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Fig. 1: Volume-temperature diagram of the crystalline, glassy andliquid phase at ambient
pressure.

1 Introduction

The glass transition (the freezing of an undercooled and highly viscous liquid into a glass) is
considered to be one of the great unsolved riddles of solid state physics. The main riddle is the
atomic mechanism of the flow process in the highly viscous liquid and its strong temperature
dependence shortly before freezing. The freezing itself isrecognized as a falling out of thermal
equilibrium, a kinetic process. But it is not clear to which extent this kinetic process reflects
a true thermodynamic second order transition at a lower temperature, the Kauzmann or Vogel-
Fulcher temperature. The present paper describes the situation of our present knowledge (or
lack of knowledge) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].
Liquids do not crystallize immediately after cooling belowtheir melting points, because the
crystallization requires the formation of crystal nuclei,a process which takes time. If this time
is long enough to measure the properties of the undercooled liquid at all temperatures, one calls
the liquid a glass former. Examples are vitreous silica (onemixes silica with metal oxydes to
make window glasses), boron trioxyde, glycerol and selenium. Many polymers are good glass
formers, like polystyrene, polycarbonate and polyisoprene (rubber), but others form a mixture
of crystalline and amorphous domains like polyethylene.
At the glass transition temperatureTg, the undercooled liquid freezes into a glass, a solid with
a nonzero shear rigidity. In many liquids, this glass temperature is about 2/3 of the melting
temperature. From numerical simulation results (to be discussed in more detail in Section 4 on
new developments), we now believe that every liquid can be cooled into a glass, provided the
cooling rate is high enough. However, in real liquid water itis impossible to carry the heat fast
enough away, so it can only be frozen into the glass state on the computer.
In undercooled liquids, the viscosity increases drastically with decreasing temperature. This
increase reflects the dramatic increase of the structural relaxation timeτα of the liquid (it is de-
noted byα to distinguish it from possible secondary relaxationsβ, γ etc. at lower temperatures
in the glass phase). The structuralα-relaxation is visible not only in mechanical, but also in
dielectric, light scattering or heat capacity spectra. Theglass transition occurs for a relaxation
time of about 100 seconds.
Fig. 1 shows the cooling process from the gas phase into the liquid phase and then into the glass
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phase in a volume-temperature diagram at ambient pressure.There is a large volume jump
between gas and liquid, much larger than the volume jump at the first order phase transition
between liquid and crystal atTm. If the crystallization is avoided by fast enough cooling, the
system enters the undercooled liquid and experiences the drastic slowing down of the relaxation
time τα with decreasing temperature indicated in the figure. The glass temperatureTg depends
on the cooling rateR according to

τα(Tg) ≈ Tg/R, (1)

becauseTg/R is roughly the time needed to cool the whole energy of the sample away. So the
faster the cooling, the higher isTg. For a glass temperature of 200 K, a cooling rate of 1 K/s
implies aτα of 200 s. As will be seen in the next section,τα is only a mean of a broad distribution
of relaxation times, which makes the glass transition even more diffuse in temperature.
The thermal expansion of the glass is similar to the one of thecrystal. It is due to the anhar-
monicity of the vibrations [1]. The thermal expansion of theliquid phase is a factor of two to
four higher than the one of the glass phase (there is one important exception, vitreous silica,
which will be discussed below).
From the theoretical understanding, there are two other important temperatures shown in Fig. 1.
The first is the Vogel-Fulcher temperatureT0 belowTg where the viscosity andτα extrapolate to
infinity. As will be seen, the Vogel-Fulcher temperature lies close to the Kauzmann temperature
TK , where the structural entropy of the liquid extrapolates tozero. This will be discussed in
more detail in the next two sections. The second theoreticaltemperature,Tc, lies betweenTg

andTm and is the critical temperature of the mode coupling theory [3]. The mode coupling
theory is the most advanced liquid theory up to day. According to this theory, the viscosity
should diverge at the critical temperatureTc. Therefore one has to invoke additional thermally
activated hopping processes to explain why the real viscosity is still small at this temperature. A
very recent theoretical treatment in terms of the replica technique [15] shows thatTc is the point
in temperature where it becomes possible to measure a limiting shear modulusGhigh for high
enough frequency (Ghigh is sometimes denoted byG∞, but this term should be reserved for
the shear modulus of an instantaneous affine shear deformation [8]). From an empirical energy
landscape point of view [5],Tc is the temperature below which one can distinguish between the
fast picosecond relaxation processes and the slow thermally activatedα-relaxation of the flow
process close to the Maxwell timeτM

