variables directly in the expression. Thus, the most important thing that
remains is to build, store, manipulate, and evaluate expression trees. 

With respect  to  performance,  expression templates  [Vh95]  are  a  way handle lambda expressions.
Expression  templates  are  nested  template  structures,  used  to  represent  the  parse  tree  of  an
expression.  They  are  built  during  compile  time  through  overloaded  arithmetic  operators,  which  -
instead of  immediately applying an operation - return objects that incrementally build up the parse
tree. The parse tree is represented in two fashions: as a type tree (the expression template tree) and
as a tree of  objects (the expression object - which indeed is an instance of the expression template
tree).  Template  meta  programs  [Vh95-2] [EC00]  allow  one  to  traverse  such  expression  template
trees during compile time and in conjunction with inlining techniques the expression object can be
used to produce efficient code. 

Using  the  expression  template  technique,  lambda  variables  become  part  of  the  the  expression
template tree. Since the expression template tree emphasizes types, different lambda variables need
to  be  of  different  type,  thereby  enabling  template  meta  programs  to  do  the  substitution  during
compile time. In order to support functions of arbitrary dimension, an unlimited number of types to
represent lambda variables is needed: 

  template <int n>
  struct ARG {};

ARG  is  a  suitable representation,  because it  can be used to form numeric_limits<int >::max()
different types, which we assume to be an acceptable limit. For convenience reasons, FACT! offers
a large number of  predefined lambda variables, all of  them are defined in the scope of namespace
LAMBDA. Thus, the user usually does not need to pay attention to the real type of a lambda variable,
but  just  writes  something  like  using  LAMBDA::x  to  make  the  lambda  variable  x  visible  in  the
current scope. 

In the next section we will  show how to form expression templates out of  expressions containing
instances of ARG by using PETE. 

3. Building Lambda Expressions with PETE

3.1. How PETE works

The  Portable  Expression  Template  Engine  (PETE) [Ha99 , PETE]  provides  tools  to  simplify  the
addition of expression template functionality to a set of classes. PETE uses external polymorphism
[CL98] ,  so  expression  templates  may  be  implemented  for  existing  classes,  such  as  the  Standard
Template Library vector class. The PETE library is fairly lightweight, containing fewer than 3000



lines  of  code.  As  the  example  in  this  section  illustrates,  integration  of  PETE with  a  user-defined
class  requires  a  very  small  amount  of  code,  typically  provided  through  specializations  of  some
PETE classes. PETE is used to implement expression objects in FACT!, but users of FACT! do not
require any knowledge of PETE.

PETE supports 45 built-in operators to build expression objects out of expressions. Besides all C++
mathematical  operators  and  a  collection  of  common  mathematical  functions  like  sin() ,  it  also
provides  a  where(a,b,c)  function  since  the  conditional  expression  a  ?  b  :  c  cannot  be
overloaded.

To  integrate  user-defined  classes,  variants  of  these  operators  have  to  be  created,  each  one  being
capable to act on any combination of  user-defined classes and PETE-specific classes. Fortunately,
this  has  not  to  be  done  by  the  user,  but  PETE  provides  a  tool  (written  in  C++)  called
MakeOperators that reads a file with a simple description of  the user’s class and generates header
files  containing  the  hundreds  of  operator  functions  that  are  necessary.  Once  these  operators  are
available,  only  three  tasks  are  left  to  implement  expression  template  functionality  for  the  users
classes: 

define how the objects are stored in the expression tree 
add assignment operators that take PETE expressions 
define how data is accessed during evaluation 

To illustrate how PETE works, we will consider the following class: 

  class Vec3 {
    Vec3(double i=0.0) { d[0]=i; d[1]=i; d[2]=i; }
    Vec3(double a,double b,double c) { d[0]=a; d[1]=b; d[2]=c; }
    double &operator[](int i) { return d[i]; }
    double operator[](int i) const { return d[i]; }
  private:
    double d[3];
  };

PETE’s  operators  need  to  know  what  to  stick  in  the  leaves  of  the  expression  tree.  To  offer  this
information, the user has to supply a specialization of the CreateLeaf struct: 

   template <>
   struct CreateLeaf< Vec3 > {
     typedef Reference<Vec3> Leaf_t;
     static inline Leaf_t apply(const Vec3& a) {
       return Leaf_t(a);
     }
   };

The typedef  Leaf_t is the type of  the object stored in the expression template tree. To save space
and avoid unnecessary calls to copy constructors PETE provides a Reference object that stores a
reference to the original object in the expression tree rather than a copy. Besides defining the type
of the leaf, the specialization of CreateLeaf also provides an apply method that builds the object
in the expression tree (in this case Reference<Vec3>) from the object in the expression (in this case
Vec3). When there is no specialization of CreateLeaf, PETE wraps the object in the template class
Scalar. 

