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1 Introduction 
Many mechanical, thermal, optical, electrical and magnetic properties of solid matter depend 

significantly on its atomic structure. Therefore, a good understanding of the physical 

properties needs not only the knowledge about the particles inside (atoms, ions, molecules) 

but also about their spatial arrangement. For most cases diffraction is the tool to answer 

questions about the atomic and/or magnetic structure of a system. Beyond this, neutron 

diffraction allows to answer questions where other techniques fail. 

 

1.1 Crystallographic Basics 

In the ideal case a complete solid matter consists of small identical units (same content, same 

size, same orientation like sugar pieces in a box). These units are called unit cells. A solid 

matter made of these cells is called a single crystal. The shape of a unit cell is equivalent to a 

parallelepiped that is defined by its base vectors a1, a2 und a3 and that can be described by its 

lattice constants a, b, c; α, β and γ (fig. 1). Typical lengths of the edges of such cells are 

between a few and a few ten Ångström (1 Å=10
–10 

m). The combination of various 

restrictions of the lattice constants between a ≠ b ≠ c; α ≠ β ≠ γ ≠ 90° (triclinic) and a = b = c; 

α = β= γ = 90° (cubic) yields seven crystal systems. The request to choose the system with the 

highest symmetry to describe the crystal structure yields fourteen Bravais lattices, seven 

primitive and seven centered lattices. 

Fig. 1: Unit cell with |a1|=a, |a2|=b, |a3|=c,  
 

Each unit cell contains one or more particles i. The referring atomic positions xi=xi*a1 + yi*a2 

+ zi*a3 are described in relative coordinates 0 ≤ xi; yi; zi < 1. The application of different 

symmetry operations (mirrors, rotations, glide mirrors, screw axes) on the atoms in one cell 

yield the 230 different space groups (see [1]). 

 

The description of a crystal using identical unit cells allows the representation as a three-

dimensional lattice network. Each lattice point can be described as the lattice vector t = u*a1 

+ v*a2 + w*a3; u, v, w  Z. From this picture we get the central word for diffraction in 

crystals; the lattice plane or diffraction plane. The orientations of these planes in the crystal 

are described by the so called Miller indices h, k and l with h, k, l  Z (see pic. 2). The 

reciprocal base vectors a*1, a*2, a*3 create the reciprocal space with: a*i * aj  = δij with δij=1 



Powder and Single Crystal Diffractometry  D3.3 

for i=j and δij=0 for i≠ j. Each point Q=h*a*1 + k*a*2 + l*a*3 represents the normal vector of 

a (hkl) Plane. Each plane cuts the crystal lattice along its base vectors a1, a2 and a3 at 1/h*a1, 

1/k*a2 and 1/l*a3. A Miller index of zero means that the referring axis will be cut in infinity. 

Thus, the lattice plane is parallel to this axis.  

Fig. 2: Different lattice planes in a crystal lattice, a3 = viewing direction 

 

The atoms in a unit cell are not rigidly fixed at their positions. They oscillate around their 

positions (e.g. thermal excitation). A simple description for this is the model of coupled 

springs. In this model atoms are connected via springs whose forces describe the binding 

forces between the atoms (e.g. van der Waals, Coulomb, valence). The back driving forces of 

the springs are proportional to the deviation xi of the atoms from their mean positions and to 

the force constant D, thus. F = -D*Δx (harmonic approximation). 

Therefore, the atoms oscillate with xi = Ai*sin(ν*t) around their mean positions with the 

frequency ν and the amplitude Ai. Both, ν and Ai are influenced by the force constant Dj of the 

springs and the atomic masses mi of the neighbouring atoms. The resulting lattice oscillations 

are called phonons in reference to the photons (light particles) in optics, which as well 

transport energy in dependence of their frequency. A more complex and detailed description 

of phonons in dependence on the lattice structure and the atomic interaction effects is given in 

lattice dynamics. In the harmonic approximation the displacements of an atom can be 

described with an oscillation ellipsoid. This ellipsoid describes the preferred volume in which 

the atom is placed. Its so called mean square displacements (MSD) U
i
jk represent the different 

sizes of the ellipsoid along the different main directions j, k in the crystal. The simplest case is 

a sphere with isotropic MSD Bi. In the next paragraph MSD are discussed from the point of 

view of diffraction analysis. 

A full description of a single crystal contains information about lattice class, lattice constants 

and unit cell, space group and all atomic positions and their MSD. If the occupancy of one or 

more positions is not exactly 100%, e.g. for a mixed crystal or a crystal with deficiencies 

there has to be used also an occupancy factor.  

 

(120) 

(120) 

(100) 

(010) 
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1.2 Structure Determination with Diffraction 

Diffraction means coherent elastic scattering of a wave on a crystal. Because of the quantum 

mechanical wave/particle dualism x-rays as well as neutron beams offer the requested wave 

properties: 

 

Electrons: E = hν; λ= c/ν 

Neutrons: Ekin = 1/2 * mn*v
2
 = hν = p

2
/2mn; λ= h/p; p ~(mn kB T) 

 

h: Planck’s constant; ν: oscillation frequency; λ: wavelength; c: light speed; p: impact; mn: 

neutron mass; kB: Boltzmann constant; T: temperature 

 

Only the scattering cross section partners are different (x-rays: scattering on the electron shell 

of the atoms; neutrons: core (and magnetic) scattering) as explained in detail below. In 

scattering experiments the information about structural properties is hidden in the scattering 

intensities I.  

In the following pages we will discuss only elastic scattering (λin=λout). The scattering cross 

section of the radiation with the crystal lattice can be described as following: 

Parallel waves of the incoming radiation with constant λ are reflected by lattice planes which 

are ordered parallel with a constant distance of d. This is very similar to a light beam reflected 

by a mirror. The angle of the diffracted beam is equal to the angle of the incoming beam, thus 

the total angle between incoming and outgoing beam is 2Θ (see fig. 3). 

 

 

Fig. 3: Scattering on lattice planes 

 

The overlap of all beams diffracted by a single lattice plane results in constructive 

interference only if the combination of the angle Θ, lattice plane distance d and wavelength λ  

meets Bragg’s law: 

2d sin Θ = λ 
 

The largest distance dhkl = |Q| of neighboured parallel lattice planes in a crystal is never larger 

than the largest lattice constant dhkl ≤ max(a; b; c). Therefore, it can only be a few Å or less. 