τα ≈ τM =
η

Ghigh

, (2)

whereη is the viscosity. SinceGhigh is of the order ofGPa, a viscosity of1012 Pa s implies a
Maxwell time of 1000 s.
The scattering methods discussed in the present spring school are of central importance for the
study of the glass transition. Naturally, their time resolution is not good enough to study the
α-process itself close toTg, but they supply other essential information. This is illustrated in
Fig. 2, which shows the mean square displacement of crystalline, glassy and liquid selenium
as a function of temperature. There is a close parallel to Fig. 1, because the mean square
displacement of the undercooled liquid, together with the anharmonicity of the interatomic
potential, supplies the physical reason for the thermal expansion [1]. One realizes immediately
that the understanding of the undercooled liquid requires astudy of the atomic motion on the
fast picosecond scale.
In a crystal, the simplest approximation relates the mean square displacement to a mean atomic
frequency, the Debye frequencyωD. If the temperature is high enough, one can use the classical
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Fig. 2: Mean square atomic displacements in crystalline, glassy and liquid selenium [16].

approximation

< u2 >=
3kBT

Mω2

D

, (3)

whereM is the average atomic mass. In the simplest case of elastic isotropy, the Debye fre-
quency is determined by the densityρ and the longitudinal and transverse sound velocitiesvl

andvt, respectively

ω3

D =
18π2ρ

M(1/v3

l + 2/v3
t )

. (4)

In turn, the longitudinal and transverse sound velocities are related to the two elastic constants
of the isotropic medium, the bulk modulusBhigh and the shear modulusGhigh by

ρv2

l = Bhigh +
4

3
Ghigh ρv2

t = Ghigh, (5)

where the indexhigh indicates the elastic constant for high frequency and is notnecessary in a
solid. In a liquid, one has to make the distinction, because even the bulk modulus is markedly
higher at high frequency.
The question is whether the simple description in terms of elastic constants still makes sense
in a complicated glass former. This question can be answeredby inelastic neutron scattering
experiments, which are able to measure the vibrational density of states and its temperature
dependence. It is this temperature dependence which is responsible for the strong rise of< u2 >
in Fig. 2. It has been measured by Wuttke et al [17] in glycerol, a molecular glass former which
exhibits the same< u2 >-behavior as selenium and where the temperature dependenceof the
high-frequency elastic constants has also been measured [18]. The temperature dependence of
the neutron spectra is shown in Fig. 3. The spectra are evaluated in terms of the vibrational
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Fig. 3: Measured spectra [17] in glycerol above and below its glass temperatureTg = 190
K, plotted asg(ω)/ω2. The measured curves extrapolate to the arrows denoting the Debye
expectation at the different temperatures. At 243 K, one begins to see the tail of the flow or
α-process.

density of statesg(ω) divided by the frequency squared. In this plot, the Debye density of states

gDebye(ω) =
3ω2

ω3

D

(6)

is a constant which can be calculated from the sound velocities at the given temperature. What
one finds, is not a constant, but a broad peak sitting on top of the expected Debye density of
states, the so-called boson peak, found universally in all glasses.
The boson peak is another one of the unsolved riddles of disordered matter; it is not clear
whether it is due to resonant modes related to the low temperature tunneling states in glasses
[19] (and to the plastic modes responsible for the shear thinning [20]) or simply to the force
constant disorder in the glass [21]. This peak remains reasonably harmonic in the glass phase
(not entirely; one can see some anharmonicity even belowTg), but begins to grow and shift to
lower frequency in the undercooled liquid. At 243 K, one begins to see the high frequency tail
of the flow process, because it begins to enter the nanosecondrange accessible to neutrons, but
at lower temperatures the undercooled liquid looks like a hot anharmonic glass in the neutron
spectra.
Since the mean square displacement of the atoms is the area under the curve, it begins to grow
markedly stronger than proportional to the temperature aboveTg, as in Fig. 2. The anharmonic-
ity of the potential is the same in liquid and glass. Therefore the stronger increase of the mean
square displacement in the liquid with increasing temperature leads to a stronger thermal ex-
pansion [1]. Naturally, the fast vibrations supply only a part (if one analyses it quantitatively
[22], only a smaller part, of the order of one quarter) of the additional thermal expansion or
of the additional heat capacity in the undercooled liquid; the larger part comes from the slow
fluctuations of the flow process atτα.
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Fig. 4: Measured spectra [23] in vitreous silica above and below itsglass temperatureTg =
1473 K, plotted asg(ω)/ω2. The upper line denotes the Debye expectation at 51 K, the lower
line at 1673 K.

As already mentioned above, silica shows an exceptionally different behavior. Fig. 4 shows the
measured spectra [23] above and below the glass temperatureof 1473 K in silica. One does
indeed get the opposite behavior to the normal case in Fig. 3.Instead of growing and lowering
its peak frequency, the boson peak decreases and goes to higher frequency with increasing
temperature. In fact, one finds a negative thermal expansionbelow 150 K, where the boson
peak vibrations dominate. At higher temperatures, one getsa small positive thermal expansion,
because the vibrations at higher frequency have a positive Grüneisen parameter, the normal case
[1]. The thermal expansion remains very small up to temperatures aboveTg, making silica the
closest example for a completely harmonic glass former thathas been found so far. We will
come back to this point in Section 4.

