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Introduction 
 
The term “crystal” derives from the Greek κρύσταλλος , which was first used as 
description of ice and later - in a more general meaning - for transparent minerals with 
regular morphology (regular crystal faces and edges). 

Crystalline solids are thermodynamically stable in contrast to amorphous solids and 
are characterised by a regular three-dimensional periodic arrangement of atoms 
(ions, molecules) in space. This periodic arrangement makes it possible to determine 
their structure (atomic positions in 3D space) by diffraction methods, using the crystal 
lattice as a three-dimensional diffraction grating. 
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Fig. 1.1:  Sketch of a typical constant wavelength single crystal diffraction experiment. 
The first such experiment has been conducted by Laue et al. in 1912 (Nobel 
Prize in Physics 1914). 

 

The purpose of this chapter is to give a brief introduction into the symmetry concept 
underlying the description of the crystalline state. 

 

1.1 Crystal lattices 
 
The three-dimensional periodicity of crystals can be represented by the so-called crystal 
lattice. The repeat unit in form of a parallelepiped - known as the unit cell – is defined 
by 3 non-coplanar basis vectors a1, a2, and a3, whose directions form the reference axes 
of the corresponding right-handed crystallographic coordinate system. The 6 lattice 
parameters are given as the lengths of the basis vectors a = ⎪a1⎪, b = ⎪a2⎪, c = ⎪a3⎪ 
and the angles between the basis vectors: angle (a1,a2) = γ, angle (a2,a3) = α, angle 
(a3,a1) = β. The faces of the unit cell are named as face (a1,a2) = C, face (a2,a3) = A, 
face (a3,a1) = B. 

If the vertices of all repeat units (unit cells) are replaced by points, the result is the 
crystal lattice in the form of a point lattice. Each lattice point is given by a vector a = 
ua1+va2+wa3, with u, v, w being integers. As a symmetry operation of parallel 
displacement, a – also known as translation vector – maps the atomic arrangement of 
the crystal (crystal structure) onto itself. 
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Fig. 1.2:  Notation for a unit cell (basis vectors a1, a2, a3, or a, b, c) and a point lattice. 

 

A lattice point is labelled “uvw”, according to the coefficients (integers) of the 
translation vector  

a = u a1 + v a2 + w a3 1.1  

from the origin to the lattice point. A lattice direction - given by the symbol [uvw] - is 
defined by the direction of the corresponding translation vector. 

A plane passing through three lattice points is known as a lattice plane. Since all lattice 
points are equivalent (by translation symmetry) there will be infinitely many parallel 
planes passing through all the other points of the lattice. Such a set of equally spaced 
planes is known as a set of lattice planes. If the first plane from the origin of a set of 
lattice planes makes intercepts a1/h, a2/k, a3/l on the axes, where h, k, l are integers, then 
the Miller indices of this set of lattice planes are (hkl), the three coefficients h, k, l are 
conventionally enclosed in parentheses. 

The equation of lattice planes can be written in intercept form as 

(hx/a1) + (ky/a2) + (lz/a3) = n, 1.2  

where n is an integer. If n = 0 the lattice plane passes through the origin; if n = 1 the 
plane  makes  intercepts  a1/h,  a2/k,  a3/l  on the axes; if  n = 2  the intercepts are 2a1/h, 
2a2/k, 2a3/l; and so on.  

Complementary to the crystal lattice, the so-called reciprocal lattice may be constructed, 
which is a useful tool for understanding the geometry of diffraction experiments. The 
reciprocal lattice can be thought of as the result of diffraction (of X-rays, neutrons, 
electrons etc.) from the crystal lattice (‘direct lattice’). The points on the diffraction 
pattern in Fig. 1.1 (right) are actually points of the reciprocal lattice recorded during the 
diffraction experiment. Their nodes are indexed by the Miller-indices hkl in the same 
way as the nodes of the direct lattice are indexed by uvw:  

τ = h τ1 + k τ2 + l τ3.  1.3  

The basis vectors τ of the reciprocal lattice can be calculated from those of the direct 
cell by: 
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τi = (aj ×ak)/Vc,  1.4  

where × means the cross product, and Vc = a1⋅(a2×a3) is the volume of the unit cell. 

Here is a compilation of some properties of the reciprocal lattice: 

• Each reciprocal lattice vector is perpendicular to two real space vectors: τi ⊥ aj and ak 
(for i ≠ j, k) 

• The lengths of the reciprocal lattice vectors are |τi| = 1/Vc⋅|aj|⋅|ak|⋅sin∠(aj,ak). 

• Each point hkl in the reciprocal lattice refers to a set of planes (hkl) in real space. 

• The direction of the reciprocal lattice vector τ is normal to the (hkl) planes and its 
length is reciprocal to the interplanar spacing dhkl:  |τ| = 1/dhkl. 