For a cubic unit cell (a = b = c; α = β = γ = 90°) this means:  

dhkl = a/ (h
2
+k

2
+l

2
) 

 

Q 
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With increasing scattering angle also the indices (hkl) increase while the lattice plane 

distances shrink with a lower limit of dmin = λ/2. Therefore, scattering experiments need 

wavelengths λ in the same order of magnitude of the lattice constants or below. This is equal 

to x-ray energies of about 10 keV or neutron energies about 25 meV (thermal neutrons).  

 

Ewald Construction: In reciprocal space each Bragg reflex is represented by a point Q = 

h*a*1 + k*a*2 + l*a*3. A scattered beam with the wave vector k fulfills Braggs law if the 

relationship k = k0 + Q, |k|=|k0|=1/λ is true, as shown in fig. 4. During an experiment the 

available reciprocal space can be described by an Ewald sphere with a diameter of 2/λ and the 

(000)-point as cross point of k0 direction and the centre of the diameter of the sphere. The 

rotation of the crystal lattice during the diffraction experiment is equal to a synchronous 

movement of the reciprocal lattice around the (000)-point. If Bragg’s law is fulfilled, one 

point (h k l) of the reciprocal lattices lies exactly on the Ewald sphere. The angle between the 

k-vector and the k0-vektor is 2Θ. The limited radius of 1/λ of the Ewald sphere limits also the 

visibility of (h k l) reflections to |Q| < 2/λ.  

 

Fig. 4: Ewald construction [18] 

 
Determination of the unit cell: Following Braggs law the scattering angle 2Θ varies (for 

λ=const.) according to the lattice distance dhkl. Thus for a given λ and known scattering angles 

2Θ one can calculate the different d values of the different layers in the lattice of a crystal. 

With this knowledge is possible to determine the lattice system and the lattice constants of the 

unit cell (although not always unambigously!).  

 

Atomic Positions in the unit cell: The outer shape of a unit cell does not tell anything about 

the atomic positions xi = (xi yi zi) of each atom in this cell. To determine the atomic positions 

one has to measure also the quantities of the different reflection intensities of a crystal. This 

works because of the relationship between the intensities of Bragg reflections and the specific 

Q 
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cross section of the selected radiation with each element in a unit cell. Generally one can use 

the following formula for the intensity of a Bragg reflection (h k l) with Q (kinetic scattering 

theory): 

 

Ihkl ~ |Fhkl|
2
 with Fhkl =

n
i=1 si(Q) exp(2(hxi+kyi+lzi)) 

 

The scattering factor F is a complex function describing the overlap of the scattering waves of 

each atom i (n per unit cell). si(Q) describes the scattering strength of the i-th atom on its 

position xi in dependence of the scattering vector Q, which depends on the character of cross 

section as described below. 

In this context one remark concerning statistics: For measurements of radiation the statistical 

error σ is the square root of the number of measured events, e.g. x-ray or neutron particles. 

Thus, 100 events yield an error of 10% while 10,000 events yield an error of only 1%! 

 

Mean Square Displacements (MSD): Thermal movements of atoms around their average 

positions reduce Bragg intensities in a diffraction experiment. In the simplest (=isotropic) 

description the parameter Bi is used to define a shell of electron or nucleus density around the 

average atomic position where the atom oscillates harmonically. The reduced probability to 

find an electron/nucleus at the average atomic position attenuates also the scattering 

probability. For higher temperatures (above a few Kelvin) the MSD Bi of the atoms increase 

linearly to the temperature T, this means B ~ T. Near a temperature of 0 K the MSD become 

constant with values larger than zero (zero point oscillation of the quantum mechanical 

harmonic oscillator). In the structure factor the true scattering capability si of the i-th atom has 

to be corrected by an angle-dependent factor (the so called Debye-Waller factor): 

 

si(Q) → si(Q) * exp(-Bi(sinΘQ/λ)
2
) 

 

This Debye-Waller factor decreases with increasing temperature and yields an attenuation of 

the Bragg reflection intensities. At the same time this factor becomes significantly smaller 

with larger sinΘ/λ~|Q|. Therefore, especially reflections with large indices become weaker. 

An improved description of probability density with anisotropic MSD Uij contains the 

following exponential function: 
 

si(Q) → si(Q) * exp(-2
2
(U

i
11 h

2
a*

2
 + U

i
22 k

2
b*

2
 + U

i
33 l

2
c*

2
 + 

                                   + 2U
i
13 hl a*c* + 2U

i
12 hk a*b* + 2U

i
23kl b*c*)) 

 

Here the Uij describe the dimensions of an ellipsoid instead of a shell. The transformation 

between B and Ueq (isotropic MSD calculated from the anisotropic Uij with identical volume) 

is: B = 8
2
Ueq 

For some structures the experimentally determined MSD are significantly larger than from the 

harmonic calculations of the thermal movement only. Static local deformations, point defects, 

mixed compounds, anharmonic oscillations or double well potentials (two energetically equal 

atomic positions very near to each other where an atom has a 50%/50% chance to occupy one 

position or the other) can cause this additional contribution to the pure thermal Debye-Waller 

factor. In the following text only the term MSD will be used to avoid misunderstandings. 
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1.3 Comparison of X-ray and Neutron Radiation 

The different nature of interaction with matter of x-rays and neutrons explains why many 

studies use both techniques. The following table and picture show the main similarities and 

differences between the two radiation types. 