2 Kinetics of the glass transition

There are two characteristic properties of the kinetics of the α-process (the flow process) in
undercooled liquids, the fragility and the stretching. Thefragility characterizes the temperature
dependence ofτα and the stretching characterizes the width of the relaxation time distribution.

2.1 Fragility

The usual measure of the fragility of a glass former is the logarithmic slope of the relaxation
time τα of the flow process

m = d log τα/d(Tg/T )|Tg
, (7)

in the so-called Angell plot [25] (see Fig. 5) oflog τα as a function ofT/Tg atT/Tg = 1.
It is useful to relateτα to an energy barrierVα via the Arrhenius relation

τα = τ0 exp(Vα/kBT ), (8)

where the microscopic attempt frequency is at 10−13 s, sixteen decades faster than the flow
process at the glass temperature. Thefragility indexI is defined [10] by the logarithmic deriva-
tive I = −d ln Vα/d ln T , taken atTg. Then

m = 16(I + 1), (9)
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Fig. 5: The Angell plot showslog τα as a function ofT/Tg, here for vitreous silica, glycerol and
two other glass formers (taken from the thesis of A. Reiser [24]).

where the factor reflects the sixteen decades between microscopic and macroscopic time scales.
I is a better measure of the fragility thanm, because it does not contain the trivial temperature
dependence of any thermally activated process. IfI = 0, one has the harmonic case of a
temperature-independent energy barrier. Glass formers like vitreous silica withm = 20 and
I = 0.25 are close to this harmonic case and are called strong glass formers, as opposed to to
the fragile ones. Glycerol is intermediate withm = 53 andI = 2.3; the most fragile ones are
some polymers withm = 150 andI = 9.4.
The most popular fitting form forτα is the empirical Vogel-Fulcher-Tammann-Hesse relation

log τα = log τ0 +
B

T − T0

, (10)

which is derived from the Arrhenius equation, eq. (8), by replacing the temperatureT in the
denominator of the exponent byT − T0. The Vogel-Fulcher temperatureT0 is close to zero in
a strong glass and close (but below)Tg in a fragile glass. The Vogel-Fulcher relation predicts
a divergence ofτα at the Vogel-Fulcher temperature. In many glass formers, itequals within
the error bars of the experimental determination [26] the thermodynamically defined Kauzmann
temperatureTK , suggesting a hidden relation between kinetics and thermodynamics. This will
be discussed in more detail in the next section.
Note that the Vogel-Fulcher relation, eq. (10), is known as Williams-Landel-Ferry or WLF-
relation in polymers.

2.2 Stretching and dynamical heterogeneity

The second important property of theα-process is its ”stretching”. The stretching, seen in the
time dependence of theα-relaxation, means that there is not only one exponential decay with
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Fig. 6: The two possible scenarios for the stretching (schematic): On the left dynamical homo-
geneity, on the right dynamical heterogeneity [28].

a single relaxation timeτα, but that one needs a whole distribution of exponential decays with
different relaxation times to describe the time dependenceof the decay. If one switches on a
constant shear strainǫ0 in the undercooled sample at the timet = 0, the shear stress decay is
often well described in terms of a stretched exponential, the so-called Kohlrausch function

G(t) = Ghigh exp(−(t/τα)β). (11)

The stretching exponent (the Kohlrauschβ) lies between 0.8 and 0.3 (the latter case correspond
to a pronounced stretching over three to four decades in time). There is a tendency [27] for a
larger stretching for more fragile glass formers, but it is not an exact relation.
If one plotslog(G(t)) as a function of time, one sees the stretching in the curvature. β = 1,
the Debye case of a single relaxation time, gives a straight line. The smallerβ, the larger the
curvature.
The central question with regard to the stretching is whether different regions in the sample
have different relaxation times (in this case one talks of dynamical heterogeneity) or whether
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Fig. 7: Real and imaginary partsG′(ω) andG′′(ω) of the complex shear modulus in glycerol
[29] at 192.5 K as a function of the frequencyω. The continuous line is a fit with a Kohlrausch
stretched exponential withβ = 0.43, the dashed line isG′′(ω) for a single exponential decay
without any stretching.

each region of the sample has the same stretched relaxation function (this would be dynamical
homogeneity). The two cases are depicted schematically in Fig. 6.

The question can be decided by experiment. The most important technique to do so is NMR,
but there are several other possibilities. A review of thesetechniques and their results has been
given by Ranko Richert [28]. It turns out that one has indeed dynamical heterogeneity, at least
in the sense that the relaxation functions of different regions in the sample have largely different
average relaxation times. Again, we return to the question in the section on new developements.