• Duality principle: The reciprocal lattice of the reciprocal lattice is the direct lattice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3:  Direct and corresponding reciprocal unit cell. 
 

 

 

 

 

 

 

 

1.2 Crystallographic coordinate systems 
 
The description of a crystal structure consists first of the choice of a unit cell as the 
smallest repeat unit of the crystal with its basis vectors. In this way a crystal-specific 
coordinate system is defined which is used to localize all the atoms in the unit cell. 
While - in physics and chemistry - Cartesian coordinate systems are frequently used, 
crystallographers often use non-orthogonal and non-orthonormal coordinate systems.  
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The conventional crystallographic coordinate systems are based on the symmetry of the 
crystals. In three dimensions there are 7 different crystal systems and hence 7 
crystallographic coordinate systems: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The choice of the origin of the coordinate system is free in principle, but for 
convenience it is usually chosen at a centre of symmetry (inversion centre), if present, 
otherwise in a point of high symmetry. 

In order to complete the symmetry conventions of the coordinate systems it is necessary 
to add to the 7 so-called primitive unit cells of the crystal systems (primitive lattice 
types with only one lattice point per unit cell) 7 centred unit cells with two, three or four 
lattice points per unit cell (centred lattice types). These centred unit cells are 
consequently two, three or four times larger than the smallest repeat units of the 
crystals. The resulting 14 Bravais lattice types with their centering conditions are 
collected in Fig. 1.4. 

 

 

 

a = b = c; α=β=γ=90° four triads  –  3 or 3   
(‖space diagonals of cube) 

cubic 

a = b ≠ c; α=β=90°, 
γ=120° 

one hexad  –  6 or 6  (‖Z) hexagonal 

a = b ≠ c; α=β=90°, 
γ=120° 

one triad  –  3 or 3  (‖Z) 
trigonal 

(hexagonal cell) 

a = b ≠ c; α=β=γ=90° one tetrad  –  4 or 4  (‖Z) tetragonal 

a ≠ b ≠ c; α=β=γ=90° three mutually perpendicular 
diads –  2 or m (‖X, Y and Z) 

orthorhombic 

a ≠ b ≠ c; α=γ=90°, β>90°  one diad  –  2 or m (‖Y)  
monoclinic 

(unique axis b) 

a ≠ b ≠ c; α ≠ β ≠ γ 1 or 1  triclinic 

Crystal system Minimum symmetry Conventional unit cell 
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Fig. 1.4:  The 14 Bravais lattices consisting of the 7 primitive lattices P for the 7 crystal  
systems with only one lattice point per unit cell + the 7 centred (multiple) 
lattices A, B, C, I, R and F with 2, 3 and 4 lattice points per unit cell.  

 

triclinic P monoclinic P 
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(0,0,0 + ½, ½,0) 

orthorhombic F 
(0,0,0 + ½, ½,0 

½,0, ½ + 0, ½, ½) 

tetragonal P 

 

tetragonal I hexagonal P hexagonal/ 
rhombohedral R 

cubic P 

cubic I cubic F 
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1.3 Symmetry-operations and -elements 
 

The symmetry operations of a crystal are isometric transformations or motions, i.e. 
mappings which preserve distances and, hence, also angles and volumes. An object and 
its transformed object superimpose in a perfect manner, they are indistinguishable. 

The simplest crystallographic symmetry operation is the translation, which is a parallel 
displacement of the crystal by a translation vector a (see chapter 1.1). There is no fixed 
point, the entire lattice is shifted and therefore, theoretically, the crystal lattice is 
considered to be infinite. 

Crystallographic rotations n around an axis by an angle ϕ = 360°/n (n-fold rotations) 
and rotoinversions (combination of rotations and inversions)⎯n are called point 
symmetry operations because they leave at least one point of space invariant (at least 
one fixed point). An important fact of crystallographic symmetry is the restriction of the 
rotation angles by the three-dimensional crystal lattice to ϕ = 360° (n = 1), 180° (n = 2), 
120° (n = 3), 90° (n = 4), 60° (n = 6). Only for these crystallographic rotations the space 
can be covered completely without gaps and overlaps. The rotoinversion⎯n =⎯1 is an 
inversion in a point,⎯n =⎯2 ≡ m (mirror) describes a reflection across a plane. 

The combination of n-fold rotations with (m/n)⋅a translation components (m < n) ‖ to 
the rotation axis leads to the so-called screw rotations nm, e.g. 21, 32, 42, 65. These 
symmetry operations have no fixed points.  

The combination of a reflection through a plane (glide plane) with translation 
components (glide vectors) of a1/2, a2/2, a3/2, (a1+a2)/2, … ‖ to this plane are known as 
glide reflections a, b, c, n, …, d. Again no fixed points exist for these symmetry 
operations. 