In  PETE  an  expression  object  has  type  Expression<T> .  To  traverse  the  expression  tree,  PETE
offers the function forEach, which has the following general form: 



  forEach(Expression, LeafTag, CombineTag);

This  function  traverses  the  nodes  of  the  Expression  object,  applies  an  operation  selected  by
LeafTag  at  the  leaves,  and  combines  the  results  from  non-leaf  nodes’  children  according  to
CombineTag. This is implemented by a meta program so the tree traversal is done at compile time.
The return  value of  the  forEach  function is  provided by the class  template  ForEach ,  so that  the
type produced can be used as input to other template meta programs. 

There  are  two  default  combinator  tags  in  PETE:  OpCombine  and  TreeCombine .  OpCombine
combines results from the leaf nodes according to the operators stored at the non-leaf nodes, so that
forEach returns a value computed for the expression. TreeCombine is used to combine the results
from the leaf nodes back into an expression object, so that forEach returns a transformed version of
the expression. 

For  user-defined  classes,  evaluation  can  take  many  forms.  Some  typical  examples  are  calls  to
operator[] as in a[i], or operator() as in a(i,j), but evaluation could require calls to arbitary
functions. To tell PETE how to perform a given form of  evaluation, users specialize a class called
LeafFunctor, which is templated on the user-defined class and a functor tag. One of the predefined
functor  tags  is  the  class  EvalLeaf1 ,  which  stores  a  single  integer  index,  accessible  through  the
method val1(). Such a functor tag primary serves as a selector while the real application is done
by a specialization of LeafFunctor: 

  template <>
  struct LeafFunctor<Vec3, EvalLeaf1> {
    typedef int Type_t;
    static inline Type_t apply(const Vec3& a,const EvalLeaf1& f) {
      return a[f.val1()];
    }    
  };

By defining the evaluation through specialization of  an external functor, PETE is not restricted to
evaluating classes  that  support  a  specific  interface (such as operator[]  in  this  case).  Users  with
classes  that  require  different  evaluation  mechanisms  do  not  need  to  rewrite  the  entire  expression
template  machinery,  but  just  need  to  provide  this  one  class  specialization.  In  this  example,  the
LeafFunctor  acts  on  leafs  of  type  Vec3  and  performs  the  operation  selected  by  EvalLeaf1 .  It
provides the function apply which takes a leaf (of type Vec3) as well as an instance of the functor
tag  and  returns  the  component  of  the  vector  that  is  identified  by  the  index  that  is  stored  in  the
functor tag. 

Componentwise  evaluation  of  vector  expressions  is  now  possible  by  applying  forEach  to  an
expression  object.  With  PETE,  this  usually  is  done  within  the  assignment  operator  of  the  user’s
class: 

  template <typename E>
  Vec3 operator=(const Expression<E>& expression) {
    d[0] = forEach( expression, EvalLeaf1(0), OpCombine() );
    d[1] = forEach( expression, EvalLeaf1(1), OpCombine() );
    d[2] = forEach( expression, EvalLeaf1(2), OpCombine() );
  }  

It  also  makes  sense  to  supply  a  constructor  from  an  Expression  object  which  offers  the  same
functionality. To avoid implicit conversions it should be declared explicit. 

Evaluating  expressions  with  PETE’s  forEach  function  allows  for  more  generic  operations  than
simply  computing  the  value  of  an  expression.  For  example,  in  expressions  involving  arrays,  one



could  pull  out  domain  information  from  the  arrays  and  check  for  conformance.  By  selecting
different  leaf  functors  and  combiners,  very  general  transformations  can  be  performed  on
expressions. This general capability will be used to perform substitutions in lambda expressions. 

3.2. The Lambda Function

Using  PETE,  building  lambda  expressions  is  quite  simple,  since  PETE’s  MakeOperator  tool
automatically produces code for all operators that are necessary to build expression objects out of
expressions that  contain instances of  ARG<i>  (we call  such expression objects generic expression
objects ).  To  tell  PETE  how  to  handle  values  of  type  ARG<i> ,  several  specializations  of  the
CreateLeaf structure are needed (one for each type of lambda variable). 

