
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Interner Bericht

An Expression Template aware Lambda
Function

Jörg Striegnitz, Stephen A. Smith*

FZJ-ZAM-IB-2001-01

Dezember 2000

(letzte Änderung: 23.01.2001)

(*) Advanced Computing Laboratory Los Alamos National Laboratory New Mexico, USA

Preprint: Proceedings of the 2000 Workshop on C++ Template Programming, 10.10.2000, Erfurt Germany

An Expression Template aware Lambda
Function

Jörg Striegnitz

Research Centre Jülich
Central Institute for Applied Mathematics
Germany
J.Striegnitz@fz-juelich.de

Stephen A. Smith

Advanced Computing Laboratory
Los Alamos National Laboratory
New Mexico, USA
sa_smith@acl.lanl.gov

Abstract. Template libraries such as the STL contain several generic algorithms that
expect functions as arguments and thereby cause a frequent use of function objects.
User-defined function objects are awkward because they must be declared as a class in
namespace scope before they may be used. In this paper, we describe a lambda function
for C++, which allows users to define function objects on the fly, without writing class
declarations. We show that, by using expression templates, the lambda function can be
implemented without hurting the runtime performance of a program. Expression
templates can also help to overcome the performance penalties that may arise when
using expressions over user-defined types. Thus, we based our approach on PETE
which is a framework that simplifies the addition of expression template functionality to
user-defined classes.

1. Introduction

The Standard Template Library (STL) [C++] contains many function objects that mimic Higher
Order Functions (HOFs). These are functions that take function arguments and/or return functions
(e.g. for_each, transform, or find_if). Operations passed to HOFs are often very short in code
and primarily used in a local context. Nevertheless, they have to be defined in namespace scope,
possibly yielding numerous small functions or function objects respectively. The point of use and
the point of definition may get more and more dispersed, making code harder to read and
understand.

This problem even becomes worse, as it is impossible to pass function templates to STL’s HOFs. In
order to mimic rank-2 polymorphism (passing polymorphic function arguments to polymorphic
functions), either function overloading or the definition of a class with an operator() template is
required (like e.g. in [FC++] [SM00]). Especially the first approach will increase namespace
pollution, while the latter also depends on a class representative, thus, the existence of an object,
which has to be created manually.

A better solution would be to define functions on the fly. This feature is common in functional
programming languages, which offer a special syntax called lambda to define and use functions in
one go.

Our C++ framework FACT! (Functional Additions to C++ through Templates and Classes
[FACT]) offers a similar functionality through a function called lambda , which could be used to
create function objects on the fly and thereby helps to keep the point of use and the point of
definition close together. As with its pure functional counterpart, functions obtained by lambda are

free of side effects and therefore may be used in parallel environments as well.

In this article we discuss the implementation of our lambda functions and show how to add
expression template functionality to user-defined classes. After giving a short introduction into the
lambda functions, we will show how to build lambda expressions by using the Portable Expression
Template Engine (PETE). We will then concentrate on how evaluation is done and conclude with a
discussion of performance and possible future work.

2. The Lambda Function

The lambda function takes a list of variables (called the lambda list), an expression that may
contain any of this list’s variables (called the lambda expression) and returns a function which
usually has the same number of arguments as there are elements in the lambda list. Consider the
following example:

 lambda(x,y, x + y)

x and y form the lambda list , x + y is the lambda expression . Since the lambda list has two
members, a binary function is returned.

Applying a function returned by lambda to some arguments is done as follows: first, arguments
passed to the function get associated with the variables of the lambda list - this is done from left to
right. Second, all occurrences of lambda variables in the lambda expression get substituted by their
associated values. Finally, the expression gets evaluated and the result is returned. For instance,
applying lambda(x,y, x + y) to 3 and 4 results in:

1. x is bound to 3 and y is bound to 4
2. substitution yields 3 + 4
3. evaluation leads to 7

Thus, lambda(x,y, x + y) represents a function that calculates the sum of its arguments.

Functions returned by lambda are polymorphic, thus, x and y may be bound to values of type int,
float , complex , string , or any other type that is compatible with operator+ . As long as an
appropriate operator+ exists, x and y even may be bound to values of different type.