In addition to the symmetry operations which represent isometric motions of an object, 
symmetry can also be described in (static) geometrical terms by symmetry elements. 
They form the geometrical locus, oriented in space, on which a symmetry operation is 
performed (line for a rotation, plane for a reflection, and point for an inversion) together 
with a description of this operation. Symmetry elements are mirror planes, glide planes, 
rotation axes, screw axes, rotoinversion axes and inversion centres. The geometrical 
descriptions of the crystallographic symmetry operations are illustrated in Figs. 1.5-1.7.  

A symmetry operation transforms a point X with coordinates x, y, z (according to a 
position vector X = xa1 + ya2 + za3) into a symmetrically equivalent point X’ with 
coordinates x’, y’, z’ mathematically by the linear equations  

x’ = W11x + W12y + W13z + w1 

y’ = W21x + W22y + W23z + w2 

z’ = W31x + W32y + W33z + w3 

1.5  

 

with w1, w2, w3 constituting the translational part of the symmetry operation.
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Point symmetry operations 
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inversion

rotations rotoinversions 

1=identity

2-fold = 180°-rotation
2-fold rotation combined 

with inversion = reflection 

 

Fig. 1.5:  Rotations: n=1 (identity), n=2 (rot. angle 180°), n=3 (120°), n=4 (90°), n=6 
(60°). Rotoinversions:⎯1 (inversion),⎯2 ≡ m (reflection), 3=3+1,⎯4,⎯6 = 3/m.  
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1/3τ 

31 = 3 + 1/3 τ

a
60° 

2/6τ 

Fig. 1.6:  Screw rotations nm: combination of rotations n and translation components 
(m/n)⋅a ‖ to the rotation axis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 1.7:  Examples of reflections and glide reflections.  

62 = 6 + 2/6 τ 

60° 
a

4/6τ 

+ 42, 43 and 65 64 = 6 + 4/6 τ  

 

a
m 

m reflection: mirror plane  image plane (plane of the paper) ⊥

a
a 

a/2

 with glide vector a/2 glide reflection: glide plane a ⊥
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The above equation, re-written in matrix notation: 
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;  X’ = W°X + w = (W, w)°X 1.6  

The (3×3) matrix W is the rotational part and the (3×1) column matrix w the 
translational part of the symmetry operation. The two parts W and w can be assembled 
into an augmented (4×4) matrix W according to 
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 = W°X 1.7  

Since every symmetry transformation is a “rigid-body” motion, the determinant of all 
matrices W and W is det W = det W = ± 1 (+ 1: preservation of handedness; - 1: change 
of handedness of the object). 

The sequence of two symmetry operations (successive application) is given by the 
product of their matrices W1 and W2: 

W3 = W1°W2 1.8  

where W3 is again a symmetry operation.  

 

 

1.4 Crystallographic point groups and space groups 
 

The symmetry of a crystal and of its crystal structure can be described by mathematical 
group theory. The symmetry operations are the group elements of a crystallographic 
group G and the combination of group elements is the successive execution of 
symmetry operations. All possible combinations of crystallographic point-symmetry 
operations in three-dimensional space lead to exactly 32 crystallographic point groups 
(≡ crystal classes) which all are of finite order (the maximum order is 48 for the cubic 
crystal class m3m ). For the different crystal systems they are represented by 
stereographic projections in Fig. 1.8. There are two types of group symbols in use: For 
each crystal class the corresponding Schoenflies symbol is given at the bottom left and 
the Hermann-Mauguin (international) symbol at the bottom right. A maximum of 3 
independent main symmetry directions (“Blickrichtungen”) is sufficient to describe the 
complete symmetry of a crystal. These symmetry directions are specifically defined for 
the 7 crystal systems (Hermann-Mauguin symbols). As an example, the symmetry 
directions of the cubic system are shown in Fig. 1.9.  
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Fig. 1.8:  The 32 crystallographic point groups (crystal classes) in three-dimensional 
space represented by their stereographic projections. The group symbols are 
given according to Schoenflies (bottom left) and to Hermann-Mauguin (bottom 
right).  
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Fig. 1.9: Symmetry directions (“Blickrichtungen”) of the cubic lattice (a=b=c, 
α=β=γ=90°). Along [100]: 4/m, along [111]:⎯3, along [110]: 2/m.  

