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Fig. 1. Volume-temperature diagram of the crystalline, glassy hgdid phase at ambient
pressure.

1 Introduction

The glass transition (the freezing of an undercooled andifigscous liquid into a glass) is
considered to be one of the great unsolved riddles of sai# gthysics. The main riddle is the
atomic mechanism of the flow process in the highly viscousidigand its strong temperature
dependence shortly before freezing. The freezing itseéfasgnized as a falling out of thermal
equilibrium, a kinetic process. But it is not clear to whichea this kinetic process reflects
a true thermodynamic second order transition at a lower ¢eatpre, the Kauzmann or Vogel-
Fulcher temperature. The present paper describes theéi@itud our present knowledge (or
lack of knowledge) [1, 2, 3,4,5,6,7,8,9, 10,11, 12, 13, 14].

Liquids do not crystallize immediately after cooling beldleir melting points, because the
crystallization requires the formation of crystal nuckeprocess which takes time. If this time
is long enough to measure the properties of the undercoigieid lat all temperatures, one calls
the liquid a glass former. Examples are vitreous silica (mmees silica with metal oxydes to
make window glasses), boron trioxyde, glycerol and selaniMany polymers are good glass
formers, like polystyrene, polycarbonate and polyisopr@nbber), but others form a mixture
of crystalline and amorphous domains like polyethylene.

At the glass transition temperatufg, the undercooled liquid freezes into a glass, a solid with
a nonzero shear rigidity. In many liquids, this glass terapee is about 2/3 of the melting
temperature. From numerical simulation results (to beudised in more detail in Section 4 on
new developments), we now believe that every liquid can lmecbinto a glass, provided the
cooling rate is high enough. However, in real liquid wates iimpossible to carry the heat fast
enough away, so it can only be frozen into the glass stateeodimputer.

In undercooled liquids, the viscosity increases dragyicaith decreasing temperature. This
increase reflects the dramatic increase of the structuesdaton timer,, of the liquid (it is de-
noted by« to distinguish it from possible secondary relaxatiohs etc. at lower temperatures
in the glass phase). The structuratelaxation is visible not only in mechanical, but also in
dielectric, light scattering or heat capacity spectra. glass transition occurs for a relaxation
time of about 100 seconds.

Fig. 1 shows the cooling process from the gas phase intogtllphase and then into the glass
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phase in a volume-temperature diagram at ambient presdurere is a large volume jump
between gas and liquid, much larger than the volume jumpeafitst order phase transition
between liquid and crystal &t,,. If the crystallization is avoided by fast enough coolingg t
system enters the undercooled liquid and experiences éiséicislowing down of the relaxation
time 7, with decreasing temperature indicated in the figure. Thesgiemperaturg, depends
on the cooling raté? according to

1o(T,) = T,/R, (2)

becaus€’,/ R is roughly the time needed to cool the whole energy of the ampay. So the
faster the cooling, the higher i§,. For a glass temperature of 200 K, a cooling rate of 1 K/s
implies ar,, of 200 s. As will be seen in the next section js only a mean of a broad distribution
of relaxation times, which makes the glass transition evererdiffuse in temperature.

The thermal expansion of the glass is similar to the one ottistal. It is due to the anhar-
monicity of the vibrations [1]. The thermal expansion of tiggiid phase is a factor of two to
four higher than the one of the glass phase (there is one targogxception, vitreous silica,
which will be discussed below).

From the theoretical understanding, there are two otheoitapt temperatures shown in Fig. 1.
The first is the Vogel-Fulcher temperatuifigbelow’, where the viscosity and, extrapolate to
infinity. As will be seen, the Vogel-Fulcher temperaturas lodose to the Kauzmann temperature
Tk, where the structural entropy of the liquid extrapolategem. This will be discussed in
more detail in the next two sections. The second theoretéraperature];, lies betweerl,
andT,, and is the critical temperature of the mode coupling the8ty The mode coupling
theory is the most advanced liquid theory up to day. Accardmmthis theory, the viscosity
should diverge at the critical temperatufie Therefore one has to invoke additional thermally
activated hopping processes to explain why the real vigcissstill small at this temperature. A
very recent theoretical treatment in terms of the replicanejue [15] shows that. is the point

in temperature where it becomes possible to measure arlgrstiear modulué/y;,, for high
enough frequency(;,;,, is sometimes denoted [y, but this term should be reserved for
the shear modulus of an instantaneous affine shear defom{8t). From an empirical energy
landscape point of view [5].. is the temperature below which one can distinguish betwisen t
fast picosecond relaxation processes and the slow thgractivateda-relaxation of the flow
process close to the Maxwell time,