Lambda expressions may contain calls to other functions, e.g.:

 lambda(a,b,c, sqrt(sqr(a) + sqr(c) + sqr(b)))
 lambda(a,b, sin(a) / cos(b))

Additionally, lambda variables may be bound to functions and lambda may return a function that
returns a function as well:

 lambda(f,x,y, f(x,y)) // f is a placeholder for a function
 lambda(x, lambda(y, x + y))

Moreover, functions returned by lambda are presented in a curried form, which makes them capable
of taking their arguments one at a time and thereby offers the opportunity of partial application.

 lambda(x, pow(x)) // partially applying pow - return unary function that
 // returns unary function

At least four things are needed to develop the lambda function:

functions of varying signature (e.g. lambda(x1, expression) , lambda(x1,x2,

expression), etc.),
mechanisms to build and store a lambda list,
mechanisms to store and manipulate the expression; along with
methods to do the evaluation

Multiple variants of lambda functions are needed, each one taking a different number of lambda
variables - this can be solved through function overloading. Building and storing the lambda list can
be avoided. Provided that we can rediscover the ordering information of the lambda list, it is
sufficient to store lambda variables directly in the expression. Thus, the most important thing that
remains is to build, store, manipulate, and evaluate expression trees.

With respect to performance, expression templates [Vh95] are a way handle lambda expressions.
Expression templates are nested template structures, used to represent the parse tree of an
expression. They are built during compile time through overloaded arithmetic operators, which -
instead of immediately applying an operation - return objects that incrementally build up the parse
tree. The parse tree is represented in two fashions: as a type tree (the expression template tree) and
as a tree of objects (the expression object - which indeed is an instance of the expression template
tree). Template meta programs [Vh95-2] [EC00] allow one to traverse such expression template
trees during compile time and in conjunction with inlining techniques the expression object can be
used to produce efficient code.

Using the expression template technique, lambda variables become part of the the expression
template tree. Since the expression template tree emphasizes types, different lambda variables need
to be of different type, thereby enabling template meta programs to do the substitution during
compile time. In order to support functions of arbitrary dimension, an unlimited number of types to
represent lambda variables is needed:

 template <int n>
 struct ARG {};

ARG is a suitable representation, because it can be used to form numeric_limits<int >::max()
different types, which we assume to be an acceptable limit. For convenience reasons, FACT! offers
a large number of predefined lambda variables, all of them are defined in the scope of namespace
LAMBDA. Thus, the user usually does not need to pay attention to the real type of a lambda variable,
but just writes something like using LAMBDA::x to make the lambda variable x visible in the
current scope.

In the next section we will show how to form expression templates out of expressions containing
instances of ARG by using PETE.

3. Building Lambda Expressions with PETE

3.1. How PETE works

The Portable Expression Template Engine (PETE) [Ha99 , PETE] provides tools to simplify the
addition of expression template functionality to a set of classes. PETE uses external polymorphism
[CL98] , so expression templates may be implemented for existing classes, such as the Standard
Template Library vector class. The PETE library is fairly lightweight, containing fewer than 3000

lines of code. As the example in this section illustrates, integration of PETE with a user-defined
class requires a very small amount of code, typically provided through specializations of some
PETE classes. PETE is used to implement expression objects in FACT!, but users of FACT! do not
require any knowledge of PETE.

PETE supports 45 built-in operators to build expression objects out of expressions. Besides all C++
mathematical operators and a collection of common mathematical functions like sin() , it also
provides a where(a,b,c) function since the conditional expression a ? b : c cannot be
overloaded.

To integrate user-defined classes, variants of these operators have to be created, each one being
capable to act on any combination of user-defined classes and PETE-specific classes. Fortunately,
this has not to be done by the user, but PETE provides a tool (written in C++) called
MakeOperators that reads a file with a simple description of the user’s class and generates header
files containing the hundreds of operator functions that are necessary. Once these operators are
available, only three tasks are left to implement expression template functionality for the users
classes:

define how the objects are stored in the expression tree
add assignment operators that take PETE expressions
define how data is accessed during evaluation