In most cases, the measurement of the stretching is done in the frequency domain. One can,
for example, apply a small-amplitude sinusoidal shear strain ǫs(t) = ǫ0 cos(ωt) to the sample.
Then one needs to exert a sinusoidal shear stress

σs(t) = G′(ω)ǫ0 cos(ωt) + G′′(ω)ǫ0 sin(ωt). (12)

G′(ω) andG′′(ω) are the real and imaginary parts of the complex frequency-dependent shear
modulus.G′′(ω), the out-of-phase part of the response, is a measure for the loss at the frequency
ω.

Fig. 7 shows the real and imaginary part of the complex shear modulus of glycerol [29] slightly
above the glass transition. The comparison with the dashed curve for a single exponential
clearly shows a sizable stretching. Glycerol is a Type-A glass former (one distinguishes Type-
A = no visible secondary relation peak and Type-B = clearly visible secondary relaxation peak),
but one can naturally imagine a small secondary relaxation peak hidden in the extended high-
frequency tail. We return to this question in section 4 on newdevelopments.
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Fig. 8: Kauzmann’s [30] original picture of the loss of the excess entropy∆S = Sliquid−Scrystal

on cooling down from the melting temperature in several glassformers.

3 Thermodynamics of the glass transition

3.1 The Kauzmann catastrophe

Once one is well below the glass transition, the thermodynamics of the glass is rather similar
to the one of the crystal. In the example of selenium, the heatcapacitycp of both crystal and
glass is close to the classical Dulong-Petit-value of 3kB per atom, due to the three vibrations
per atom.
In the undercooled liquid, one has not only the fast energy fluctuations of the vibrations on the
picosecond scale, but also the slow energy fluctuations of the structural rearrangements at the
relaxation timeτα. This leads to an additional heat capacity∆cp. This∆cp has values between
0.1 and 2kB per atom, depending on the specific glass former [6].
Since the heat capacity of the undercooled liquid is higher than the one of the crystal, the
undercooled liquid gradually looses the excess entropy∆S = Sliquid − Scrystal over the crystal
on cooling. At the melting temperatureTm, ∆S = Sm = ∆Hm/Tm, where∆Hm is the latent
heat of melting. The melting entropy (which is the physical reason for melting, because it
makes the free energy of the liquid more favorable at higher temperatures) is of the order of
0.5kB per atom, implying the possibility of about two structural choices per atom in the liquid
state. If∆cp is large, the undercooled liquid rapidly looses this excessentropy on cooling.
A linear extrapolation allows to determine the so-called Kauzmann temperatureTK , defined
by Kauzmann [30] back in 1948. At the Kauzmann temperature, the entropy of liquid and
crystal would be equal, implying essentially only one single possible structural realization of
the liquid. It is clear that, at this temperature, the viscosity must diverge, because the liquid
becomes unable to jump from one structural realization to another. Fig. 8 shows the Kauzmann
extrapolation for some glass formers from his original paper [30]. The figure shows that the
glass transition occurs before the undercooled liquid looses all its excess entropy. Thus the
”Kauzmann catastrophe” (a liquid with less than one structural configuration) is avoided.
But one can compare the Vogel-Fulcher temperatureT0 (the temperature where the viscosity
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would diverge) with the Kauzmann temperatureTK . A comparison to 54 glass formers [26]
showed good general agreement, but with four glass formers whereT0 was decidedly smaller
thanTK , out of the error bars. Nevertheless, most scientists in thefield feel convinced that there
is indeed a true physical connection between viscosity and excess entropy. This conviction is
further supported by the success of the Adam-Gibbs conjecture [31]

τα = τ0 exp

(

C

T∆S

)

, (13)

whereC is a constant. The Adam-Gibbs scheme linksτα and excess entropy via a model of
cooperatively rearranging regions, the size of which diverges at the Kauzmann temperature. For
a linear dependence of∆S on temperature, it leads again to the Vogel-Fulcher relation (10) with
T0 = TK .

3.2 The Prigogine-Defay ratio

The question of the nature of the slow structural rearrangements in the undercooled liquid is
intimately related to a thermodynamic puzzle, the Prigogine-Defay ratio of the glass transition
[32]