 

Properties X-ray/γ Neutrons 

Mass [kg] 0 1.673*10-27  

Energy [eV] 103 - 106 10-3 – 100 
0.025 (thermal) 

magn. Moment no Yes 

Wave length λ 
[Å] 

0.3 - 3  
1.5 (Cu-Kα) 

0.3 – 20 
1.8 (thermal) 

typ. speed 
[m/s] 

3*108 2500 (thermal) 

Interaction 
with 

e- shell 
Z specific 

cores/isotopes 
spin  

 

Fig. 5: Properties of X-rays vs. neutrons  

 

X-Ray Radiation interacts as electromagnetic radiation only with the electron density in a 

crystal. This contains all electrons whether they contribute to a chemical bond or not. The 

electronic scattering capability s – the so called atomic form factor f(sinΘ/λ) or shorter fZ - of 

an atom depends on the number Z of its shell electrons (f(sin(Θ=0)/λ) =Z). To be exact, 

f(sinΘ/λ) is the Fourier transform of the radial electron density distribution ne(r): f(sinΘ/λ)= 

∫
∞

0 4
2
ne(r) sin(µr)/µr dr with µ=4 sinΘ/λ. Heavy atoms with many electrons contribute 

much stronger to reflection intensities (I~Z
2
) than light atoms with less electrons. The reason 

for the sinΘ/λ-dependence of fZ is the diameter of the electron shell. It has the same order of 

magnitude as the wavelength λ and cannot be described as point like scattering centre. Thus, 

for large scattering angles the atomic form factors vanish and also the reflection intensities 

relying on them. The atomic form factors are derived from theoretical spherical electron 

density functions (e. g. Hartree-Fock). The resulting f(sinΘ/λ) curves of all elements 

(separated for free atoms and ions) are listed in the international tables. Their analytical 

approximation is described by seven coefficients (c, ai, bi; 1≤ i ≤ 3), see [1]. 

 

Neutron Radiation interacts with the cores and the magnetic moments of atoms. The 

analogon to the x-ray form factor (the scattering length bc) is therefore not only dependent on 

the element but the isotope. At the same time b-values of elements neighboured in the 

periodic table can differ significantly. Nevertheless, the scattering lengths do not differ around 

several orders of magnitude like in the case of the atomic form factors fZ . Therefore, in a 

compound with light and heavy atoms the heavy atoms do not dominate necessarily the Bragg 

intensities. Furthermore, the core potential with a diameter about 10
-15

Å is a point like 

scattering centre and thus the scattering lengths bc are independent from the Bragg angle and 
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sinΘ/λ respectively. This results in large intensities even at large scattering angles. The 

magnetic scattering lengths bm can generate magnetic Bragg intensities comparable in their 

order of magnitude to the intensities of core scattering. On the other hand side the magnetic 

scattering lengths are strongly dependent on the sinΘ/λ value due to the large spacial 

distribution of magnetic fields in a crystal. Similarly to the x-ray form factors the bm(sinΘ/λ) 

curves are listed in the International Tables. Therefore, it is easy to measure magnetic 

structures with neutrons and to separate them from the atomic structure. 

 
Fig. 6: Normalized form factor fZ and scattering lengths bc and bm for chromium [16, 17] 

 

Comparison: In summary in the same diffraction experiment the different character of x-ray 

and neutron radiation yield different pieces of information that can be combined. X-rays yield 

electron densities in a crystal while neutron scattering reveals the exact atomic positions. This 

fact is important because for polarised atoms the core position and the centre of gravity of 

electron densities are not identical any more. In compounds with light and heavy atoms 

structural changes driven by light elements need additional diffraction experiments with 

neutrons to reveal their influence and accurate atomic positions respectively. One has to take 

into account also that for x-rays the intensities depend in two ways on sinΘ/λ: Once by the 

atomic form factor fZ, and twice by the temperature dependent Debye-Waller factor (see 

above). The first dependence vanishes if using neutron diffraction with bc=const. and 

decouples the structure factors from the influence of the MSD. In general this yields much 

more accurate MSD Uij especially for the light atoms and might be helpful to reveal double 

well potentials in (partially) disordered compounds. 

bc 

bm 

fZ       

sin(Θ)/λ [Å-1] 
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Fig. 7: Comparison of fZ and bc for some elements and isotopes 

(from E.C. Bacon, Neutron Diffraction, Clarendon Press, 1975)    

 

1.4 Special Effects and Aspects 

From the relation I~|F|
2
 one can derive that the scattering intensities of a homogenous 

illuminated sample increases with its volume. But there are other effects than MSD that can 

attenuate intensities. These effects can be absorption, extinction, polarization and the Lorentz 

factor: 

 

Absorption can be described by the Lambert-Beer law: 

 

I = I0 exp(-µx) , µ/cm
-1

 = linear absorption coefficient, x/cm = mean path through sample  

 

The linear absorption coefficient is an isotropic property of matter and depends on the 

wavelength and kind of radiation. For x-rays penetration depths are only a few millimetre or 

below (e.g. for silicon with µMoKα=1.546 mm
-1

, µCuKβ=14.84 mm
-1

 with penetration depths of 

3 mm and 0.3 mm respectively). This limits transmission experiments to sample diameter of 

typically below 0.3 mm. To correct bias of intensities due to different scattering paths through 

some 
isotopes  
of the 
elements 
above 

fZ 

bc 
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the sample one has to measure accurately the sample size in all directions. Even for sphere 

like samples the mean path lengths depend on 2Θ.  In addition the sample environment must 

have an extraordinary small absorption.  

Thermal neutrons have for most elements a penetration depth of several centimeters. Thus, 

sample diameters of several millimeters together with large and complex sample 

environments (furnaces, magnets, etc.) can be used. On the other hand side one needs 

sufficiently large samples for neutron diffraction which is often a delicate problem.  

 

Extinction reduces also radiation intensities although its character is completely different 

form that of absorption. The principle of the extinction effect (not to be mixed up with 

crystallographic extinction rules!) can be explained quite easily by taking into account that 

each diffracted beam can be seen as a new primary beam for the neighbouring lattice planes. 

Therefore, the diffracted beam becomes partially backscattered towards the direction of the 

very first primary beam (Switch from kinetic to dynamic scattering theory!). Especially for 

very strong reflections this effect can reduce intensities dramatically (up to 50% and more). 

Condition for this effect is a merely perfect crystal.   

Theoretical models which include a quantitative description of the extinction effect were 

developed from Zachariasen (1962) and Becker and Coppens [2, 3, 4, 5, 6]. These models 

base on an ideal spherical mosaic crystal with a very perfect single crystal (primary 

Extinction) or different mosaic blocks with almost perfect alignment (secondary Extinction) 

to describe the strength of the extinction effect. It is also possible to take into account 

anisotropic extinction effect if the crystal quality is also anisotropic. Nowadays most 

refinement programs [7] include extinction correction. In general extinction is a problem of 

sample quality and size and therefore more commonly a problem for neutron diffraction and 

not so often for x-ray diffraction with much smaller samples and larger absorption. 

Sometimes shorter wavelengths where extinction effects become weaker can be used as 

solution. 