_ _n

T =M Ghigh’ (2)
wheren is the viscosity. Sincé),;,, is of the order ofG Pa, a viscosity ofl0'? Pa s implies a
Maxwell time of 1000 s.
The scattering methods discussed in the present springlsafeof central importance for the
study of the glass transition. Naturally, their time resioln is not good enough to study the
a-process itself close td,, but they supply other essential information. This is iitaged in
Fig. 2, which shows the mean square displacement of criystalyjlassy and liquid selenium
as a function of temperature. There is a close parallel to Bigbecause the mean square
displacement of the undercooled liquid, together with thBaamonicity of the interatomic
potential, supplies the physical reason for the thermahegjon [1]. One realizes immediately
that the understanding of the undercooled liquid requirstudy of the atomic motion on the
fast picosecond scale.
In a crystal, the simplest approximation relates the meaarsgdisplacement to a mean atomic
frequency, the Debye frequenegy,. If the temperature is high enough, one can use the classical
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Fig. 2: Mean square atomic displacements in crystalline, glassyl@auid selenium [16].

approximation
3kpT
2 B
<ut >=——,
“ Mw?,

where M is the average atomic mass. In the simplest case of elastiopy, the Debye fre-
guency is determined by the densityand the longitudinal and transverse sound velocitjes
andv,, respectively
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In turn, the longitudinal and transverse sound velocitresralated to the two elastic constants
of the isotropic medium, the bulk moduli,;,, and the shear modulds;,; ;, by

4
pvi = Bigh + gGhigh pvi = Ghigh, (5)

where the indexXigh indicates the elastic constant for high frequency and is\goessary in a
solid. In a liquid, one has to make the distinction, becawsa ¢he bulk modulus is markedly
higher at high frequency.

The question is whether the simple description in terms adted constants still makes sense
in a complicated glass former. This question can be answsredelastic neutron scattering
experiments, which are able to measure the vibrationalityeosstates and its temperature
dependence. Itis this temperature dependence which isnsige for the strong rise ef v >

in Fig. 2. It has been measured by Wuttke et al [17] in glycex@holecular glass former which
exhibits the same: «? >-behavior as selenium and where the temperature dependétiwe
high-frequency elastic constants has also been measu8gdlie temperature dependence of
the neutron spectra is shown in Fig. 3. The spectra are dedlua terms of the vibrational



Glass Transition E9.5

L I T T T J T T | i I I | T

Olllllllllllll‘llll_l_

O 2 4 6 8
o (meV)

Fig. 3: Measured spectra [17] in glycerol above and below its glamsgeraturel, = 190
K, plotted asg(w)/w?. The measured curves extrapolate to the arrows denoting #iey®
expectation at the different temperatures. At 243 K, onensefgi see the tail of the flow or
Q-process.

density of stateg(w) divided by the frequency squared. In this plot, the Debyesitgof states

3w?
gDebye(W> = 3 (6)

wWp
is a constant which can be calculated from the sound vedsciti the given temperature. What
one finds, is not a constant, but a broad peak sitting on topeoékpected Debye density of
states, the so-called boson peak, found universally inadisgs.
The boson peak is another one of the unsolved riddles of dksed matter; it is not clear
whether it is due to resonant modes related to the low teryeréunneling states in glasses
[19] (and to the plastic modes responsible for the sheanih@n[20]) or simply to the force
constant disorder in the glass [21]. This peak remains red®p harmonic in the glass phase
(not entirely; one can see some anharmonicity even bé&lgwbut begins to grow and shift to
lower frequency in the undercooled liquid. At 243 K, one Insgio see the high frequency tail
of the flow process, because it begins to enter the nanoseangd accessible to neutrons, but
at lower temperatures the undercooled liquid looks like aamharmonic glass in the neutron
spectra.
Since the mean square displacement of the atoms is the adeathe curve, it begins to grow
markedly stronger than proportional to the temperature@@p, as in Fig. 2. The anharmonic-
ity of the potential is the same in liquid and glass. Thereftie stronger increase of the mean
square displacement in the liquid with increasing tempeeakeads to a stronger thermal ex-
pansion [1]. Naturally, the fast vibrations supply only atgé@ one analyses it quantitatively
[22], only a smaller part, of the order of one quarter) of theliaonal thermal expansion or
of the additional heat capacity in the undercooled liquin flarger part comes from the slow
fluctuations of the flow process at.
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Fig. 4: Measured spectra [23] in vitreous silica above and belowgitsss temperaturd, =
1473 K, plotted ag(w)/w?. The upper line denotes the Debye expectation at 51 K, the lower
line at 1673 K.