To illustrate how PETE works, we will consider the following class:

 class Vec3 {
 Vec3(double i=0.0) { d[0]=i; d[1]=i; d[2]=i; }
 Vec3(double a,double b,double c) { d[0]=a; d[1]=b; d[2]=c; }
 double &operator[](int i) { return d[i]; }
 double operator[](int i) const { return d[i]; }
 private:
 double d[3];
 };

PETE’s operators need to know what to stick in the leaves of the expression tree. To offer this
information, the user has to supply a specialization of the CreateLeaf struct:

 template <>
 struct CreateLeaf< Vec3 > {
 typedef Reference<Vec3> Leaf_t;
 static inline Leaf_t apply(const Vec3& a) {
 return Leaf_t(a);
 }
 };

The typedef Leaf_t is the type of the object stored in the expression template tree. To save space
and avoid unnecessary calls to copy constructors PETE provides a Reference object that stores a
reference to the original object in the expression tree rather than a copy. Besides defining the type
of the leaf, the specialization of CreateLeaf also provides an apply method that builds the object
in the expression tree (in this case Reference<Vec3>) from the object in the expression (in this case
Vec3). When there is no specialization of CreateLeaf, PETE wraps the object in the template class
Scalar.

In PETE an expression object has type Expression<T> . To traverse the expression tree, PETE
offers the function forEach, which has the following general form:

 forEach(Expression, LeafTag, CombineTag);

This function traverses the nodes of the Expression object, applies an operation selected by
LeafTag at the leaves, and combines the results from non-leaf nodes’ children according to
CombineTag. This is implemented by a meta program so the tree traversal is done at compile time.
The return value of the forEach function is provided by the class template ForEach , so that the
type produced can be used as input to other template meta programs.

There are two default combinator tags in PETE: OpCombine and TreeCombine . OpCombine
combines results from the leaf nodes according to the operators stored at the non-leaf nodes, so that
forEach returns a value computed for the expression. TreeCombine is used to combine the results
from the leaf nodes back into an expression object, so that forEach returns a transformed version of
the expression.

For user-defined classes, evaluation can take many forms. Some typical examples are calls to
operator[] as in a[i], or operator() as in a(i,j), but evaluation could require calls to arbitary
functions. To tell PETE how to perform a given form of evaluation, users specialize a class called
LeafFunctor, which is templated on the user-defined class and a functor tag. One of the predefined
functor tags is the class EvalLeaf1 , which stores a single integer index, accessible through the
method val1(). Such a functor tag primary serves as a selector while the real application is done
by a specialization of LeafFunctor:

 template <>
 struct LeafFunctor<Vec3, EvalLeaf1> {
 typedef int Type_t;
 static inline Type_t apply(const Vec3& a,const EvalLeaf1& f) {
 return a[f.val1()];
 }
 };

By defining the evaluation through specialization of an external functor, PETE is not restricted to
evaluating classes that support a specific interface (such as operator[] in this case). Users with
classes that require different evaluation mechanisms do not need to rewrite the entire expression
template machinery, but just need to provide this one class specialization. In this example, the
LeafFunctor acts on leafs of type Vec3 and performs the operation selected by EvalLeaf1 . It
provides the function apply which takes a leaf (of type Vec3) as well as an instance of the functor
tag and returns the component of the vector that is identified by the index that is stored in the
functor tag.

Componentwise evaluation of vector expressions is now possible by applying forEach to an
expression object. With PETE, this usually is done within the assignment operator of the user’s
class:

 template <typename E>
 Vec3 operator=(const Expression<E>& expression) {
 d[0] = forEach(expression, EvalLeaf1(0), OpCombine());
 d[1] = forEach(expression, EvalLeaf1(1), OpCombine());
 d[2] = forEach(expression, EvalLeaf1(2), OpCombine());
 }

It also makes sense to supply a constructor from an Expression object which offers the same
functionality. To avoid implicit conversions it should be declared explicit.

Evaluating expressions with PETE’s forEach function allows for more generic operations than
simply computing the value of an expression. For example, in expressions involving arrays, one

could pull out domain information from the arrays and check for conformance. By selecting
different leaf functors and combiners, very general transformations can be performed on
expressions. This general capability will be used to perform substitutions in lambda expressions.