 

Multiple scattering occurs if the diffracted beam of the first lattice plane (h1k1l1) works as 

primary beam for a second non equal lattice plane (h2k2l2) that by accident also fulfils Bragg’s 

law. The result is a diffracted beam virtually generated by a third lattice plane (h3k3l3). If the 

structure factors of the two first planes, Fh1k1l1, Fh2k2l2 are strong, the measured intensity Ih3k3l3 

might be larger than the true one generated from Fh3k3l3.  

 

Polarisation: X-ray radiation is electromagnetic radiation. Therefore, the primary beam of an 

x-ray tube is not polarized. The radiation hits the sample under an diffraction angle of 

where it can be separated into two waves of same intensity, firstly with an electrical field 

vector parallel E|| and secondly perpendicular E -axis. Whilst the radiation 

with E|| will not be attenuated the radiation with E undergoes an attenuation with E → 

cos(2Θ) E. The polarization factor P for the attenuation has then the following formula (I  ~ 

E
2
): 

 

P = (1+cos(2Θ)
2
)/2 
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Additional optical components like monochromator crystals also have an impact on the 

polarization and have to be taken into account accordingly. 

 

Lorentz factor: The Lorentz factor L is a purely geometrical factor. It results from the 

effectively elongated stay of the sample near the reflection position during an ω- and ω/2Θ-

scan respectively towards higher 2Θ values for the same angular speed Δω /Δt: 

 

L = 1/sin(2 Θ) 

 

This has to be taken into account for any kind of radiation in an diffraction experiment. 

 

Technical limits: The different interactions of x-ray and neutron radiation with the atoms in a 

crystal make neutrons apparently the better choice for diffraction experiments which focus on 

atomic positions, mean square displacements and magnetism. X-rays are preferable for 

studies on electron densities and chemical bonds. But one has to take into account the 

available flux of x-rays and neutrons respectively. Diffraction with a monochromatic beam 

needs a sharp band of energies/wavelengths in the order of ∆λ/λ<10
-2

 - 10
-3

 or even smaller. 

For such a small bandwidth the flux of neutrons is several orders of magnitude smaller than 

the flux of x-rays of a corresponding synchrotron source or x-ray tube in the laboratory. The 

reason for this is that in an x-ray tube most x-rays are generated in a small energy band, the 

characteristic lines of the tube target (Kα, Kβ, etc.). Additional metal foils used as filter allow 

to cut off unwanted characteristic lines which yields quasi monochromatic radiation of a 

single wavelength. Neutrons generated by fission in a research reactor distribute to a broad 

spectrum of wavelengths. To reduce the bandwith one has to use a monochromator crystal. 

This reduces significantly the number of available neutrons for the diffraction experiment. 

Thus, the weak flux of neutrons and the weak cross section of neutrons with matter have to be 

compensated with large sample sizes of several millimeters. For the same reason the 

monochromatization of the neutrons is normally chosen to be not too sharp (resolution about  

∆λ/λ≈10
-2

 for neutrons, ∆λ/λ≈10
-4

 – 10
-5

 for synchrotron). 

 

1.5 From Measurement to Model 

Goal of powder diffraction and single crystal diffraction is to compare experimental 

diffraction data with several structure models and to find the one that fits best. The differences 

between both methods are explained in the following sections. For instance, powder 

diffraction experiments yield I/2Θ diagrams while single crystal diffraction experiments yield 

a list of corresponding intensities and error bars of a set of Bragg reflections and therefore 

slightly different refinement procedures are used to find a structure solution. Nevertheless the 

general approach described for single crystal data analysis in this section is very similar to the 

one for powder diffraction which will not be discussed here. 

 

To get a structural model from the experimentally collected integral Bragg intensities one 

needs several steps in advance. Firstly one has to make sure that all reflections are measured 
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properly (no shading, no λ/2-contamination, no multiple scattering). Damaged reflections 

have to be excluded from further treatment. 

During data refinement not only the quantities of the relative intensities but also their errors 

are taken into account. The total statistical error  of an integral intensity Iobs of a single 

reflection is calculated as following: 

 


 = Iobs + Ibackground + (k Itotal)

2
 

 

The part σ0
2
 = Itotal, Itotal = Iobs + Ibackground refers to the error caused by counting statistics. It 

contains as well the effective intensity Iobs as the contribution of the background. But other 

effects also influence the reproducibility of a measurement (and thus the total error), e.g. 

specific the instrumental errors. Those errors are collected in the so called McCandlish-Factor 

k and increase to the total error. Obviously, the total error cannot drop below the instrumental 

limit of the experiment and thus the impact of strong reflections does not become exaggerated 

in the refinement. The determination of k is done by measuring the same set of reflections (so 

called standard reflections) several times during a data collection. The mean variation of the 

averaged value represents k. In addition, the repeated measurement of standard reflections 

offers the opportunity to notice unwanted changes during experiment like structural changes 

or release from the sample holder.  

To make sure the comparability of all reflections with each other, all intensities and errors are 

normalized to the same time of measurement (or monitor count rate) and undergo the Lorentz 

and (in the x-ray case) polarization correction. 

Finally in advance of the data refinement there can be done a numerical (e.g. with DataP, [8]) 

or an empirical absorption correction if necessary. The quality of a measurement is checked in 

advance of the data refinement by comparing symmetry equivalent reflections and systematic 

extinctions to confirm the Laue group and space group symmetry. The result is written as 

internal R-value: 

 

Rint = (k=1
m
(j=1

n
k (<Ik>- Ij)

2
))/ (k=1j=1

n
k(Ij

2
)k) 

 

Rint represents the mean error of a single reflection j of a group k of nk symmetry equivalent 

reflections, corresponding to its group and the total number m of all symmetrically 

independent groups. Therefore Rint is also a good mark to check the absorption correction. 

After these preliminary steps one can start the final data refinement. 

At the beginning one has to develop a structural model. The problem with that is that we 

measure only the absolute values |Fhkl| and not the complete structure factor Fhkl = |Fhkl|exp(ιϕ) 

including its phase ϕ. Therefore, generally the direct Fourier transform of the reflection 

information Fhkl from reciprocal space into the density information ρ in the direct space 

(electron density for x-rays, probability density of atomic cores for neutrons) with 

 

ρ(x) ~ hkl Fhkl exp(-2(hx+ky+lz)) 

 

is not possible. This can be done only by direct methods like Patterson, heavy atom method or 

anomal dispersion for x-rays. 
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In the so called refinement program a given structural model (space group, lattice constants, 

atomic form factors, MSD, etc.) are compared with the experimental data and fitted. In a least 

squares routine those programs try to optimize (typically over several cycles) the free 

parameters to reduce the difference between the calculated structure factors Fcalc and 

intensities |Fcalc|
2
 respectively and the experimentally found Fobs and  |Fobs|

2
 respectively. To 

quantisize the quality of measurement there are several values in use: 

 

1. unweighted R-value: Ru = hkl |Fobs
2
-Fcalc

2
|/hkl Fobs

2
 

This value gives the alignment of the whole number of reflections without their specific 

errors.  