As already mentioned above, silica shows an exceptiondflrent behavior. Fig. 4 shows the
measured spectra [23] above and below the glass temperdt@iry 3 K in silica. One does
indeed get the opposite behavior to the normal case in Filps8ead of growing and lowering
its peak frequency, the boson peak decreases and goes tr fiighuency with increasing
temperature. In fact, one finds a negative thermal exparstow 150 K, where the boson
peak vibrations dominate. At higher temperatures, oneasisall positive thermal expansion,
because the vibrations at higher frequency have a positizedisen parameter, the normal case
[1]. The thermal expansion remains very small up to tempegatabove’,, making silica the
closest example for a completely harmonic glass formerhhatbeen found so far. We will
come back to this point in Section 4.

2 Kinetics of the glass transition

There are two characteristic properties of the kineticshefd-process (the flow process) in
undercooled liquids, the fragility and the stretching. Titagility characterizes the temperature
dependence af, and the stretching characterizes the width of the relasdtine distribution.

2.1 Fragility

The usual measure of the fragility of a glass former is thatitlgmic slope of the relaxation
time 7, of the flow process

m = dlog 7, /d(Ty/T)|r,, (7)
in the so-called Angell plot [25] (see Fig. 5) bi 7, as a function of /T, atT /T, = 1.
It is useful to relate, to an energy barrie¥, via the Arrhenius relation
Ta = T0 eXP(Va/kBT)v (8)

where the microscopic attempt frequency is at'#Gs, sixteen decades faster than the flow
process at the glass temperature. fragility index ! is defined [10] by the logarithmic deriva-
tive / = —dInV, /dInT, taken atl,. Then

m =16(I + 1), 9)
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Fig. 5: The Angell plot showsg 7, as a function of /7, here for vitreous silica, glycerol and
two other glass formers (taken from the thesis of A. Reisd).[24

where the factor reflects the sixteen decades between mapicsand macroscopic time scales.
I is a better measure of the fragility than because it does not contain the trivial temperature
dependence of any thermally activated process! ¥ 0, one has the harmonic case of a
temperature-independent energy barrier. Glass formesvlireous silica withn = 20 and

I = 0.25 are close to this harmonic case and are called strong glesef®, as opposed to to
the fragile ones. Glycerol is intermediate with= 53 and/ = 2.3; the most fragile ones are
some polymers withn = 150 and/ = 9.4.

The most popular fitting form for, is the empirical Vogel-Fulcher-Tammann-Hesse relation

log 7, = log 9 + (10)

T-Ty
which is derived from the Arrhenius equation, eq. (8), bylaejmg the temperatur€ in the
denominator of the exponent By— T,. The Vogel-Fulcher temperatuig is close to zero in

a strong glass and close (but beldiy)in a fragile glass. The Vogel-Fulcher relation predicts
a divergence of, at the Vogel-Fulcher temperature. In many glass formemgutals within
the error bars of the experimental determination [26] tleerttodynamically defined Kauzmann
temperaturd’, suggesting a hidden relation between kinetics and theymadics. This will

be discussed in more detail in the next section.

Note that the Vogel-Fulcher relation, eq. (10), is known ali&khs-Landel-Ferry or WLF-
relation in polymers.

2.2 Stretching and dynamical heterogeneity

The second important property of theprocess is its "stretching”. The stretching, seen in the
time dependence of the-relaxation, means that there is not only one exponenticdylavith
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Fig. 6: The two possible scenarios for the stretching (schematio)th@ left dynamical homo-
geneity, on the right dynamical heterogeneity [28].

a single relaxation time,,, but that one needs a whole distribution of exponential giewath
different relaxation times to describe the time depend@&fidbe decay. If one switches on a
constant shear strahky in the undercooled sample at the time- 0, the shear stress decay is
often well described in terms of a stretched exponentialstircalled Kohlrausch function

G(t) = Ghigh exp(—(t/7a)"). (11)

The stretching exponent (the Kohlrausghlies between 0.8 and 0.3 (the latter case correspond
to a pronounced stretching over three to four decades in tifigere is a tendency [27] for a
larger stretching for more fragile glass formers, but itas @an exact relation.

If one plotslog(G(t)) as a function of time, one sees the stretching in the cursafiir= 1,

the Debye case of a single relaxation time, gives a straigét [The smallers, the larger the
curvature.

The central question with regard to the stretching is whetligerent regions in the sample
have different relaxation times (in this case one talks afahgical heterogeneity) or whether
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Fig. 7: Real and imaginary part&’(w) and G”(w) of the complex shear modulus in glycerol
[29] at 192.5 K as a function of the frequengy The continuous line is a fit with a Kohlrausch
stretched exponential with = 0.43, the dashed line i (w) for a single exponential decay
without any stretching.

each region of the sample has the same stretched relaxatiotidn (this would be dynamical
homogeneity). The two cases are depicted schematicalligirbk

The question can be decided by experiment. The most imgddahnique to do so is NMR,
but there are several other possibilities. A review of tHeséniques and their results has been
given by Ranko Richert [28]. It turns out that one has indeeddyinal heterogeneity, at least
in the sense that the relaxation functions of differentargiin the sample have largely different
average relaxation times. Again, we return to the questidhe section on new developements.