The lambda function has to take some lambda variables as well as an expression object and return a
polymorphic  function  implementing  the  generic  expression.  Using  C++  such  a  polymorphic
function can be implemented by a function object whose function call operator (operator()) is a
template.  The  number  of  arguments  this  operator  has  to  take  depends  on  the  number  of  lambda
variables  that  have  been  passed  to  the  lambda  function.  Thus,  for  every  dimension  a  function
returned by lambda may have, a special  class is  needed. For binary functions it  has the following
form: 

  template <typename E>
  struct lFUNC2 {
    lFUNC2(const E& e) : e_m(e) {}
    lFUNC2(const lFUNC2& rhs) : e_m(rhs.e_m) {}
    const E& expression() const {
      return e_m;
    }
    template <typename A1,typename A2>
    result_t operator()(A1 a1,A2 a2) const {
    ...
    }
  private:
    E e_m;   
  };

This class stores a generic expression object of type E and provides a template for a binary function
call operator. How to determine the return type result_t will be discussed in a later section. 

The lambda function just has to create an appropriate instance of  such a class. Here are examples
for lambda functions to produce binary / ternary functions: 

  template <int m,int n,typename E>
  lFUNC2<E> lambda(const ARG<m>& a,const ARG<n>& b,const E& e) {
    return lFUNC2<E>( e );
  }
  
  template <int m,int n,int o,typename E>
  lFUNC3<E> lambda(const ARG<m>& a,const ARG<n>& b,const ARG<o>& c,const E& e) {
    return lFUNC3<E>( e );
  }

Notice, that the ARG arguments are ignored and only used to select a specific variant of lambda. The
indices  of  the  lambda  variables  (namely  m , n  and  o )  may  be  of  arbitrary  value.  They  do  not
necessarily  need  to  reflect  the  order  in  which  they  have  been  passed  to  the  lambda  function.  As
mentioned earlier,  this ordering information is  essential  in order to do substitution.  Therefore,  the
indices of  all lambda variables inside the expression object get normalized  to represent the correct



ordering (not shown in the above code). This normalization is a compile time process, handled by
some  sophisticated  template  meta  programs  which  are  quite  similar  to  those  being  used  during
substitution (see section 4.1.). 

To  support  functions  of  arbitrary  dimensions  an  endless  number  of  specializations  of  the
CreateLeaf class as well as an endless amount of lFUNCX classes and overloaded lambda functions
will  be  needed.  To  cover  as  many  situations  as  possible  and  to  keep  the  user  away  from  the
underlying details,  we developed a  code generating tool  that  is  supplied with  the  largest  function
dimension  to  support,  and  produces  a  C++ header  file  that  contains  all  the  necessary  definitions.
Including support for currying of C++ functions, function composition and a few other features, this
header file consists of approximately 4000 lines of code, if functions up to order five are supported.

4. Applying the Result of a Lambda Function

4.1. Substitution

An expression is represented in two different fashions: as an expression template tree (emphasizing
types) and as an expression object (emphasizing values). Substitution has to be done for both and
thus, for a lambda expression that contains N  lambda variables, N  type/value tuples are needed for
substitution. These tuples are given by the parameters of  lFUNC’s parenthesis operator and due to
normalization ,  association  of  variables  in  the  tuple  with  the  corresponding  ARG<i>  values  of  the
expression  object  is  clear.  For  example  to  evaluate  lambda(x,y, x + y)( f,c ) ,  we  need  to
substitute two arguments f and c of arbitrary types for ARG<1> and ARG<2> in the expression object.