 

2. weighted R-value: Rw = (hkl w (Fobs
2
-Fcalc

2
)
2
)/hkl w Fobs

4
 

This value represents the alignment of the whole number of reflections including their 

specific errors or weights (w~1/σ
2
). Sometimes weights are adopted in a way to suppress 

unwanted influence of the refinement algorithm by weak or badly defined reflections.  Be 

aware that such corrections have to be done extremely carefully because otherwise the 

refinement adopts the data to the selected structural model and not the model to the 

experimental data! 

  

3. Goodness of Fit S: S
2
 =(hkl w (Fobs

2
-Fcalc

2
)/(nhkl-reflections - nfree parameter) 

 

S should have a value near one if the weighting scheme and the structure model fit to the 

experimental data set.  
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2 Powder Diffraction 
2.1 Method 

Crystalline powder consists of a large number of randomly oriented microscopic single 

crystals, so called crystallites. Using a monochromatic beam a powder sample in a small 

capillary or on a flat table generates cones of diffracted radiation, the so called Debye 

Scherrer cones. Following Bragg’s law the discrete angles at which intensity can be found by 

a photo film, single or area detector one can calculate the crystallographic unit cell and its 

fundamental symmetry (trigonal, monoclinic, hexagonal, orthorhombic, tetragonal, cubic). 

The projection of the integrated intensities from the detector area yields a diffractogram that 

presents the intensity distribution against 2Θ and Q respectively. In a Rietveld procedure the 

full reflection pattern (profiles and intensities) is analysed.   

 

 

 

Fig. 8: Powder diffraction principle and the Debye Scherrer cones on an image plate    

 

The main advantage of powder diffraction is the speed of data collections. At high flux 

sources a complete diffractogram can be collected within minutes. This allows not only to 

perform data analysis routinely and for many samples in a short time but can also be used to 

do in situ experiments where for instance a chemical reaction can be visualised by changes in 

a sequence of diffractograms measured one after each other. The other advantage with powder 

samples is the fact, that it is much easier to prepare a sample with a huge number of small 

crystals instead of one large single crystal. The main disadvantage of powder diffraction is 

that lattice planes that are crystallographically different will occur at the same position in the 

diffractogram due to the projection of diffraction intensities towards the diffraction angle. 

One problem of sample preparation can occur from crystallites of anisotropic shape (needles, 

plates). In powder samples these crystallites might order not fully randomly. As a result, the 

  Detection area of powder diffractometer  

sample  sample  film  powder sample 

2Θhkl  r 

monochromatic source 
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Debye Scherrer cones are not homogeneously illuminated which yields diffractograms with 

misleading intensity distributions. This effect is called texture. 

 

Fig. 9: Diffractogram with experimental data (dots), fit (line) and difference plot (blue)[19] 

 

2.2 Instrumentation 

Laboratory x-ray powder diffractometers use characteristic Kα radiation from a Cu, Mo, Ag or 

W targets in an x-ray tube. These instruments have a high flux and good resolution. Powder 

diffractometers at a synchrotron source offer additionally variable wavelengths, very high 

photon flux up to 10
12

 photons/s and very high resolution.  

The following figure shows on the left a laboratory x-ray diffractometer. Its beam tube 

generates mainly characteristic Kα and Kβ radiation while the amount of “Bremssrahlung” is 

rather small. 

As the Kβ radiation can be cut out instantly by a metal foil filter (e.g. Zn for Cu radiation) 

behind the beam tube no additional measures have to be taken to use a monochromatic 

primary beam. In this case the sample stage stays fixed at its position. The source moves 

clockwise while the detector does the same counter clockwise yielding at any time an angle 

between primary beam and sample of Θ and 2Θ between primary and secondary beam to 

fulfil Bragg’s law. 

An example for a thermal neutron powder diffractometer with fixed wavelengths of 1.11 Å, 

1.55 Å or 2.54 Å is the instrument SPODI in the experimental hall of the neutron research 

source Heinz Maier-Leibnitz (FRM II) on the right. As the neutron source generates a broad 

spectrum of thermal neutrons this “white beam” needs to be monochromatised by a 

monochromator crystal first (e.g. Cu-220, Ge-311, etc.). The resulting monochromatic 

neutron flux is several orders of magnitude smaller than the photon flux at a synchrotron.  

To overcome this problem the detector consists of a set of ³He detectors covering about 160° 

in 2Θ and counting simultaneously to measure several diffractograms per day.  
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Fig. 10: Up: Laboratory x-ray diffractometer 

with Θ/2Θ-Geometry (Bragg-Brentano) 

 

Right: Neutron powder diffractometer  

SPODI (Q: source, S: sample,  

D: detector, M: monochromator)[19] 

 

 

2.3 Examples 

The method of powder diffraction warranties that no Braggs reflections inside the observed 

2Θ range are missed. This is highly advantageous if samples of uncertain composition and/or 

structure have to be studied and can also be used to observe multiple phases simultaneously or 

behind each other, e.g. in temperature dependent experiments. As data collection in powder 

diffraction is rather fast these in situ experiments allow not only to study the results of a 

structural or chemical change but also the intermediate states. 

 

In Situ Experiments on Zirconia Zirconia play an important role in many industrial 

applications like electrolytes, ion exchangers, catalysators and piezo-electrics. Therefore, the 

detailed understanding of its structural properties and synthesis are very important.  A typical 

synthesis route is shown in fig. 11.  

Fig. 11: Wet chemical/furnacing route [9] 
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Without going into details the following key aspects can be shown: The zirconium compound 

at the beginning of synthesis – Zr(OH)2SO4·3H2O contains a huge amount of water/OH 

groups and shows amorphous behaviour. During the heating process a loss of water/OH 

groups is generated that results in a crystallisation in the tetragonal zirconia phase. After 

cooling down the structural phase transition from the tetragonal to monoclinic phase occurs 

during the cooling cycle but depends strongly on the dwelling time (for details see [9] and 

references within). 