3.2. The Lambda Function

Using PETE, building lambda expressions is quite simple, since PETE’s MakeOperator tool
automatically produces code for all operators that are necessary to build expression objects out of
expressions that contain instances of ARG<i> (we call such expression objects generic expression
objects). To tell PETE how to handle values of type ARG<i> , several specializations of the
CreateLeaf structure are needed (one for each type of lambda variable).

The lambda function has to take some lambda variables as well as an expression object and return a
polymorphic function implementing the generic expression. Using C++ such a polymorphic
function can be implemented by a function object whose function call operator (operator()) is a
template. The number of arguments this operator has to take depends on the number of lambda
variables that have been passed to the lambda function. Thus, for every dimension a function
returned by lambda may have, a special class is needed. For binary functions it has the following
form:

 template <typename E>
 struct lFUNC2 {
 lFUNC2(const E& e) : e_m(e) {}
 lFUNC2(const lFUNC2& rhs) : e_m(rhs.e_m) {}
 const E& expression() const {
 return e_m;
 }
 template <typename A1,typename A2>
 result_t operator()(A1 a1,A2 a2) const {
 ...
 }
 private:
 E e_m;
 };

This class stores a generic expression object of type E and provides a template for a binary function
call operator. How to determine the return type result_t will be discussed in a later section.

The lambda function just has to create an appropriate instance of such a class. Here are examples
for lambda functions to produce binary / ternary functions:

 template <int m,int n,typename E>
 lFUNC2<E> lambda(const ARG<m>& a,const ARG<n>& b,const E& e) {
 return lFUNC2<E>(e);
 }

 template <int m,int n,int o,typename E>
 lFUNC3<E> lambda(const ARG<m>& a,const ARG<n>& b,const ARG<o>& c,const E& e) {
 return lFUNC3<E>(e);
 }

Notice, that the ARG arguments are ignored and only used to select a specific variant of lambda. The
indices of the lambda variables (namely m , n and o) may be of arbitrary value. They do not
necessarily need to reflect the order in which they have been passed to the lambda function. As
mentioned earlier, this ordering information is essential in order to do substitution. Therefore, the
indices of all lambda variables inside the expression object get normalized to represent the correct

ordering (not shown in the above code). This normalization is a compile time process, handled by
some sophisticated template meta programs which are quite similar to those being used during
substitution (see section 4.1.).

To support functions of arbitrary dimensions an endless number of specializations of the
CreateLeaf class as well as an endless amount of lFUNCX classes and overloaded lambda functions
will be needed. To cover as many situations as possible and to keep the user away from the
underlying details, we developed a code generating tool that is supplied with the largest function
dimension to support, and produces a C++ header file that contains all the necessary definitions.
Including support for currying of C++ functions, function composition and a few other features, this
header file consists of approximately 4000 lines of code, if functions up to order five are supported.

4. Applying the Result of a Lambda Function

4.1. Substitution

An expression is represented in two different fashions: as an expression template tree (emphasizing
types) and as an expression object (emphasizing values). Substitution has to be done for both and
thus, for a lambda expression that contains N lambda variables, N type/value tuples are needed for
substitution. These tuples are given by the parameters of lFUNC’s parenthesis operator and due to
normalization , association of variables in the tuple with the corresponding ARG<i> values of the
expression object is clear. For example to evaluate lambda(x,y, x + y)(f,c) , we need to
substitute two arguments f and c of arbitrary types for ARG<1> and ARG<2> in the expression object.

Now, substitution simply can be done by template meta programs, but for every argument we intend
to substitute, the full expression tree needs to be traversed. To save compilation time, it is
reasonable to store all type/value tuples in an array, use the integer index that is carried by lambda
variables as an index into it and traverse the expression tree just once. Such an array has to be
accessible during compile- and runtime. Compile time mechanisms are based on types and thus, for
every dimension an array may have, a different type is needed. Fortunately, the greatest possible
dimension of the array is known, because the user has passed it to the generator tool. Using a type
mNIL to indicate that a specific position of an array is not in use, a single structure is sufficient to
implement the array:

 template <typename A1=mNIL, ..., AN=mNIL>
 struct SIGNATURE {
 typedef A1 ARG1_t;
 ...
 typedef AN ARGN_t;