In most cases, the measurement of the stretching is done ifteguency domain. One can,
for example, apply a small-amplitude sinusoidal sheairstdt) = ¢, cos(wt) to the sample.
Then one needs to exert a sinusoidal shear stress

os(t) = G'(w)eg cos(wt) + G"(w)eg sin(wt). (12)

G'(w) andG”(w) are the real and imaginary parts of the complex frequenpggent shear
modulus.G” (w), the out-of-phase part of the response, is a measure favsbat the frequency
Ww.

Fig. 7 shows the real and imaginary part of the complex sheauts of glycerol [29] slightly
above the glass transition. The comparison with the dashede dor a single exponential
clearly shows a sizable stretching. Glycerol is a Type-Agl@rmer (one distinguishes Type-
A =no visible secondary relation peak and Type-B = clearbjble secondary relaxation peak),
but one can naturally imagine a small secondary relaxatgak pnidden in the extended high-
frequency tail. We return to this question in section 4 on dewelopments.
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Fig. 8: Kauzmann'’s [30] original picture of the loss of the excess®WAS = Siiquia— Serystal
on cooling down from the melting temperature in several glassers.

3 Thermodynamics of the glass transition

3.1 The Kauzmann catastrophe

Once one is well below the glass transition, the thermodycswof the glass is rather similar
to the one of the crystal. In the example of selenium, the bapacityc, of both crystal and
glass is close to the classical Dulong-Petit-value /of per atom, due to the three vibrations
per atom.

In the undercooled liquid, one has not only the fast energyuhtions of the vibrations on the
picosecond scale, but also the slow energy fluctuationseo$tituctural rearrangements at the
relaxation timer,,. This leads to an additional heat capacity,. This Ac, has values between
0.1 and 2k per atom, depending on the specific glass former [6].

Since the heat capacity of the undercooled liquid is highantthe one of the crystal, the
undercooled liquid gradually looses the excess enttdY= Sj;quia — Serystar OVEr the crystal
on cooling. At the melting temperatufe,, AS = S,, = AH,,/T,,, whereAH,, is the latent
heat of melting. The melting entropy (which is the physiadson for melting, because it
makes the free energy of the liquid more favorable at higaewperatures) is of the order of
0.5kp per atom, implying the possibility of about two structurhbeces per atom in the liquid
state. If Ac, is large, the undercooled liquid rapidly looses this exeassopy on cooling.
A linear extrapolation allows to determine the so-calledikaann temperaturéy, defined
by Kauzmann [30] back in 1948. At the Kauzmann temperature,entropy of liquid and
crystal would be equal, implying essentially only one sengbssible structural realization of
the liquid. It is clear that, at this temperature, the vistyoswust diverge, because the liquid
becomes unable to jump from one structural realization aileer. Fig. 8 shows the Kauzmann
extrapolation for some glass formers from his original pdB6]. The figure shows that the
glass transition occurs before the undercooled liquiddeaall its excess entropy. Thus the
"Kauzmann catastrophe” (a liquid with less than one stmattconfiguration) is avoided.

But one can compare the Vogel-Fulcher temperaiiyréhe temperature where the viscosity
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would diverge) with the Kauzmann temperatrg. A comparison to 54 glass formers [26]
showed good general agreement, but with four glass formbeseil; was decidedly smaller
thanT}, out of the error bars. Nevertheless, most scientists ifi¢tdefeel convinced that there
is indeed a true physical connection between viscosity andss entropy. This conviction is
further supported by the success of the Adam-Gibbs cone¢3d]

C
Ta = To €XP (m) ) (13)

whereC' is a constant. The Adam-Gibbs scheme linksand excess entropy via a model of
cooperatively rearranging regions, the size of which djesrat the Kauzmann temperature. For
alinear dependence &¥S on temperature, it leads again to the Vogel-Fulcher reigd0) with

TO - TK

3.2 The Prigogine-Defay ratio

The question of the nature of the slow structural rearrareggsin the undercooled liquid is
intimately related to a thermodynamic puzzle, the Prigegiefay ratio of the glass transition
[32]
NHZ AV2
- AcpAK _ AH? AV 7 (14)
(Aa)?T, (AHAV)?

which relates the increases of the heat capacity per volumte\s,, of the compressibilityAx
and of the thermal volume expansidva at the glass temperatufg to the structural rearrange-
ment enthalpy and volume fluctuatioAsd? and AV, respectively. If the enthalpy and volume
fluctuations are completely correlated, the Prigogineaeétio is one. It has been argued that
this is the physically simple case from which one should &rytderstand the glass transition
[33, 34]. We will come back to this proposal in section 4 on mavelopments.