 

Fig. 12: T dependent laboratory powder diffractogram of Zirconia [9]   
(a) Part (65-85°C) of the laboratory x-ray powder diffraction pattern obtained on Zr(OH)2SO4· 3H2O 

is shown to illustrate the detail and high quality that can be achieved using a fully monochromatized 

laboratory x-ray source. The data are displayed as a “Rietveld plot” in which the upper trace shows 
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the observed data as dots and the calculated pattern as a solid line; the middle trace gives the 

difference between the observed and calculated data; and the lower set of vertical bars identifies each 

reflection. (b) A representation of the Zr(OH)2 SO4 ·3H2O structure (after Gascoigne et al. 1994) 

illustrating zig-zag chains, viewed end on down the c-direction, which are hydrogen bonded together 

(broken lines) to form curraged sheets, parallel to a and b, which themselves are hydrogen bonded 

together via inter-layer water molecules [9]. 
 

The figure above shows a part of a laboratory powder diffractogram and the corresponding 

Rietveld plot (perpendicular dashes below). The second half of this figure shows the 

tetragonal structure. The following figure shows the corresponding angular dispersive powder 

diffractograms for laboratory and synchrotron sources. The superior resolution of the 

synchrotron source is obvious.  

 

  
Fig. 13: Comparison of laboratory and synchrotron powder diffractograms [9]  

Portions (considerably expanded, between 40° and 46°) of powder diffraction patterns for Zr(OH)2 

SO4 ·3H2O obtained using three different collection modes: the upper trace is with a conventional 

(Bragg-Brentano) laboratory x-ray powder diffractometer utilizing the full Kα1α2-doublet from a 

copper x-ray source (mean wavelength λ=1.5418 Ǻ); the middle trace is again with a laboratory x-ray 

source but with the Kα2 radiation removed by means of a germanium (100) monochromator [resultant 

λ(Kα1) = 1.5406 Ǻ]; the lower trace is from a synchrotron (station 2.3 on the Daresbury source) 

powder diffractometer monochromated to λ = 1.51603 Ǻ. the progressive improvements in pattern 

quality are self-evident, particularly with the closely-spaced multiple peaks around 41° 42° and 45°. 

 

The final figure of this section presents the T dependent synchrotron energy dispersive 

powder diffractogram (EDD) which shows clearly the evolution and devolution of Bragg 

peaks during the different stages covering the range from the amorphous pattern of the 

hydroxide to the monoclinic oxide (The patterns were collected on station 9.7 of the 
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Daresbury synchrotron source using a diffraction angle of 2Θ=7.8° and a collection of 60s per 

pattern [9]). 

Fig. 14: T dependent synchrotron powder diffractogram of Zirconia [9] 

 

3 Single Crystal Diffraction 
3.1 Method 

Classical angle dispersive single crystal diffractometers use a fixed constant wavelength λ. As 

the sample is one large single crystal, a lattice plane fulfilling Bragg’s law will generate not a 

Debye-Scherrer cone but a single diffracted beam. The schematic drawing in fig. 15 shows a 

single crystal (black dot) in the centre of a Eulerian cradle with three axes ω, χ, φ. These three 

axes allow the crystallographic coordinate system of the sample to be oriented relatively to 

the coordinate system of the diffractometer towards any direction. Therefore any lattice plane 

can be oriented in a way that its diffracted beam hits the detector in the diffraction plane 

defined by the 2Θ axis. By measuring each lattice plane separately the problem of reflection 

overlaps as described above for powder diffraction can be overcome. Also certain anisotropic 

effects can be detected that stay hidden in powder diffractograms. But the not simultaneous 

measurement of Bragg intensities is very time consuming. This problem can be healed 

partially by using image plate detectors.  
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Fig. 15: Scheme of a classical single crystal diffractometer with single detector and Eulerian 

cradle [18] 

 

3.2 Instrumentation 

An example for a classical neutron single crystal diffractometer is HEiDi from JCNS at the 

hot source at FRM II (fig. 16). The instrument offers discrete wavelengths between 1.2 Å and 

0.4 Å and a large Q range.  

The use of single detectors makes diffraction of single crystals a very time consuming task. 

Especially for x-ray diffraction analysis the development of new large area detectors, so 

called image plates with a laser read out at the end of last century helped to drop the necessary 

beam time for an experiment by up to one order of magnitude [10]. Comparable to the 

rotating crystal technique the sample is only rotated around one fixed axis φ. Special software 

transforms the collected Bragg intensities into an image of the intensity peak distribution in 

the reciprocal space. 

 

Fig. 16: Classical neutron diffactometer HEiDi with Eulerian cradle and mounted cryostat 
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Fig. 17: X-ray single crystal image plate diffractometer (IPDS STOE [10]) 

 

3.3 Examples 

Mixed Crystals - ZrAsxSey: This metallic compound shows an anomaly in its electric 

resistivity below 16 Kelvin. The chemical structure of this compound at room temperature is 

tetragonal (P4/nmm, a = 3.78 Å, c = 8.14 Å). To investigate the question, whether the electric 

resistivity is related to a possible order/disorder or redistribution of the As and Se atoms on 

crystallographic 2a and/or 2c positions taking into account the possibility of vacancies 

requires the combination of x-ray and neutron diffraction [11]. 

 

Fig. 18: Electrical anomaly and As/Se distribution in ZrAsxSey [11] 

 

X-ray diffraction cannot distinguish between As and Se because of ZAs=33, ZSe=34 are too 

similar. Nevertheless, x-ray diffraction can be used to determine the number of vacancies at 

the possible lattice positions of both elements. Chemical analysis is used to check the 

stochiometry of the samples. These constraints were used in a single crystal diffraction 

neutron experiment to determine the As and Se distribution in this compound taking into 

account the different neutron scattering lengths of As and Se with bAs=6.58 fm, bSe=7.97 fm. 

The data shown in the table below were taken at three different temperatures, two above and 
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one below the anomaly. Please notice that at room temperature a Bragg data set was taken up 

to Q=0.78 Å
-1

 while the two low temperature Bragg data sets were taken up to  Q=1.10 Å
-1

. 