 SIGNATURE() {}
 SIGNATURE(A1 a1) : a1_m(a1) {}
 ...
 SIGNATURE(A1 a1,...,AN aN) : a1_m(a1),...,aN_m(aN) {}

 const ARG1_t& operator[](const ARG<1>&) const { return a1_m; }
 ...
 const ARGN_t& operator[](const ARG<N>&) const { return aN_m; }

 private:
 ARG1_t a1_m;
 ...
 ARGN_t aN_m;
 };

 template <typename SIG,int n> struct ARG_TYPE { };
 template <typename SIG> struct ARG_TYPE<SIG,1> {
 typedef typename SIG::ARG1_t Type_t;
 };
 ...
 template <typename SIG> struct ARG_TYPE<SIG,N> {
 typedef typename SIG::ARGN_t Type_t;
 };

Through operator[] the SIGNATURE structure offers access to the values. The ARG_TYPE structure
allows access to the argument types. It has not been declared as a member of SIGNATURE, because
specializing a member template without specializing the enclosing template is not allowed with
C++. By introducing the functor tag Substitute (that holds an instance of a SIGNATURE struct -
accessible through the member signature), substitution can be done by PETE’s forEach function.
Whenever a value of type ARG is reached, it is replaced by the suitable value of the signature:

 // SIG is assumed to be of type SIGNATURE<>, n is an index
 // that comes from an ARG<> value that’s stored at the leaf we are currently
 // visiting.
 template <typename SIG,int n>
 struct LeafFunctor< ARG<n>, Substitute<SIG> > {
 typedef typename ARG_TYPE<SIG, n>::Type_t Leaf_t;
 static inline Leaf_t apply(const ARG<n>& a,const Substitute<SIG>& s) {
 return s.signature[a];
 }
 };

Any other types remain untouched.

Substitution indeed can be done during compile time: apply is a static inline function that does not
change its arguments. Thus, a call to it can be optimized away.

4.2. Evaluation

After substitution the generic expression usually becomes an expression for which we can compute
a result. Depending on the type of this result, different evaluation strategies have to be chosen. For
the case that it is a user-defined class that supports the expression template functionality, we have to
allow for the possibility of some existing sophisticated evaluation strategies that only the user’s
class is aware of. Thus, evaluation should remain the user’s class’ responsibility. For all other cases
we can do evaluation on our own.

It is not only the result type that has to be taken into accout. The program context plays an
important role, because an expression either needs to be evaluated, or has to become part of another
expression:

 using LAMBDA::x;
 using LAMBDA::y;

 Vec3 a,b,c,d;
 cout << lambda(x,y, x + y)(a,b); // evaluation
 cout << lambda(x,y, x + y)(a,b) - c + d; // become part of new expression

Of course lambda(x,y, x + y)(a,b) - c + d should yield the same code as a + b - c + d
does. Immediately evaluating lambda(x,y, x + y)(a,b) - thus, returning a Vec3 object - is not a
good idea at this point, because some benefits of the expression template technique may get lost.
Notice, that if directly evaluating the lambda term, the two examples will lead to different
expression objects. In the first case (lambda(x,y, x + y)(a,b) - c + d), the lambda term is

evaluated first and the result of adding a and b as well as c and d will become part of the expression
object. In the second case (a + b - c + d) all four Vec3 variables will occur in the expression
object. Thus, possibe optimization steps cannot include the a + b part of the expression. A better
solution is to make lambda(x,y, x + y)(a,b) part of a new expression template tree.

The easiest way to make this possible is to wrap the result obtained by applying a function returned
by lambda into PETE’s Expression class template. The wrapped class template (called
FACT_PETE_ROOT) stores a SIGNATURE object (according to the types/values that have been passed
to lFUNC’s function call operator) and the generic expression object that originally has been passed
to lambda.