The Prigogine-Defay ratio is found to be exactly 1 at secaddigohase transitions (a derivation
on the basis of the two Ehrenfest relations for the presseperdence of the transition temper-
ature is given in Appendix A). A second order phase transiisocharacterized by continuous
first derivations of the enthalpsf, so the volumé’” and the entropys are continuous (unlike
the first order melting transition, where entropy and volwhkquid and crystal at the melting
point are different). At the glass transition, the entropg ¢he volume are indeed continuous;
nevertheless, it is not a second order phase transitioausemne of the two phases - the glass
- is not in thermal equilibrium. Thus one cannot wonder tkeat glass formers show Prigogine-
Defay ratios much larger than 1 at their glass transitioa [@ble 1). As a rule, stronger glasses
have a higher Prigogine-Defay ratio than fragile ones.

subst.| SIQ, | GeO, | B,Os | glycerol| Se | PS | BPA-PC
11 >100| 6.85 | 4.7 3.7 1.85| 1.3 1.02
m 20 20 32 53 87 | 139 132

Table 1: Measured Prigogine-Defay ratios of seven glass formerkeit gjlass transition [34,
35]. The fragilitym is taken from the collection of@mer, Ngai, Angell and Plazek [27].
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4 New developments

4.1 Numerical simulations

The most important new development in the field is the apgtinaf numerical methods to the
glass transition. One can nowadays study the time developaofep to hundred thousand in-
teracting particles on the computer. The technique is@dttelecular dynamics” and involves
the calculation of the motion of the particles in short tinkeps, short enough to linearize the
particle motion. This implies times steps much shorter traa period of the fast vibrations, in
real substances of the order of femtoseconds. With a feeuose one has to make a million
time steps to arrive at a nanosecond. This limits the methpreaent to relaxation times which
are shorter than a microsecond. As a consequence, one cndpthe glass formers in ther-
mal equilibrium at lower temperatures, wheteexceeds a microsecond. One just gets slightly
below the critical temperatufE. of the mode coupling theory. Thus the first applications ef th
method have been to test and to verify the mode couplingy{86r 37]. Later, it has been used
to verify a deep and surprising connection [9] between thdemamupling theory and spin glass
theory [4], which will be discussed in the next paragraph ew theoretical developments.

In the calculations, one puts the particles in a cubic box wetriodic boundary conditions.
A patrticle is free to leave the box (entering the box from tppasite side) and interacts with
the particles in the neighboring boxes. The time needed ltulede all particle interactions
increases drastically with the range of the potential. &wge one prefers short-range anhar-
monic potentials like the Lennard-Jones potential

vor-(2)"- ()] =

wherer is the interparticle distance,is the depth of the potential well andis close to the
resulting nearest-neighbor distance (the potential minins ato /2!/5).

If one just takes the simple Lennard-Jones potential, ows finystallization to an fcc structure
even for the short simulation times. In order to avoid cijigetion, it turns out to be necessary
to use binary mixtures of particles with differemt The most popular of these mixtures is the
binary Lennard-Jones mixture introduced by Kob and Andej36].

With numerical simulations, one can attack the unsolvedlpraos of the glass transition, for
instance the question of the Prigogine-Defay ratio. Thislheen done for the simple Lennard-
Jones system [33], calculating not the Prigogine-Defagp ratt rather the correlation between
the enthalpyH and the volumé/

=
<

2= (16)

a correlation which involves not only the slow structurajcees of freedom, but the fast vibra-
tions as well.

It is easier to do this in a constant volume calculation astamt temperature (the NVT ensem-
ble), looking at the correlation between pressure fluabmatiand energy fluctuations. In this

calculation, one has to subtract the ideal gas term, bet¢heg®essure is given by
pV = NkgT + W, a7

where only the second term, the virid, is due to the interatomic potential. As one can see in
Fig. 9, the virial is indeed highly correlated with the pdtehenergy, with a correlation factor
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Fig. 9: Instantaneous normalized equilibrium fluctuations ofaliV and potential energy U in
the standard single-component LennardJones (LJ) liqumbastant volume (NVT simulation),
showing that W(t) and U(t) correlate strongly [33].

0.953 corresponding to a Prigogine-Defay ratio of 1.1. Tdmaes high correlation is found in
all simulations of Van der Waals and metallic liquids, but mohydrogen-bonded liquids like
water and glycerol.

On the basis of these results, it has been argued that a PregDgfay ratio of 1 is the phys-

ically simple case from which one should try to understaredglass transition [33, 34]. But

this is opposed to the arguments in the introduction of tlesgmt paper, which indicate that
the physically simple case is a harmonic glass former. Inrenbaic glass former, the ther-
mal expansion should be zero. Therefore the linear comelat H AV should be zero; the

Prigogine-Defay ratio should be infinity (as one indeed fimdslica [38] with IT > 100).