Π =
∆cp∆κ

(∆α)2Tg

=
∆H2 ∆V 2

(∆H∆V )2
, (14)

which relates the increases of the heat capacity per volume unit ∆cp, of the compressibility∆κ
and of the thermal volume expansion∆α at the glass temperatureTg to the structural rearrange-
ment enthalpy and volume fluctuations∆H and∆V , respectively. If the enthalpy and volume
fluctuations are completely correlated, the Prigogine-Defay ratio is one. It has been argued that
this is the physically simple case from which one should try to understand the glass transition
[33, 34]. We will come back to this proposal in section 4 on newdevelopments.
The Prigogine-Defay ratio is found to be exactly 1 at second order phase transitions (a derivation
on the basis of the two Ehrenfest relations for the pressure dependence of the transition temper-
ature is given in Appendix A). A second order phase transition is characterized by continuous
first derivations of the enthalpyH, so the volumeV and the entropyS are continuous (unlike
the first order melting transition, where entropy and volumeof liquid and crystal at the melting
point are different). At the glass transition, the entropy and the volume are indeed continuous;
nevertheless, it is not a second order phase transition, because one of the two phases - the glass
- is not in thermal equilibrium. Thus one cannot wonder that real glass formers show Prigogine-
Defay ratios much larger than 1 at their glass transition (see Table I). As a rule, stronger glasses
have a higher Prigogine-Defay ratio than fragile ones.

subst. SiO2 GeO2 B2O3 glycerol Se PS BPA-PC
Π >100 6.85 4.7 3.7 1.85 1.3 1.02
m 20 20 32 53 87 139 132

Table 1: Measured Prigogine-Defay ratios of seven glass formers at their glass transition [34,
35]. The fragilitym is taken from the collection of B̈ohmer, Ngai, Angell and Plazek [27].
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4 New developments

4.1 Numerical simulations

The most important new development in the field is the application of numerical methods to the
glass transition. One can nowadays study the time development of up to hundred thousand in-
teracting particles on the computer. The technique is called ”molecular dynamics” and involves
the calculation of the motion of the particles in short time steps, short enough to linearize the
particle motion. This implies times steps much shorter thanone period of the fast vibrations, in
real substances of the order of femtoseconds. With a femtosecond, one has to make a million
time steps to arrive at a nanosecond. This limits the method at present to relaxation times which
are shorter than a microsecond. As a consequence, one cannotstudy the glass formers in ther-
mal equilibrium at lower temperatures, whereτα exceeds a microsecond. One just gets slightly
below the critical temperatureTc of the mode coupling theory. Thus the first applications of the
method have been to test and to verify the mode coupling theory [36, 37]. Later, it has been used
to verify a deep and surprising connection [9] between the mode coupling theory and spin glass
theory [4], which will be discussed in the next paragraph on new theoretical developments.
In the calculations, one puts the particles in a cubic box with periodic boundary conditions.
A particle is free to leave the box (entering the box from the opposite side) and interacts with
the particles in the neighboring boxes. The time needed to calculate all particle interactions
increases drastically with the range of the potential. Therefore one prefers short-range anhar-
monic potentials like the Lennard-Jones potential

V (r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

, (15)

wherer is the interparticle distance,ǫ is the depth of the potential well andσ is close to the
resulting nearest-neighbor distance (the potential minimum is atσ/21/6).
If one just takes the simple Lennard-Jones potential, one finds crystallization to an fcc structure
even for the short simulation times. In order to avoid crystallization, it turns out to be necessary
to use binary mixtures of particles with differentσ. The most popular of these mixtures is the
binary Lennard-Jones mixture introduced by Kob and Andersen [36].
With numerical simulations, one can attack the unsolved problems of the glass transition, for
instance the question of the Prigogine-Defay ratio. This has been done for the simple Lennard-
Jones system [33], calculating not the Prigogine-Defay ratio, but rather the correlation between
the enthalpyH and the volumeV

Π−1/2 =
HV

√

H2 V 2

, (16)

a correlation which involves not only the slow structural degrees of freedom, but the fast vibra-
tions as well.
It is easier to do this in a constant volume calculation at constant temperature (the NVT ensem-
ble), looking at the correlation between pressure fluctuations and energy fluctuations. In this
calculation, one has to subtract the ideal gas term, becausethe pressurep is given by

pV = NkBT + W, (17)

where only the second term, the virialW , is due to the interatomic potential. As one can see in
Fig. 9, the virial is indeed highly correlated with the potential energy, with a correlation factor
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Fig. 9: Instantaneous normalized equilibrium fluctuations of virial W and potential energy U in
the standard single-component LennardJones (LJ) liquid atconstant volume (NVT simulation),
showing that W(t) and U(t) correlate strongly [33].

0.953 corresponding to a Prigogine-Defay ratio of 1.1. The same high correlation is found in
all simulations of Van der Waals and metallic liquids, but not in hydrogen-bonded liquids like
water and glycerol.

On the basis of these results, it has been argued that a Prigogine-Defay ratio of 1 is the phys-
ically simple case from which one should try to understand the glass transition [33, 34]. But
this is opposed to the arguments in the introduction of the present paper, which indicate that
the physically simple case is a harmonic glass former. In a harmonic glass former, the ther-
mal expansion should be zero. Therefore the linear correlation ∆H∆V should be zero; the
Prigogine-Defay ratio should be infinity (as one indeed findsin silica [38] withΠ > 100).