As already mentioned above, the return type of an expression has influence on the evaluation
strategy. To determine it, we first perform substitution and then traverse the expression template
tree with PETE’s meta program ForEach . The result type is computed bottom up: at each node a
template meta program computes the return type according to the type of the node’s childrens and
the type of operation stored at the the node. This operation already has been discussed in the
PETE’s section and is selected by the OpCombine tag. To do compuatation at the leafs, FACT!
provides the GetLeafType tag along with the following specialization of the LeafFunctor struct:

 template<typename T>
 struct LeafFunctor<T,GetLeafType> {
 typedef T Leaf_t;
 static inline Leaf_t apply(const Leaf_t& l,const GetLeafType& t) {
 return l;
 }
 };

Computing the result type ResultType for an expression E finally looks like this:

 typedef ForEach<E,GetLeafType,OpCombine>::Type_t ReturnType;

Once the return type is known, we have to check whether it is a class that offers expression template
functionality. As mentioned in earlier, this functionality depends on the existence of a specialization
of CreateLeaf . If no such specialization exists, PETE wraps values into the Scalar template
before storing them in the expression tree. Thus, we just have to check whether
CreateLeaf<ReturnType>::Leaf_t is equal to Scalar<ReturnType> . If not, we safely can
assume ReturnType to be aware of expression templates.

For the case that ReturnType offers expression template functionality we suppose it to provide a
constructor template that constructs a user object from an Expression<> object and return an
appropriate temporary (see CLE2E below). Otherwise, we use PETE’s forEach function to traverse
the expression tree and perform computations according to the operators stored at the nodes. At the
leafs we use the leaf-functor tag EvalLeaf1 to access the values.

The following code section shows the complete code for the meta program RetFLA which selects
the correct evaluation strategy for an expression type:

 struct mTRUE {};
 struct mFALSE {};

 template < typename COND,typename THEN,typename ELSE>
 struct mIF { typedef THEN Type_t; };
 template < typename THEN,typename ELSE >
 struct mIF<mFALSE,THEN,ELSE> { typedef ELSE Type_t; }

 template < typename T1,typename T2 >
 struct mEQUAL { typedef mFALSE Type_t; };
 template < typename T >
 struct mEQUAL<T,T> { typedef mTRUE Type_t; };

 template < typename E,typename R >
 struct CLE2N {
 static inline R apply(const E& e) {
 return forEach(e,EvalLeaf1(0),OpCombine());
 }
 };

 template < typename E,typename R >
 struct CLE2E {
 static inline R apply(const E& e) {
 return R(e.expression());
 }
 };

 template <typename E,typename R>
 struct RetFLA {
 typedef typename mIF< typename mEQUAL<typename CreateLeaf<R>::Leaf_t,
 Scalar<R>
 >::Type_t,
 CLE2N<E,R>,
 CLE2E<E,R>
 >::Type_t Type_t;
 };

Evaluating an expression e of type E now simply means to call
RetFLA<E,ReturnType>::apply(e);.

The remaining question is where to initiate the evaluation process. Usually, evaluation is triggered
through a call to an assignment operator, which only can be overloaded through the definition of a
class member function. Overloading the assignment operator for built-in types is not supported by
C++. Also, a similar operation is needed to allow assignment from a built-in type that is obtained
through the application of a function that was returned by lambda, like for instance in int i =
lambda(x,y, x + y)(2,3).

A possible solution is to equip Expression<FACT_PETE_ROOT> with a conversion operator that
allows objects of this type to be converted into the ResultType that is related to the expression:

 template <typename E,typename S>
 struct Expression< FACT_PETE_ROOT<E,S> > {
 ...
 typedef ForEach<E,GetLeafType,OpCombine>::Type_t ResultType;
 operator ReturnType() const {
 return RetFLA< E,ResultType>::apply(*this);
 }
 ...
 };

Finally, we can give the return type of lFUNC2’s function call operator:

 template < typename A1,typename A2>
 Expression< FACT_PETE_ROOT< E, SIGNATURE<A1,A2> > > operator()(A1 a1,A2 a2) {
 ...
 }

4.3. Partial Application

Partial application means to bind the first k parameters of an nary function to some specific values
by yielding an n-k dimensional function. Thus, instead of replacing all lambda variables, partial
application replaces just the first k variables. To implement partial application we must add some
more function call operators to the lFUNC classes. Consider for example lFUNC5 , then four
additional parenthesis operators are needed. One that takes a single argument and returns an object
of type lFUNC4:

 template <typename A>
 lFUNC4<typename ForEach<E,Substitute<SIGNATURE<A> >,TreeCombine>::Type_t >
 operator()(A a) {
 return forEach(e, Substitute<SIGNATURE<A> >(SIGNATURE<A>(a)),TreeCombine());
 }

another one that takes two values and returns an object of type lFUNC3, and so on.