What brings the Prigogine-Defay ratio down, is the anhareignof the potential, which also
causes the thermal expansion. With anharmonicity, evenr@a glwear energy fluctuation is
accompanied by a volume fluctuation. If these additionalin@ fluctuations dominate, the
Prigogine-Defay ratio goes to one. In numerical work [36, 8Be usually prefers anharmonic
potentials, which vanish at a relative close distance friogrettoms. Thus one tends to conclude
that the deviation of the Prigogine-Defay ratio from one risiadication for a complicated
atomic potential [33, 34]. But it is rather an indication fon@amonic atomic potential.

This point of view is supported by Fig. 10, taken from a vergerg paper [40]. As a measure
for the anharmonicity at the glass temperatiijeone can use the produetl},, whereq, is the
volume expansion coefficient of the liquid. Fig. 10 showsc¢bgeelation coefficienfl~/? as

a function of this product. Though again the experimentsh §g4, 35] scatter strongly, one
finds clear evidence for a linear increase at low anharmiynidihe simulation value for the
zero-pressure binary Kob-Andersen mixture [33] corregigdn rather high anharmonicity.

Fig. 10 demonstrates the limitations of numerical simalai They do not get very low in

temperature and they tempt scientists to overestimatarthertance of anharmonic potentials.
In spite of these limitations, numerical simulations weteéh& very bottom of the astonish-
ing progress in the understanding of the glass transitighimvthe last decade, which will be

described in the next paragraph.
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Fig. 10: The correlation coefficienii—*/? (II Prigogine-Defay ratio) as a function of the an-
harmonicity«, T, (oy volume expansion coefficient of the liquid, glass temperature) for 55
glass formers [34, 35, 39] and the binary Kob-Andersen m&{83]. The line is a numerical
calculation for the Lennard-Jones potential in ref. [40prn which the figure was taken.

4.2 Theoretical developments

The most important theoretical development of the last decsas the discovery of a deep
analogy between mode coupling theory [3] and spin glassryhd. There is an excellent
recent review of the topic [9], which demonstrates the iatenconnection between theory and
numerical simulation in this development.
The merit of the mode coupling theory [3] is not so much itsdprgon of a divergence of
the viscosity atl,. - the viscosity does not really diverge there, because thigrractivated
processes take over - but its prediction of a slowing dowrhefflow relaxation time-, from
the vibrational picosecond time scale as one lowers thedeaiyre towardq,.. According to
the mode coupling theory, this separation of time scalesrmgagithoutany activated process.
As one approachesg,, the structural correlation functions decay in two steps, first in the
picosecond regime and the second at
However, since the mathematical apparatus of the mode iogughleory is rather complicated,
it is not easy to assess a clear physical significance to thegaion of time scales. It was said
thatr, corresponded to the "breaking of the cage of neighborintghes”, but this is not much
more than a figure of speech.
A much deeper explanation became possible when it was edatmat the dynamic mode cou-
pling equations are the same as those for the mean field pysmiel [41], a spin-glass model
with the Hamiltonian

H=-%V 1 Jij0i0;0% (18)

for p = 3, whereJ;;;, are frozen random variables ang o; ando;, are spin variables. Since

each spin interacts which each pair of other spins irregpeot their distance, the model con-

tains no space information.

The advantage of the p-spin model is that it allows to cateuddl important properties. Thus

one can analyze what happens as one approd¢hé&mne finds [42] that the separation of times
scales is due to the properties of the saddle points of thersysvhich have the tendency to
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Fig. 11: Simulation results for a diverging length scale in the bin&ob-Andersen Lennard-
Jones mixture from the 4-point correlation function [45]dafilom the amplitude correlation in
shear-induced inherent structure changes [46].

become isolated true free energy minima toward This makes the way between two given
equilibrium configuration of the system longer and longerorne approache$,.. Thus the
separation of time scales predicted by the mode couplingyrean be identified quantitatively
as a phase space property [9].

Scarcely less important, the replica technique (sometetsgscalled "cloning theory”) devel-
oped in the context of spin glass theory [4] allows to do daltons for the undercooled liquid
belowT,. Thus one calculate the heat capacity [43] for a given itben& potential between

T, and the Kauzmann temperatufg  Similarly, one finds the temperature dependence of the
plateau shear modulds;;,, between these two temperatures [15], concluding that itedses

to zero as one reach#ds.

Again in the same context, the spin glass ideas have beendexteo structural glasses in
an intense search for a dynamic length scale [44, 45, 46]wiBisupposed to diverge at the
Kauzmann temperaturg,. There is increasing numerical evidence [45, 46] (see Fig.fdr
such a diverging length scale in the binary Kob-AndersembetJones mixture, supporting
the Adam-Gibbs concept [31] of cooperatively rearrangagjons. The motivation of the work
is to clarify the deep connection between thermodynamidsignamics reflected in the validity
of the Adam-Gibbs equation (13).