The increase in Q range by about 40% increases not only the number of available reflections 

by a factor of about 4 but drops the error bars of the atomic parameters by one order of 

magnitude! 

The atomic positions of the elements in the unit cell of this compound are not randomly 

chosen. According to the space group of the unit cell of this compound there are symmetry 

restrictions. For instance, the first As position (3/4 1/4 0) stays fixed during the refinement 

process. Only the z positions of the other atoms and the anisotropic mean square 

displacements and occupancies of two of the three atomic positions can be set as free 

parameters. In combination with two additional parameters (scaling parameter for the 

normalisation of the sample volume and extinction parameter for eliminating extinction 

effects) the maximum number of free parameters is limited to 12. 

 

 
 

Fig. 19: Table of Bragg data statistics with neutron single crystal diffraction [11] 

 

 
Fig. 20: Results of the refinements [11] 

 

The high accuracy of the data concerning atomic positions, mean square displacements and 

occupancies and the combination of x-ray and neutron diffraction show unambigously that 

there are  

 

- only As and vacancies on the 2a position, 
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- no vacancies but As and Se on the 2c position, 

- no incalation of Zr in interstitial positions and 

- no structural change down to 2.5 Kelvin. 

 

From this result, a structural change can be excluded as cause for the observed anomaly of the 

electric resistivity.  

 

HT Superconductors: La2-xSrxCuO4 is one of the cuprate superconductors with K2NiF4- 

structure (layered perovskite) for whose discovery the Noble prize was granted in 1988 

(Bednorz and Müller [12]). Pure La2CuO4 is an isolator while doping with earth alcali metals 

(Ca
2+

, Sr
2+

, Ba
2+

) on the La
3+

 lattice positions generates depending on the degree of doping 

superconductivity with a maximum Tc of 38 K for Sr doping of x=0.15 (see fig. 21). 

Pure La2CuO4 undergoes at Tt-o=530 K a structural phase transition from the tetragonal high 

temperature phase (HTT) F4/mmm (a=b=5.384 Å, c=13.204 Å, α=β=γ=90° at T=540 K) to 

the orthorhombic low temperature phase (LTO) Abma (a=5.409 Å, b=5.357 Å, c=13.144 Å, 

α=β=γ=90° at room temperature). For La2-xSrxCuO4 the phase transition temperature Tt-o 

drops with increased doping and disappears above x=0.2. 

 

 

Fig. 21: Phase diagram [13] and structural units, e.g. CuO6 octahedra and LaO9 polihedra 

 

The following aspects of structure analysis can be learned from this example: 

Twinning: The structural phase transition yields a symmetry reduction that makes the single 

crystal separate into domains of identical structure with different but well defined orientations 

to each other. This effect is called twinning. As can be seen in fig. 22 the transition into the 

low temperature phase tilts the CuO6 octahedrons around their [010] axis. The two axes of 

identical length in the HTT phase, a1 and a2, are not equal in the LTO phase anymore. 

Instead, the longer one becomes the new a axis, the shorter one becomes the b axis. Whether 

a1 or a2 becomes the new a axis depends only on the real structure of the crystal, for instance 
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grain boundaries or point defects. Two equivalent crystallographic space groups describe the 

LTO phase:  

 

Abma (a1 → a, a2 → b) and Bmab (a1 → b, a2 → a) 

 

For the structure factors in the LTO is valid: FAbma(hkl)=FBmab(khl)  

 

 
 

Fig. 22: Tetragonal HTT phase (left) and orthorhombic LTO phase (right) 

 

In the real structure of the crystal there exist four domain types in total which are separated in 

pairs with Abma1/Bmab1 (I/II) with the (1-10) mirror plane as grain boundary and 

Abma2/Bmab2 (III/IV) with the (110) mirror plane as grain boundary, see. fig. 23. 

The most accurate observation of this effect is possible only by single crystal diffraction if the 

diffraction plane and the ab plane of the sample are parallel. Be aware that the d spacing for 

the [220] reflections of all 4 domains is identical and no reflection splitting observable with 

powder diffraction. For the [400] reflections powder diffraction will only reveal the different 

d spacing of (400) and (040). 
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Fig. 23: HT phase (left) and domain pair (right) with (220) planes (red) and (400) planes 

(green), c perpendicular 

 

An equal distribution of the volumetric portion of each single domain yields a ratio of 

intensities of 1:2:1 for the triple splitting. The distance ∆ω between the single peaks of a (hkl) 

reflex gives because of (a+b)/2 = a1/2 an information about the orthorhombic a/b splitting. For 

the triple splitting of a (hh0) reflex is valid:  ∆ω = 90°-2arctan(b/a) 

Due to the face (=F) centring in the HTT phase only reflections with h, k, l of equal parity (g 

for even, u for odd) are allowed - (uuu) and (ggg). They are called in the following main 

structure reflections. The loss of symmetry in the LTO phase generates additional reflections, 

called super structure reflections (e = even index, u = odd index): In the Abma structure (ugg), 

l≠0 and (guu), in the Bmab structure (gug), l≠0 and (ugu). Forbidden remain in both the HTT 

and the LTO phase (uug), (ggu), (ug0) and (gu0). There is no overlap between the 

superstructures from the Abma and the Bmab domains. Therefore, although the real crystal is 

twinned, one can quantify the orthorhombic distortion. 
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Fig. 24: Reciprocal space (c* perpendicular) of twinned La2CuO4 

 
Fig. 25: Intensity distributions of (006), (220) and (400) reflection of twinned La2CuO4 

 

The intensity contribution of the single domains corresponding to the whole intensity of a 

reflection can be described (taking into account the incoherent overlap of single intensities 

and the volumetric portions VA1 to VB2 of the domains) as follows: 

 

Iobs(hkl)            = IAbma1(hkl)  + IBmab1(hkl)  + IAbma2(hkl)  + IBmab2(khl) or  

 

Vtotal|Fobs(hkl)|
2
 = VA1|FAbma1(hkl)|

2
  + VB1|FBmab1(hkl)|

2
  + VA2|FAbma2(hkl)|

2
  + VB2|FBmab2(hkl)|

2
  

 

  = (VA1 + VA2)|FAbma1(hkl)|
2
  + (VB1|+ VB2)|FBmab1(hkl)|

2
  

 

  = Vtotal {α|FAbma(hkl)|
2
  + (1- α) |FAbma(khl)|

2
}  

 

with α being the relative portion of the volume of Abma domains to the crystal..  