Obviously, partially applying the result of a lambda function still yields a generic function. It is
important to notice that type checking does not happen until full application occurs. Unfortunately,
this behavior may cause hard to read error messages (e.g. if a suitable operator does not exist).

5. Using C++ Functions within a Lambda Expression

Using a C++ function inside a lambda expression - as we have shown above - is not possible,
because applying a function usually forces a C++ compiler to produce code to execute that function.
As with the overloaded mathematical operators, C++ functions should appear in the expression
object rather than being executed. Furthermore, it is desirable to enable the user to pass lambda
variables to a C++ function, which usually won’t fit a C++ function’s signature. Thus, a different
representation for C++ functions is needed.

We already mentioned in [St00] that our curry function helps to shift the representation of a
function into a form that we have control of. Utilizing this, it is not difficult to allow C++ functions
to be used inside a lambda expression, if the user applies the curry function beforehand. In short,
the curry function is somewhat similar to STL’s ptr_fun function: it takes a pointer to a C++
function and returns a functional object.

Since it is necessary to store functions and their arguments inside the expression tree, a new
structure template called NODE X (X is a placeholder for the dimension of the function) was
developed. NODE X is a more general counterpart to PETE’s UnaryNode , BinaryNode and
TernaryNode structure templates. It offers a comparable functionality (storing an operation as well
as some arguments, providing several access members), but also offers a conversion operator that
allows a NODEX object to be converted into the type that would results from applying the stored
operation to the stored operands.

Depending on the dimension the user has passed to the generator tool, X different NODEX structures
are needed. Any of these may occur as argument to any of PETE’s mathematical operators -
yielding thousands of overloaded operators. To avoid this, the function call operator of the functor
returned by curry, returns a value of type NODEX that has been wrapped into the structure template
FUNCTION - thus, it returns a value of type FUNCTION<NODEX > . The FUNCTION structure acts as a
proxy class: it offers a conversion operator that is identical to the one of the wrapped NODEX class
thereby, making it possible to write for instance cout << curry(sin)(3.0).

Finally, PETE’s MakeOperator tool can be used to produce operators for the class template
FUNCTION and it is possible to do

 #define sqr curry(sqr)
 #define sqrt curry(sqrt)
 lambda(a,b,c, sqrt(sqr(a) + sqr(c) + sqr(b)))

and use function objects in lambda expression.

Since we have shown in [St00] that curry comes at no extra cost, we used a preprocessor directive
to avoid typing curry(sqr) or curry(sqrt) all the time.

As long as the C++ function that is used within a lambda expression is free of side effects, the
lambda expression will be as well. While it is impossible to recognize whether a function changes a
global variable, side effects caused by arguments that get passed by value could be avoided by
allowing curry to be applied to appropriate functions only.

6. Lambda Variables as Placeholders for Functions

In order to enable lambda variables to be placeholders for functions, several function call operators
need to be added to the ARG structure. These operators return an instance of NODE X where the
operation is represented by a lambda variable (to allow this node to be used in an expression, they
get wrapped into the FUNCTION template as well). Now, the previously shown lambda expression
could be rewritten like this:

 #define sqr curry(sqr)
 #define sqrt curry(sqrt)
 lambda(f,a,b,c, sqrt(f(a) + f(c) + f(b)))(sqr)

Note that there is a partial application - f is a placeholder for a unary function and is bound to sqr -
the result is a ternary function.

7. Performance

To estimate the performance of our lambda function, we used the expression template aware Vec3
class that has been described in section 3.1. We measured the time to add four instances of Vec3 by
using these methods:

loop: we manually coded a loop that iterates through the vector components and performs the
addition,
expression templates: we simply wrote e = a + b + c + d, were a - e are all of type Vec3
and let PETE do necessary optimizations,
lambda function: we used lambda(w,x,y,z, w + x + y + z)(a,b,c,d).

All those expression were evaluated fifty million times on a SunUltra 10 with a 333MHz
UltraSparcIIi processor. We used Kuck and Associates’ KCC version 4.0 with either SUN’s C 5.0
or Gnu’s C 2.95.2 as possible backend C compiler. Furthermore, we investigated GNU’s C++
compiler 2.95.2.