A theoretical scheme which indeed leads to a validity of tlday-Gibbs equation is the mo-
saic theory or random-first-order theory [47] (RFOT), matehby the parallel between mode
coupling theory and spin glass models. According to RFOTdiaeneter of a cooperatively
rearranging region results from the thermodynamic equuith between the entropy inside the
region and the surface tension at the interface to neighpaggions. One has to postulate a
surface tension coefficient which depends on the diametgettthe Adam-Gibbs equation, but
one can find a theoretical justification for this [47].

The theoretical evolution described so far seems fairlyeostit and convincing, but there are
other and independent theoretical attempts to undershtenglass transition. Some of them are
described at the end of Cavagna’s excellent review [9]. @thes motivated by new experi-
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Fig. 12: Dielectric spectra of 10 mol%-quinaldine in tristyrene affekent pressures and
adapted temperatures [48]. The inset shows the curve in timpeeature-pressure diagram
which must be followed to keep the primary peak frequency adires place.

mental findings and will be described in the next paragraph.

4.3 New experimental findings

Though a bit overshadowed by the success of the numericalations described above, the
progress in experimental techniques for the study of thesgiensition is by no means con-
temptible. The main progress has been made by the develdpiamadband dielectric spec-
troscopy [49, 50]. It is nowadays possible to measure tHedtigc spectrum from 1€ to 102

Hz (though the GHz region is still not easy to measure). Everenmportant, one can measure
the dielectric spectrum under high pressure. If one dosddhiglycerol, which has no clearly
visible secondary relaxation at ambient pressure, oneiddesd see the development of a clear
secondary peak [51].

Fig. 12 shows a measurement of a binary mixture, 10-mol% ofaddine in tristyrene [48].
One sees the large and braadpeak at low frequency and a smaller secondary peak at higher
frequency. This is a clever pressure experiment, varyingpggature and pressure simultane-
ously in such a way that the primary peak stays at the samadray. One finds the striking
result that the secondary peak also stays at the same pidasgting a connection between
and(-process.

However, the picture can also be quite different [52]. In smystems, where the molecules
are not rigid and the secondary relaxation is due to to a mtdeconfiguration change, the
primary peak is much more sensitive to pressure than thendacppeak. So it is necessary to
distinguish these two cases. If one has a molecular configarehange, the two inherent states
which contribute to the secondary relaxation will be seteardy a practically temperature- and
pressure-independent barrier. In the other case, one hasiarlbetween two different mole-
cular arrangements, which will vary with temperature anespure according to the variation
of the elastic constants, in particular the high frequet®as modulugr,,,, (in fact, the elas-
tic models [10] explain the fragility by a proportionality the strongly temperature-dependent
G'hign to the flow barrier).

Taking the pressure dependence as an indicator whethereate with an intramolecular or
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Fig. 13: Beta loss peak maximum in tripropylene glycol, monitoréeraf temperature increase
of 0.672 K starting from equilibrium at 184.0 K. After 6 s temgtere is stable within 1 mK
of the final temperature. At this time, the energy landscaserot yet changed, but the peak
maximum nevertheless shows already a clearly measurableaise compared to the value
before heating, denoted by the arrow [55].

intermolecular relaxation, one finds [48, 52, 53] that thexation timer; of the latter ones
always follows the coupling model relation [53]

T = T, (19)

wherel —n is the Kohlrausch exponent of the primary processtaimsla short time of the order
of 2 ps. According to the coupling model, theprocess reflects the result of the interaction of
the "primitive” relaxations in the3-process. This is a picture of the glass transition which is
completely different from the mode-coupling and spin-glesncept described in the preceding
two paragraphs, but there are many dielectric experimempisasting it [11].

In fact, a connection between andj-process has been demonstrated directly in another key
experiment [54], done by NMR on sorbitol. This experimentng of the many measurements
demonstrating dynamical heterogeneity [28], i.e. diffénelaxation times at different places
in the sample. The NMR technique can be used to separatesarobles of the sample which
belong to a specific relaxation time. The experiment showeata subensemble which has a
slow a-relaxation time also tends to have a slowelaxation time. As the authors [54] point
out, there is at present only a single theoretical explandbr such a behavior, namely Kia
Ngai’s coupling model [53].

The last experiment reported here is a unique aging expetifa8] close to the glass tempera-
ture, where the relaxation timeg is of the order of a day. It is done within a sample holder for
dielectric measurements which is able to change the termyerto a new equilibrium within

a few seconds. This allows to see what happens with the fashdary relaxation during the
aging process.