Now, substitution simply can be done by template meta programs, but for every argument we intend
to  substitute,  the  full  expression  tree  needs  to  be  traversed.  To  save  compilation  time,  it  is
reasonable to store all type/value tuples in an array, use the integer index that is carried by lambda
variables  as  an  index  into  it  and  traverse  the  expression  tree  just  once.  Such  an  array  has  to  be
accessible during compile- and runtime. Compile time mechanisms are based on types and thus, for
every  dimension  an  array  may have,  a  different  type is  needed.  Fortunately,  the  greatest  possible
dimension of the array is known, because the user has passed it to the generator tool. Using a type
mNIL  to indicate that a specific position of  an array is not in use, a single structure is sufficient to
implement the array: 

  template <typename A1=mNIL, ..., AN=mNIL>
  struct SIGNATURE {
    typedef A1 ARG1_t; 
    ... 
    typedef AN ARGN_t;    
    
    SIGNATURE() {}
    SIGNATURE(A1 a1) : a1_m(a1) {}
    ...
    SIGNATURE(A1 a1,...,AN aN) : a1_m(a1),...,aN_m(aN) {}
    
    const ARG1_t& operator[](const ARG<1>& ) const { return a1_m; }
    ...
    const ARGN_t& operator[](const ARG<N>& ) const { return aN_m; }
        
  private:        
    ARG1_t a1_m; 
    ... 
    ARGN_t aN_m;    
  };  
  



  template <typename SIG,int n>  struct ARG_TYPE { };
  template <typename SIG> struct ARG_TYPE<SIG,1> { 
     typedef typename SIG::ARG1_t Type_t; 
  };
  ...
  template <typename SIG>  struct ARG_TYPE<SIG,N> { 
    typedef typename SIG::ARGN_t Type_t; 
  };  

Through operator[] the SIGNATURE structure offers access to the values. The ARG_TYPE structure
allows access to the argument types. It has not been declared as a member of SIGNATURE, because
specializing  a  member  template  without  specializing  the  enclosing  template  is  not  allowed  with
C++. By introducing the functor  tag Substitute  (that  holds  an instance of  a SIGNATURE  struct -
accessible through the member signature), substitution can be done by PETE’s forEach function.
Whenever a value of type ARG is reached, it is replaced by the suitable value of the signature: 

  // SIG is assumed to be of type SIGNATURE<>, n is an index
  // that comes from an ARG<> value that’s stored at the leaf we are currently 
  // visiting.
  template <typename SIG,int n>
  struct LeafFunctor< ARG<n>, Substitute<SIG> > {
     typedef typename ARG_TYPE<SIG, n>::Type_t Leaf_t;
     static inline Leaf_t apply(const ARG<n>& a,const Substitute<SIG>& s) {
       return s.signature[ a ];
     }
  };

Any other types remain untouched. 

Substitution indeed can be done during compile time: apply is a static inline function that does not
change its arguments. Thus, a call to it can be optimized away. 

4.2. Evaluation

After substitution the generic expression usually becomes an expression for which we can compute
a result. Depending on the type of this result, different evaluation strategies have to be chosen. For
the case that it is a user-defined class that supports the expression template functionality, we have to
allow  for  the  possibility  of  some  existing  sophisticated  evaluation  strategies  that  only  the  user’s
class is aware of. Thus, evaluation should remain the user’s class’ responsibility. For all other cases
we can do evaluation on our own. 

It  is  not  only  the  result  type  that  has  to  be  taken  into  accout.  The  program  context  plays  an
important role, because an expression either needs to be evaluated, or has to become part of another
expression: 

  using LAMBDA::x;
  using LAMBDA::y;

  Vec3 a,b,c,d;                    
  cout << lambda(x,y, x + y)(a,b);          // evaluation
  cout << lambda(x,y, x + y)(a,b) - c + d;  // become part of new expression

Of course lambda(x,y, x + y)(a,b) - c + d should yield the same code as a + b - c + d
does. Immediately evaluating lambda(x,y, x + y)(a,b) - thus, returning a Vec3 object - is not a
good idea at  this  point,  because some benefits  of  the expression template  technique may get lost.
Notice,  that  if  directly  evaluating  the  lambda  term,  the  two  examples  will  lead  to  different
expression objects.  In the first  case (lambda(x,y, x + y)(a,b) - c + d),  the lambda term is



evaluated first and the result of adding a and b as well as c and d will become part of the expression
object. In the second case (a + b - c + d ) all four Vec3 variables will occur in the expression
object. Thus, possibe optimization steps cannot include the a + b part of  the expression. A better
solution is to make lambda(x,y, x + y)(a,b) part of a new expression template tree. 

The easiest way to make this possible is to wrap the result obtained by applying a function returned
by  lambda  into  PETE’s  Expression  class  template.  The  wrapped  class  template  (called
FACT_PETE_ROOT) stores a SIGNATURE object (according to the types/values that have been passed
to lFUNC’s function call operator) and the generic expression object that originally has been passed
to lambda. 