In three dimensions all possible combinations of the point symmetries of the 32 
crystallographic point groups with the lattice translations of the 14 Bravais lattices lead 
to exactly 230 space groups, all of infinite order. As already mentioned, the addition of 
translations to the point symmetries results in new symmetry operations: Screw 
rotations and glide reflections. The conventional graphical symbols for the symmetry 
elements according to the International Tables for Crystallography Vol. A (2002) [1] are 
shown in Fig. 1.10. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 1.10:  Conventional graphical symbols for symmetry elements: 
  - symmetry axes: (a) perpendicular, (b) parallel, and (c) inclined to the plane; 

 - symmetry planes: (d) perpendicular and (e) parallel to the image plane.  
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1.5 Quasicrystals 
Since the pioneering work of Shechtman et al [2] published in 1984 and honoured by 
the 2011 Nobel-Prize in Physics it is accepted that the crystalline state with its 3D 
periodic arrangement of atoms in a lattice is not the only long-range ordered ground 
state of matter. This quasi crystalline state also follows strict construction rules and 
exhibits long range order, but the rules are no longer based on the lattice concept.  

 

 

 

 

 

 

 

 

Fig. 1.11: 2D-analogues of a crystalline (left) and a quasi-crystalline structure (center) 
[3], Penrose tiling of a plane by two different rhombs (right) [4].  

 
The description of quasicrystals is closely related to the so called Penrose-tilings which 
are a way to cover the plane completely and without overlap by a long range ordered, 
non-periodic arrangement of (in the case shown in Fig. 1.11) two different geometric 
shapes (here: rhombs). As a result of the lack of translation symmetry, the 
“crystallographically forbidden” rotation axes (5-fold, 8-fold, 10-fold etc., more 
precisely: forbidden as part of a 3D-space group symmetry) may occur in quasi crystals 
and also show up as symmetries of the outer shape (Fig. 1.12 left) and diffraction 
patterns of quasi crystals (center). 

 

 

 

 

 

 

 

 

Fig. 1.12: Icosahedral quasi crystal HoMgZn (left) [5], electron diffraction pattern  
taken along the -5 rotoinversion axis (center) [5] and stereographic projection 
of the icosahedral point symmetry group m-3-5 [2] 
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1.6 Application: Structure description of YBa2Cu3O7-δ  
 

The crystal structure determination with atomic resolution is achieved by diffraction 
experiments with X-rays, electron or neutron radiation. As an example, the results of a 
structure analysis by neutron diffraction on a single crystal of the ceramic high-TC 
superconductor YBa2Cu3O7-δ with TC = 92 K are presented [6]. The atomic arrangement 
of the orthorhombic structure, space group P m m m, and the temperature-dependent 
electrical resistivity are shown in Fig. 1.13. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, 

TC 
YBa2Cu3O7- δ 

Fig. 1.13: Crystal structure (unit cell) of YBa2Cu3O7-δ with the CuOx-polyhedra (left) 
and the electrical resistivity as a function of temperature ‖ and ⊥ to the 
[001] direction (right).  

 

The crystal structure contains two different Cu-O polyhedra (green): CuO5-tetragonal 
pyramids and CuO4-squares. The pyramids share corners in 2D and form double layers, 
the charge carriers responsible for superconductivity are supposed to be located in these 
double layers. 

Information from the international tables on the relative locations and orientations of the 
symmetry elements (symmetry operations 1, 2z, 2y, 2x,⎯1, mz, my, mx) of the 
orthorhombic space group P m m m, together with the choice of the origin (in an 
inversion centre), is shown in Fig. 1.14. The general position (site symmetry 1) of 
multiplicity 8 and all special positions with their site symmetries are listed in Fig. 1.15. 
There are no special reflection conditions for this space group. 
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Fig. 1.14: Description of the orthorhombic space group P m m m in [1].  
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YBa2Cu3O7- δ

 

Fig. 1.15: General and special positions (coordinates of all symmetrically 
equivalent positions) of space group P m m m with their site symmetries and 
multiplicities [1]. The special positions occupied by atoms of the YBa2Cu3O7-δ 
structure are highlighted by frames.  
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The atomic parameters of the structure refinement of YBa2Cu3O6.96 at room temperature 
[6] are given in the following Table: 

 

 

 

 

 

 

 

 

 

 

 

 

0 ½ 0 2/m 2/m 2/m 1 O4/O2- 

0.37631(2) 0 ½ m m 2 2 O3/O2- 

0.37831(2) ½ 0 m m 2 2 O2/O2- 

0.15863(5) 0 0 m m 2 2 O1/O2- 

0.18420(6) ½ ½ m m 2 2 Ba/Ba2+ 

½ ½ ½ 2/m 2/m 2/m 1 Y/Y3+ 

0.35513(4) 0 0 m m 2 2 Cu2/Cu2+ 

0 0 0 2/m 2/m 2/m 1 Cu1/Cu2+ 

z y x site symmetry multiplicity atom/ion 

Atomic positions of YBa2Cu3O6.96 
orthorhombic, space group type P 2/m 2/m 2/m 

a = 3.858 Å, b = 3.846 Å, c = 11.680 Å (at room temperature) 
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