What brings the Prigogine-Defay ratio down, is the anharmonicity of the potential, which also
causes the thermal expansion. With anharmonicity, even a pure shear energy fluctuation is
accompanied by a volume fluctuation. If these additional volume fluctuations dominate, the
Prigogine-Defay ratio goes to one. In numerical work [36, 33], one usually prefers anharmonic
potentials, which vanish at a relative close distance from the atoms. Thus one tends to conclude
that the deviation of the Prigogine-Defay ratio from one is an indication for a complicated
atomic potential [33, 34]. But it is rather an indication for aharmonic atomic potential.

This point of view is supported by Fig. 10, taken from a very recent paper [40]. As a measure
for the anharmonicity at the glass temperatureTg, one can use the productαlTg, whereαl is the
volume expansion coefficient of the liquid. Fig. 10 shows thecorrelation coefficientΠ−1/2 as
a function of this product. Though again the experimental data [34, 35] scatter strongly, one
finds clear evidence for a linear increase at low anharmonicity. The simulation value for the
zero-pressure binary Kob-Andersen mixture [33] corresponds to rather high anharmonicity.

Fig. 10 demonstrates the limitations of numerical simulations: They do not get very low in
temperature and they tempt scientists to overestimate the importance of anharmonic potentials.
In spite of these limitations, numerical simulations were at the very bottom of the astonish-
ing progress in the understanding of the glass transition within the last decade, which will be
described in the next paragraph.
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Fig. 10: The correlation coefficientΠ−1/2 (Π Prigogine-Defay ratio) as a function of the an-
harmonicityαlTg (αl volume expansion coefficient of the liquid,Tg glass temperature) for 55
glass formers [34, 35, 39] and the binary Kob-Andersen mixture [33]. The line is a numerical
calculation for the Lennard-Jones potential in ref. [40], from which the figure was taken.

4.2 Theoretical developments

The most important theoretical development of the last decade was the discovery of a deep
analogy between mode coupling theory [3] and spin glass theory [4]. There is an excellent
recent review of the topic [9], which demonstrates the intimate connection between theory and
numerical simulation in this development.
The merit of the mode coupling theory [3] is not so much its prediction of a divergence of
the viscosity atTc - the viscosity does not really diverge there, because thermally activated
processes take over - but its prediction of a slowing down of the flow relaxation timeτα from
the vibrational picosecond time scale as one lowers the temperature towardsTc. According to
the mode coupling theory, this separation of time scales occurswithoutany activated process.
As one approachesTc, the structural correlation functions decay in two steps, the first in the
picosecond regime and the second atτα.
However, since the mathematical apparatus of the mode coupling theory is rather complicated,
it is not easy to assess a clear physical significance to the separation of time scales. It was said
thatτα corresponded to the ”breaking of the cage of neighboring particles”, but this is not much
more than a figure of speech.
A much deeper explanation became possible when it was realized that the dynamic mode cou-
pling equations are the same as those for the mean field p-spinmodel [41], a spin-glass model
with the Hamiltonian

H = −ΣN
i,j,k=1

Jijkσiσjσk (18)

for p = 3, whereJijk are frozen random variables andσi, σj andσk are spin variables. Since
each spin interacts which each pair of other spins irrespective of their distance, the model con-
tains no space information.
The advantage of the p-spin model is that it allows to calculate all important properties. Thus
one can analyze what happens as one approachesTc. One finds [42] that the separation of times
scales is due to the properties of the saddle points of the system, which have the tendency to
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Fig. 11: Simulation results for a diverging length scale in the binary Kob-Andersen Lennard-
Jones mixture from the 4-point correlation function [45] and from the amplitude correlation in
shear-induced inherent structure changes [46].

become isolated true free energy minima towardTc. This makes the way between two given
equilibrium configuration of the system longer and longer asone approachesTc. Thus the
separation of time scales predicted by the mode coupling theory can be identified quantitatively
as a phase space property [9].
Scarcely less important, the replica technique (sometimesalso called ”cloning theory”) devel-
oped in the context of spin glass theory [4] allows to do calculations for the undercooled liquid
belowTc. Thus one calculate the heat capacity [43] for a given interatomic potential between
Tc and the Kauzmann temperatureTk. Similarly, one finds the temperature dependence of the
plateau shear modulusGhigh between these two temperatures [15], concluding that it decreases
to zero as one reachesTc.
Again in the same context, the spin glass ideas have been extended to structural glasses in
an intense search for a dynamic length scale [44, 45, 46] which is supposed to diverge at the
Kauzmann temperatureTk. There is increasing numerical evidence [45, 46] (see Fig. 11) for
such a diverging length scale in the binary Kob-Andersen Lennard-Jones mixture, supporting
the Adam-Gibbs concept [31] of cooperatively rearranging regions. The motivation of the work
is to clarify the deep connection between thermodynamics and dynamics reflected in the validity
of the Adam-Gibbs equation (13).
A theoretical scheme which indeed leads to a validity of the Adam-Gibbs equation is the mo-
saic theory or random-first-order theory [47] (RFOT), motivated by the parallel between mode
coupling theory and spin glass models. According to RFOT, thediameter of a cooperatively
rearranging region results from the thermodynamic equilibrium between the entropy inside the
region and the surface tension at the interface to neighboring regions. One has to postulate a
surface tension coefficient which depends on the diameter toget the Adam-Gibbs equation, but
one can find a theoretical justification for this [47].
The theoretical evolution described so far seems fairly coherent and convincing, but there are
other and independent theoretical attempts to understand the glass transition. Some of them are
described at the end of Cavagna’s excellent review [9]. Others are motivated by new experi-
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Fig. 12: Dielectric spectra of 10 mol%-quinaldine in tristyrene at different pressures and
adapted temperatures [48]. The inset shows the curve in the temperature-pressure diagram
which must be followed to keep the primary peak frequency at thesame place.