As  already  mentioned  above,  the  return  type  of  an  expression  has  influence  on  the  evaluation
strategy.  To  determine  it,  we  first  perform substitution  and  then  traverse  the  expression  template
tree with PETE’s meta program ForEach . The result type is computed bottom up: at each node a
template meta program computes the return type according to the type of  the node’s childrens and
the  type  of  operation  stored  at  the  the  node.  This  operation  already  has  been  discussed  in  the
PETE’s  section  and  is  selected  by  the  OpCombine  tag.  To  do  compuatation  at  the  leafs,  FACT!
provides the GetLeafType tag along with the following specialization of the LeafFunctor struct: 

  template<typename T>
  struct LeafFunctor<T,GetLeafType> {
    typedef T Leaf_t;
    static inline Leaf_t apply(const Leaf_t& l,const GetLeafType& t) {
      return l;
    }  
  };

Computing the result type ResultType for an expression E finally looks like this: 

  typedef ForEach<E,GetLeafType,OpCombine>::Type_t ReturnType;

Once the return type is known, we have to check whether it is a class that offers expression template
functionality. As mentioned in earlier, this functionality depends on the existence of a specialization
of  CreateLeaf .  If  no  such  specialization  exists,  PETE  wraps  values  into  the  Scalar  template
before  storing  them  in  the  expression  tree.  Thus,  we  just  have  to  check  whether
CreateLeaf<ReturnType>::Leaf_t  is  equal  to  Scalar<ReturnType> .  If  not,  we  safely  can
assume ReturnType to be aware of expression templates. 

For the case that  ReturnType  offers expression template functionality we suppose it  to provide a
constructor  template  that  constructs  a  user  object  from  an  Expression<>  object  and  return  an
appropriate temporary (see CLE2E below). Otherwise, we use PETE’s forEach function to traverse
the expression tree and perform computations according to the operators stored at the nodes. At the
leafs we use the leaf-functor tag EvalLeaf1 to access the values.

The following code section shows the complete code for the meta program RetFLA  which selects
the correct evaluation strategy for an expression type: 

  struct mTRUE {};
  struct mFALSE {};
  
  template < typename COND,typename THEN,typename ELSE>
  struct mIF { typedef THEN Type_t; };
  template < typename THEN,typename ELSE >
  struct mIF<mFALSE,THEN,ELSE> { typedef ELSE Type_t; }
  



  template < typename T1,typename T2 >
  struct mEQUAL { typedef mFALSE Type_t; };
  template < typename T >
  struct mEQUAL<T,T> { typedef mTRUE Type_t; };
  
  template < typename E,typename R >
  struct CLE2N {
    static inline R apply(const E& e) {
      return forEach(e,EvalLeaf1(0),OpCombine());
    }
  };
  
  template < typename E,typename R >
  struct CLE2E {
    static inline R apply(const E& e) {
      return R( e.expression() );
    }
  };
  
  template <typename E,typename R>
  struct RetFLA {
     typedef typename mIF< typename mEQUAL<typename CreateLeaf<R>::Leaf_t, 
                                           Scalar<R> 
                                          >::Type_t,
                           CLE2N<E,R>,
                           CLE2E<E,R>
                         >::Type_t Type_t;
  };

Evaluating an expression e of type E now simply means to call
RetFLA<E,ReturnType>::apply(e);. 

The remaining question is where to initiate the evaluation process. Usually, evaluation is triggered
through a call to an assignment operator, which only can be overloaded through the definition of a
class member function. Overloading the assignment operator for built-in types is not supported by
C++. Also, a similar operation is needed to allow assignment from a built-in type that is obtained
through  the  application  of  a  function  that  was  returned  by  lambda,  like  for  instance  in  int i =
lambda(x,y, x + y)(2,3). 