As you can see from the above image, there indeed is no performance penalty if using our lambda
function with KCC. Applying a lambda function to built-in types we obtained similar results: using
KCC there was no difference in runtime between applying a lambda function and "directly" adding
some built-in types.

8. Related Work

The lambda library [LL] also allows one to define generic function objects on the fly. Despite the
name, this library does not focus on functional programming style. Rather, this library emphasizes
imperative programming and allows multiple assignments, while loops, and several other
imperative constructs within an expression that defines a function object. The lambda library has
support for the generation of nullary, unary, binary, and ternary function objects. Support for
functions of arbitrary arity is not planned by the authors as the lambda library primarily is meant to
be used with STL algorithms, and none of those even accept ternary functions [Jaakko Järvi,
personal communication]. In comparison to FACT! , the lambda library does not handle
user-defined classes that offer expression template functionality. Thus, using such classes with
lambda generated function objects may possibly result in a loss of runtime performance. However,
the lambda library provides a simple way to define even very complex function objects through
expressions.

9. Conclusion and Future Work

We have shown that the lambda function offers a convenient and efficient way to keep the
definition and application of functions close together. Since there are no side effects with lambda
functions, they are very useful in parallel environments and thus, we are considering using them to
build stencil objects for POOMA [POOMA] . Stencil objects are used to define data-parallel
operations on arrays where the computation involves neighboring array values. For example, users
could write the following function:

 double deriv2(Array &x, int i) {
 return x(i + 1) - 2 * x(i) + x(i-1);
 }

Later in their code they can write data-parallel statements of the form a = stencil(deriv2)(b) to
apply the computation a(i)=b(i+1)-2*b(i)+b(i-1) for all values of i. Note that the definition of
the function and its use need to occur at separate places in the code. We could achieve the same
result with a more compact notation using lambda functions (for example a =

stencil(lambda(x, x(1)-2*x(0)+x(-1)))(b)). With the lambda function description, it would
be easy to manipulate stencils, for example to compose them, or to form multi-dimensional
products of one-dimensional stencils.

In a future project we will try to extend our lambda approach in order to become a Turing complete
sub-language for C++. This project would make C++ an interesting target platform for developers
of compilers for functional programming languages, as one could integrate the functional and
object oriented programming paradigm. We also plan to investigate whether template meta
programs will allow us to use our lambda technique to build a real compiler (e.g. use it to produce
SSE or MMX code on an Intel CPU). Moreover, extending the lambda language such that a lambda
expression may contain function definitions (e.g. let/letrec expressions like in ML) may yield the
possibility to do context sensitive optimizations through template meta programs.

References

[C++] International Standard, Programming Languages - C++, ISO/IEC: 14882, 1998

[Ha99] Scott Haney, James Crotinger, Steve Karmesin, and Stephen Smith: PETE, the
Portable Expression Templates Engine, Dr. Dobbs Journal, October 1999

[PETE] PETE home page: http://www.acl.lanl.gov/pete

[CL98] Chris Cleeland, Douglas C. Schmidt and Timothy H. Harrison: External
Polymorphism, Proccedings of the 3rd Pattern Languages of Programmng Conference

[Vh95] Todd Veldhuizen: Expression Templates, C++ Report, June 1995

[Vh95-2] Todd Veldhuizen: Using C++ Template Meta Programs, C++ Report, May 1995

[EC00] Ulrich W. Eisenecker, Krzysztof Czarnecki: Generative Programming, Addison
Wesley, 2000

[SM00] Brian McNamara, Yannis Smaragdakis: Functional Programming in C++

[FC++] FC++ home page: http://www.cc.gatech.edu/~yannis/fc++"

[POOMA] POOMA home page: http://www.acl.lanl.gov/pooma

[LL] Jaakko Järvi, Gary Powell: The Lambda Library http://lambda.cs.utu.fi

[St00] Jörg Striegnitz: Making C++ Ready for Algorithmic Skeletons, Internal Report
IB08-2000, Research Center Jülich

[FACT] FACT! home page: http://www.fz-juelich.de/zam/FACT