mental findings and will be described in the next paragraph.

4.3 New experimental findings

Though a bit overshadowed by the success of the numerical simulations described above, the
progress in experimental techniques for the study of the glass transition is by no means con-
temptible. The main progress has been made by the development of broadband dielectric spec-
troscopy [49, 50]. It is nowadays possible to measure the dielectric spectrum from 10−6 to 1012

Hz (though the GHz region is still not easy to measure). Even more important, one can measure
the dielectric spectrum under high pressure. If one does this for glycerol, which has no clearly
visible secondary relaxation at ambient pressure, one doesindeed see the development of a clear
secondary peak [51].
Fig. 12 shows a measurement of a binary mixture, 10-mol% of quinaldine in tristyrene [48].
One sees the large and broadα- peak at low frequency and a smaller secondary peak at higher
frequency. This is a clever pressure experiment, varying temperature and pressure simultane-
ously in such a way that the primary peak stays at the same frequency. One finds the striking
result that the secondary peak also stays at the same place, indicating a connection betweenα
andβ-process.
However, the picture can also be quite different [52]. In some systems, where the molecules
are not rigid and the secondary relaxation is due to to a molecular configuration change, the
primary peak is much more sensitive to pressure than the secondary peak. So it is necessary to
distinguish these two cases. If one has a molecular configuration change, the two inherent states
which contribute to the secondary relaxation will be separated by a practically temperature- and
pressure-independent barrier. In the other case, one has a barrier between two different mole-
cular arrangements, which will vary with temperature and pressure according to the variation
of the elastic constants, in particular the high frequency shear modulusGhigh (in fact, the elas-
tic models [10] explain the fragility by a proportionality of the strongly temperature-dependent
Ghigh to the flow barrier).
Taking the pressure dependence as an indicator whether one deals with an intramolecular or
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Fig. 13: Beta loss peak maximum in tripropylene glycol, monitored after a temperature increase
of 0.672 K starting from equilibrium at 184.0 K. After 6 s temperature is stable within 1 mK
of the final temperature. At this time, the energy landscape has not yet changed, but the peak
maximum nevertheless shows already a clearly measurable increase compared to the value
before heating, denoted by the arrow [55].

intermolecular relaxation, one finds [48, 52, 53] that the relaxation timeτβ of the latter ones
always follows the coupling model relation [53]

τβ = τ 1−n
α tnc , (19)

where1−n is the Kohlrausch exponent of the primary process andtc is a short time of the order
of 2 ps. According to the coupling model, theα-process reflects the result of the interaction of
the ”primitive” relaxations in theβ-process. This is a picture of the glass transition which is
completely different from the mode-coupling and spin-glass concept described in the preceding
two paragraphs, but there are many dielectric experiments supporting it [11].
In fact, a connection betweenα- andβ-process has been demonstrated directly in another key
experiment [54], done by NMR on sorbitol. This experiment isone of the many measurements
demonstrating dynamical heterogeneity [28], i.e. different relaxation times at different places
in the sample. The NMR technique can be used to separate subensembles of the sample which
belong to a specific relaxation time. The experiment showed that a subensemble which has a
slow α-relaxation time also tends to have a slowβ-relaxation time. As the authors [54] point
out, there is at present only a single theoretical explanation for such a behavior, namely Kia
Ngai’s coupling model [53].
The last experiment reported here is a unique aging experiment [55] close to the glass tempera-
ture, where the relaxation timeτα is of the order of a day. It is done within a sample holder for
dielectric measurements which is able to change the temperature to a new equilibrium within
a few seconds. This allows to see what happens with the fast secondary relaxation during the
aging process.
Fig. 13 shows the development of the amplitude of the secondary process in tripropylene glycol
at 184 K, where the primary process has a relaxation time of a day. After a quick heating
to the temperature 184.672 K, one follows the gradual approach to equilibrium at long times.
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But the surprising thing is: One already sees a small, but decidedly measurable increase of the
amplitude at short times, after the equilibration time of the temperature. This means an increase
within an unchanged energy landscape, and this in turn has only one possible explanation: The
inherent states, between which the system jumps back and forth in the secondary relaxation,
must be strongly asymmetric. One can calculate the average asymmetry from the increase. For
the one in Fig. 12, one finds an average asymmetry of 3.8kBTg, a factor four or more larger
than one would expect.