A  possible  solution  is  to  equip  Expression<FACT_PETE_ROOT>  with  a  conversion  operator  that
allows objects of this type to be converted into the ResultType that is related to the expression: 

  template <typename E,typename S>
  struct Expression< FACT_PETE_ROOT<E,S> > {
  ...
    typedef ForEach<E,GetLeafType,OpCombine>::Type_t ResultType;
    operator ReturnType() const {
      return RetFLA< E,ResultType>::apply(*this);
    }
  ...
  };

Finally, we can give the return type of lFUNC2’s function call operator: 

  template < typename A1,typename A2>
  Expression< FACT_PETE_ROOT< E, SIGNATURE<A1,A2> > > operator()(A1 a1,A2 a2) {
   ...
  }

4.3. Partial Application



Partial application means to bind the first k parameters of an nary function to some specific values
by  yielding  an  n-k  dimensional  function.  Thus,  instead  of  replacing  all  lambda  variables,  partial
application replaces just the first k  variables. To implement partial application we must add some
more  function  call  operators  to  the  lFUNC  classes.  Consider  for  example  lFUNC5 ,  then  four
additional parenthesis operators are needed. One that takes a single argument and returns an object
of type lFUNC4: 

  template <typename A>
  lFUNC4<typename ForEach<E,Substitute<SIGNATURE<A> >,TreeCombine>::Type_t > 
    operator()(A a) {
    return forEach(e, Substitute<SIGNATURE<A> >( SIGNATURE<A>(a) ),TreeCombine() );
  }

another one that takes two values and returns an object of type lFUNC3, and so on. 

Obviously,  partially  applying  the  result  of  a  lambda  function  still  yields  a  generic  function.  It  is
important to notice that type checking does not happen until full application occurs. Unfortunately,
this behavior may cause hard to read error messages (e.g. if a suitable operator does not exist). 

5. Using C++ Functions within a Lambda Expression

Using  a  C++  function  inside  a  lambda  expression  -  as  we  have  shown  above  -  is  not  possible,
because applying a function usually forces a C++ compiler to produce code to execute that function.
As  with  the  overloaded  mathematical  operators,  C++  functions  should  appear  in  the  expression
object  rather  than  being  executed.  Furthermore,  it  is  desirable  to  enable  the  user  to  pass  lambda
variables to a C++ function, which usually won’t fit a C++ function’s signature. Thus, a different
representation for C++ functions is needed. 

We  already  mentioned  in  [St00]  that  our  curry  function  helps  to  shift  the  representation  of  a
function into a form that we have control of. Utilizing this, it is not difficult to allow C++ functions
to be used inside a lambda expression, if  the user applies the curry function beforehand. In short,
the  curry  function  is  somewhat  similar  to  STL’s  ptr_fun  function:  it  takes  a  pointer  to  a  C++
function and returns a functional object. 

Since  it  is  necessary  to  store  functions  and  their  arguments  inside  the  expression  tree,  a  new
structure  template  called  NODE X  ( X  is  a  placeholder  for  the  dimension  of  the  function)  was
developed.  NODE X  is  a  more  general  counterpart  to  PETE’s  UnaryNode ,  BinaryNode  and
TernaryNode structure templates. It offers a comparable functionality (storing an operation as well
as some arguments, providing several access members), but also offers a conversion operator that
allows  a  NODEX  object  to  be  converted  into  the  type  that  would  results  from applying  the  stored
operation to the stored operands. 

Depending on the dimension the user has passed to the generator tool, X  different NODEX  structures
are  needed.  Any  of  these  may  occur  as  argument  to  any  of  PETE’s  mathematical  operators  -
yielding thousands of  overloaded operators. To avoid this, the function call operator of the functor
returned by curry, returns a value of type NODEX  that has been wrapped into the structure template
FUNCTION  -  thus,  it  returns a  value of  type FUNCTION<NODEX > .  The FUNCTION  structure acts as a
proxy class: it offers a conversion operator that is identical to the one of  the wrapped NODEX  class
thereby, making it possible to write for instance cout << curry(sin)(3.0). 

Finally,  PETE’s  MakeOperator  tool  can  be  used  to  produce  operators  for  the  class  template
FUNCTION and it is possible to do 



   
   #define sqr curry(sqr) 
   #define sqrt curry(sqrt)
   lambda(a,b,c, sqrt( sqr(a) + sqr(c) + sqr(b) ) )

and use function objects in lambda expression. 

Since we have shown in [St00] that curry comes at no extra cost, we used a preprocessor directive
to avoid typing curry(sqr) or curry(sqrt) all the time. 

As  long  as  the  C++  function  that  is  used  within  a  lambda  expression  is  free  of  side  effects,  the
lambda expression will be as well. While it is impossible to recognize whether a function changes a
global  variable,  side  effects  caused  by  arguments  that  get  passed  by  value  could  be  avoided  by
allowing curry to be applied to appropriate functions only. 