 

Because of the extinction rules in the LTO phase for the super structure reflections is valid: 

Iobs(hkl) ~ α|FAbma(hkl)|
2
 for Abma and Iobs(hkl) ~ (1- α|FAbma(khl)|

2
 for Bmab. Thus, one can 

classify directly intensities to the volumetric portions of the domain types Abma and  Bmab  

respectively. Therefore, by using one single additional parameter α to describe the relation 

between the twins in the structure one can determine the orthorhombic single crystal 

structure! This holds true although the Bragg reflections contain contributions of up to four 

different domains. 
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Light elements: The phase transition is driven by a displacement of the oxygen atoms (see fig. 

22). As the oxygen atoms are much lighter than any other element in this compound, the 

accurate observation of these displacements depends strongly on the chosen radiation. As the 

atomic positions of Cu and La do not change significantly between the HTT and LTO phase 

the structure factor for the superstructure reflections can be written as 

 

F(hkl) ~ i si exp(-2(hxi+kyi+lzi) =  F(hkl)apex oxygen + F(hkl)in plane oxygen + F(hkl)Remains  

                                                        → F(hkl)apex oxygen  + F(hkl)in plane oxygen 

 

As the apex oxygen moves away from the z=0 position to (x0z) the corresponding 

superstructure reflection for h uneven is  

 

F(hkl)apex oxygen =  sin(2πhx)cos(2πlz) for h odd 
 

In the case of x-rays the weak form factor of the oxygen (Z=8) against the Cu (Z=29) and La 

(Z=57) atoms make this intensity contribution almost invisible (<< 1% of main reflections). In 

the case of neutrons the scattering lengths of all atoms are in the same order of magnitude 

(bO=5.803 fm, bCu=7.718 fm, bLa=8.24 fm) and therefore also the superstructure reflections 

yield easily measureable intensities significantly larger than 1% of the strongest main 

structure reflections. 

  

Mean square displacements: Pure La2CuO4 shows a purely linear behaviour of the mean 

square displacements with temperature. Deviations from this harmonic behaviour of the 

Debye-Waller-factors can be a hint for a disturbance like an order-disorder phase transition. 

As the La1.85Sr0.15CuO4 compound shows the highest Tc = 38 K it was discussed whether an 

order/disorder phase transition could be related to superconductivity. Bragg data sets taken 

with neutron single crystal diffraction at three temperatures above and below the structural 

phase transition (T=186 K) and the superconducting state (T=38 K) show no anomaly for all 

atoms including the two oxygens O1 (in-plane) and O2 (apex) (fig. 26). The only anomaly 

found there is the increase of U33(O1) and U11(O2) for all temperatures compared to the 

undoped La2CuO4. Harmonic lattice dynamical calculations from experimentally determined 

phonon dispersion curves taking into account the Sr doping were in good agreement with this 

observation. Thus, the random distribution of Sr atoms on La sites introduces static disorder 

into the structure [14]. 
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Fig. 26: MSD of La, Cu, O1 and O2 for La1.85Sr0.15CuO4 [14]. 
The dotted lines in the middle of the diagrams for O1 and O2 are U33(O1) and U11(O2) of La2CuO4 
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Magnetic compounds: Some years ago FeAs compounds were found to show – like the 

cuprates - superconductivity if doped. It was also found that the structural properties are 

similar to the cuprates, e.g. a layered structure 

and a phase transition from a tetragonal high 

temperature phase (I4/mmm) to an orthorhomic 

low temperature phase (Fmmm, fig. 27).  

An interesting member of these compounds is 

EuFe2As2, where doping with potassium 

generates superconductivity with  

Tc(Eu0.5K0.5Fe2As2) = 31 K. The undoped 

compound shows antiferromagnetic (=AF) 

ordering of the Fe
2+

 and Eu
2+

 atoms but at 

different temperatures, 190 K and 19 K 

respectively. Neutron single crystal diffraction 

was used to study the nuclear and magnetic 

structures in detail as the magnetic moment of 

the neutron is sensitive to magnetic order (fig. 

28) [15].  

 

Fig. 27: F/mmm phase of EuFe2As2 [15]. 

 

Fig. 28: T dependent measurements of magnetic Bragg reflections (Eu
2+

 left, Fe
2+

 right)[15]. 

 

Like for the example of La2CuO4 the orthorhombic structure is twinned. Careful profile 

analysis and Bragg data collections were used to reveal the details of the orthorhombic 

structure [15]. As can be seen in fig. 29 the nuclear and magnetic reflections are well 

separated. Additionally, the comparison of nuclear and magnetic reflections between 

measurement (Fobs) and model (Fcalc) show good agreement for both (fig. 30).  
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Fig. 29: Correlation diagrams of nuclear and magnetic reflections [15].  

 

Fig. 30: Distribution of magnetic and nuclear peaks in reciprocal space along b* [15]. 
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4 Summary 
 

Powder and single crystal diffractometry are two of the most versatile tools for detailed 

studies on chemical and magnetic structures. The different interactions of x-ray and neutron 

radiation with matter allows these techniques to contribute important informations to almost 

every scientific area of solid state physics, chemistry, biology and material sciences. This 

script can offer only a short overview of the methods and their applications. Additional 

information can be found in the attached list of literature.  

The following table presents a compact guideline which radiation and technique might be best 

suited to answer a specific scientific question: 

 

 

limited sample environment (T, H) 

no discrimination of neighbouring elements (e.g. Co, Fe, Cu) 

strong interaction with light elements, isotope specific! 

weak absorption effects, no polarization effects (unless pol. neutrons) 

discrimination of neighbouring elements and isotopes (H/D) 

weak interaction with light elements (H, N, O, etc.) 

intensity damping only by temperature factor 

intensity damping by temperature factor and structure factor! 

large absorption effects, polarization effects 

core and spin density maps, magnetic ordering!  

good angular resolution reflection overlapp 

medium (3 days -7 days) fast, in situ experiments 

sample size mm sample mass mg Neutrons 

e- density maps - characterization of chemical bonds 

very high angular resolution, anisotropic 
effects  

(intrinsic & resolution dep.) reflection 
overlapp  

fast (1/2 - 2 days) very fast, in situ experiments 

sample size µm sample mass µg X-Rays 

Single Crystal Powder  
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