This is not a specific property of tripropylene glycol, because the authors measured it in several
systems, including a toluene-pyridine mixture of rigid molecules. It seems to be a general
phenomenon, irrespective of whether the secondary peak is amolecular rearrangement of rigid
molecules or an intra-molecular configuration change.

An explanation of this asymmetry was proposed by the author [56] in terms of the Eshelby
backstress [2]. If the system searches for possible neighboring inherent states, it will most
probably find a mayority of elastically distorted states, which do not fit well into the present
strain of the surrounding matrix. The concept allows to predict an asymmetry of 4kBT without
any adaptable parameter, close to the observed value in tripropylene glycol.

If this hypothesis is generally true, theα-relaxation should show the same asymmetry. Some
of the implications of such a general asymmetry have been worked out in a series of papers
[40, 56, 57].

5 Summary

The glass transition is at present a very active field of research. The main reason for this is
the very fruitful cooperation of theory and numerical simulation described in Section 4 of this
paper [9]. It encourages the hope for a closed quantitative and convincing description of the
glass transition within the next decade. In this description, there is a separation of time scales
on cooling the undercooled liquid, which occurs when the valleys in the free energy landscape
are no longer connected. The onset of this separation of timescales is well described by the
mode coupling theory [3]. As one approaches the critical temperature of the mode coupling the-
ory from above, thermally activated hopping between the minima of the free energy landscape
(at this temperature already practically the potential energy landscape [5, 7]) sets in. In this
temperature regime, the glass formers approach a true thermodynamic second order transition
at the Kauzmann temperature. The more fragile the glass former is, the closer it gets to the
Kauzmann temperature. In this regime, one can calculate physical properties quantitatively if
one knows the interatomic potentials, using the replica or cloning theory [15, 43].

On the other hand, there are important experimental facts which remain unexplained and are
not (or not yet) integrated into this appealing picture: therole of the anharmonicity [40], the
relations between primary and secondary relaxation processes which seem to be well described
by the coupling model [11] and the asymmetry of the secondaryrelaxation [55], which can be
argued [56] to be a general property due to the Eshelby backstress [2].
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Appendices

A The Prigogine-Defay ratio at a second order phase transi-
tion

The differential of the Gibbs free energyG is given by

dG = −SdT − V dp, (20)

whereS is the entropy,T the temperature,V the volume andp the pressure of the system. From
this equation follows the Maxwell relation

∂2G

∂T∂p
= −

(

∂S

∂p

)

T

=

(

∂V

∂T

)

p

= −V α, (21)

whereα is the thermal expansion, because the order of the two diffentiations ofG is irrelevant.
Now consider a second order phase transition between phasesA andB, in which entropy and
volume are continuous. The two phases join at the transitiontemperatureTc(p), which depends
on the pressure and thus yields a transition line in ap, T -diagram. Along this line, one has two
continuity relations, the first from the entropy

(

∂SA

∂T

)

p

dT +

(

∂SA

∂p

)

T

dp =

(

∂SB

∂T

)

p

dT +

(

∂SB

∂p

)

T

dp (22)

and the second from the volume
(

∂VA

∂T

)

p

dT +

(

∂VA

∂p

)

T

dp =

(

∂VB

∂T

)

p

dT +

(

∂VB

∂p

)

T

dp. (23)

The derivatives ofS with respect top can be replaced by the Maxwell relation (21).(1/V )∂S/∂T
at constant pressure is the heat capacitycp per volume unit,−(1/V )∂V/∂p at constant tempera-
ture is the isothermal compressibilityκT . With these definitions, and setting∆cp, ∆α and∆κT

for the differences of phaseA and phaseB in heat capacity, thermal expansion and compress-
ibility, respectively, one obtains the two Ehrenfest relations

∂Tc

∂p
=

T∆α

∆cp

(24)

and
∂Tc

∂p
=

∆κT

∆α
. (25)

Equating these two, one finds that the Prigogine-Defay ratioof eq. (14) is indeed 1. However,
as pointed out above, this equality requires thermal equilibrium in both phasesA andB. For
the glass transition, one can argue [9] that one reaches thisrequirement forTg = TK , which
in turn helps to understand why the Prigogine-Defay ratio isindeed close to 1 for very fragile
glass formers (see Table I).
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