6. Lambda Variables as Placeholders for Functions

In order to enable lambda variables to be placeholders for functions, several function call operators
need  to  be  added  to  the  ARG  structure.  These  operators  return  an  instance  of  NODE X  where  the
operation is represented by a lambda variable (to allow this node to be used in an expression, they
get  wrapped into the FUNCTION  template  as well).  Now, the previously shown lambda expression
could be rewritten like this: 

   #define sqr curry(sqr)
   #define sqrt curry(sqrt)
   lambda(f,a,b,c, sqrt( f(a) + f(c) + f(b) ) )(sqr)

Note that there is a partial application - f is a placeholder for a unary function and is bound to sqr -
the result is a ternary function. 

7. Performance

To estimate the performance of  our lambda function, we used the expression template aware Vec3
class that has been described in section 3.1. We measured the time to add four instances of Vec3 by
using these methods: 

loop: we manually coded a loop that iterates through the vector components and performs the
addition, 
expression templates: we simply wrote e = a + b + c + d, were a - e are all of type Vec3
and let PETE do necessary optimizations, 
lambda function: we used lambda(w,x,y,z, w + x + y + z)(a,b,c,d). 

All  those  expression  were  evaluated  fifty  million  times  on  a  SunUltra  10  with  a  333MHz
UltraSparcIIi processor. We used Kuck and Associates’ KCC version 4.0 with either SUN’s C 5.0
or  Gnu’s  C  2.95.2  as  possible  backend  C  compiler.  Furthermore,  we  investigated  GNU’s  C++
compiler 2.95.2. 



 

As you can see from the above image, there indeed is no performance penalty if  using our lambda
function with KCC. Applying a lambda function to built-in types we obtained similar results: using
KCC there was no difference in runtime between applying a lambda function and "directly" adding
some built-in types. 

8. Related Work

The lambda library [LL]  also allows one to define generic function objects on the fly.  Despite the
name, this library does not focus on functional programming style. Rather, this library emphasizes
imperative programming and  allows  multiple  assignments, while  loops,  and  several other
imperative constructs within an expression that defines a function object. The lambda library has
support for  the generation of  nullary, unary, binary, and ternary function objects. Support for
functions of arbitrary arity is not planned by the authors as the lambda library primarily is meant to
be used with  STL  algorithms, and none of  those even accept ternary functions [Jaakko Järvi,
personal communication]. In  comparison to  FACT! ,  the  lambda library  does not  handle
user-defined classes that offer  expression template functionality. Thus, using such classes with
lambda generated function objects may possibly result in a loss of runtime performance. However,
the lambda library provides a simple way to define even very complex function objects through
expressions. 

9. Conclusion and Future Work

We  have shown that the lambda function offers a  convenient and efficient  way to  keep the
definition and application of  functions close together. Since there are no side effects with lambda
functions, they are very useful in parallel environments and thus, we are considering using them to
build  stencil objects for  POOMA [POOMA] .  Stencil objects are used to  define data-parallel
operations on arrays where the computation involves neighboring array values. For example, users
could write the following function: 

  double deriv2(Array &x, int i) {
    return x(i + 1) - 2 * x(i) + x(i-1);
  }



Later in their code they can write data-parallel statements of the form a = stencil(deriv2)(b) to
apply the computation a(i)=b(i+1)-2*b(i)+b(i-1) for all values of i. Note that the definition of
the function and its use need to occur at separate places in the code. We could achieve the same
result  with  a  more  compact  notation  using  lambda  functions  (for  example  a  =

stencil(lambda(x, x(1)-2*x(0)+x(-1)))(b)). With the lambda function description, it would
be easy to  manipulate stencils, for  example to  compose them, or  to  form  multi-dimensional
products of one-dimensional stencils. 

In a future project we will  try to extend our lambda approach in order to become a Turing complete
sub-language for C++. This project would make C++ an interesting target platform for developers
of  compilers for  functional programming languages, as one could integrate the functional and
object  oriented programming paradigm. We  also plan  to  investigate whether template meta
programs will  allow us to use our lambda technique to build a real compiler (e.g. use it to produce
SSE or MMX  code on an Intel CPU). Moreover, extending the lambda language such that a lambda
expression may contain function definitions (e.g. let/letrec expressions like in ML)  may yield the
possibility to do context sensitive optimizations through template meta programs. 
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