Fig. 13 shows the development of the amplitude of the segsgmtacess in tripropylene glycol
at 184 K, where the primary process has a relaxation time aya dfter a quick heating
to the temperature 184.672 K, one follows the gradual agbré@a equilibrium at long times.
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But the surprising thing is: One already sees a small, butdeéefy measurable increase of the
amplitude at short times, after the equilibration time & tbmperature. This means an increase
within an unchanged energy landscape, and this in turn Hgoe possible explanation: The
inherent states, between which the system jumps back atidifothe secondary relaxation,
must be strongly asymmetric. One can calculate the avesgeraetry from the increase. For
the one in Fig. 12, one finds an average asymmetry ok3®, a factor four or more larger
than one would expect.

This is not a specific property of tripropylene glycol, besathe authors measured it in several
systems, including a toluene-pyridine mixture of rigid emiles. It seems to be a general
phenomenon, irrespective of whether the secondary peak@ecular rearrangement of rigid
molecules or an intra-molecular configuration change.

An explanation of this asymmetry was proposed by the auth®f ih terms of the Eshelby
backstress [2]. If the system searches for possible nergidbanherent states, it will most
probably find a mayority of elastically distorted states,ckhdo not fit well into the present
strain of the surrounding matrix. The concept allows to jmteth asymmetry of 457" without
any adaptable parameter, close to the observed value iogyilene glycol.

If this hypothesis is generally true, tlherelaxation should show the same asymmetry. Some
of the implications of such a general asymmetry have beelkedoout in a series of papers
[40, 56, 57].

5 Summary

The glass transition is at present a very active field of mebealThe main reason for this is
the very fruitful cooperation of theory and numerical siatidn described in Section 4 of this
paper [9]. It encourages the hope for a closed quantitatidecanvincing description of the
glass transition within the next decade. In this descnipttbere is a separation of time scales
on cooling the undercooled liquid, which occurs when théeyalin the free energy landscape
are no longer connected. The onset of this separation ofdoakes is well described by the
mode coupling theory [3]. As one approaches the criticapemture of the mode coupling the-
ory from above, thermally activated hopping between theimmanof the free energy landscape
(at this temperature already practically the potentiakgynéandscape [5, 7]) sets in. In this
temperature regime, the glass formers approach a true dldgmamic second order transition
at the Kauzmann temperature. The more fragile the glasseioisn the closer it gets to the
Kauzmann temperature. In this regime, one can calculatsigdiyproperties quantitatively if
one knows the interatomic potentials, using the replicdanming theory [15, 43].

On the other hand, there are important experimental factshalemain unexplained and are
not (or not yet) integrated into this appealing picture: tbke of the anharmonicity [40], the
relations between primary and secondary relaxation pseses
by the coupling model [11] and the asymmetry of the second&axation [55], which can be
argued [56] to be a general property due to the Eshelby badssi?].
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Appendices

A The Prigogine-Defay ratio at a second order phase transi-
tion
The differential of the Gibbs free energ@yis given by
dG = —SdT — Vdp, (20)

wheres is the entropy/’ the temperaturé/ the volume angh the pressure of the system. From
this equation follows the Maxwell relation

0?°G 0S ov

=—|=) =) =-V 21
oTp (ap)T <8T)p “ (1)
whereq is the thermal expansion, because the order of the two d#fians of G is irrelevant.
Now consider a second order phase transition between pHaaed B, in which entropy and
volume are continuous. The two phases join at the transiéimperaturd.(p), which depends

on the pressure and thus yields a transition line gn’&-diagram. Along this line, one has two
continuity relations, the first from the entropy

8SA) <8SA) (853) (853)
— | dl’'+ | — | dp=|—) dT+ | —— | dp (22)
( oT » op T oT » dp T
and the second from the volume
oVy oVy oVz 0Vp
—= ) dT — ) dp=|—=) dT —= | dp. 23
<3T>p +(3p)Tp (5‘T)p +<8p)Tp =3)

The derivatives of with respect tgp can be replaced by the Maxwell relation (20)/V)0.S/0T

at constant pressure is the heat capagifyer volume unit—(1/V")0V/0dp at constant tempera-
ture is the isothermal compressibility-. With these definitions, and settidy,, Ao andAxp

for the differences of phasé and phase3 in heat capacity, thermal expansion and compress-
ibility, respectively, one obtains the two Ehrenfest relas

oT, TA«
‘= 24
dp Ac, (24)
and oT A
c R
ap = Ao (25)

Equating these two, one finds that the Prigogine-Defay ditex). (14) is indeed 1. However,
as pointed out above, this equality requires thermal dajuiin in both phasesgl and B. For
the glass transition, one can argue [9] that one reachesetisrement fofl;, = T}, which
in turn helps to understand why the Prigogine-Defay ratimd®ed close to 1 for very fragile
glass formers (see Table I).
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