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Abstract

The expert tool environment provides a complete tracing-based solution for au-
tomatic performance analysis of mpi, Openmp, or hybrid applications running on smp

cluster machines.
expert describes performance problems using a high level of abstraction in terms

of common situations that result from an inefficient use of the underlying programming
model(s). The set of supported problems is extensible and can be custom tailored to
application-specific needs.

The analysis is carried out along three interconnected dimensions: class of per-
formance behavior, call tree position, and thread of execution. Each dimension is
arranged in a hierarchy, so that the user can view the behavior on varying levels of
detail. All three dimensions are interactively accessible using a scalable but still ac-
curate tree display. Colors provide assistance in finding interesting nodes even in case
of large trees.

1 Introduction

smp cluster technology offers the opportunity to produce scalable high performance archi-
tectures at a cost that will make such environments attainable for a broader community
of users also including small and medium sized enterprises. However, the reduced cost
of these systems comes at the price of a complex hierarchical architecture, which often
demands the concurrent usage of more than one parallel programming model in the same
application.

As a consequence, performance optimization becomes more difficult and creates a
need for advanced performance tools that are custom tailored for this class of computing
environments. In particular automatic tools are neccessary in the face of the large amount
of performance data often produced on such machines. Current state-of-the-art tools such
as vgv [6] visualize the collected performance data in a scalable way but still require the
user to find out where the performance problems are located and what their reasons are.

In contrast, the expert tool environment1 is able to automatically locate and explain
performance problems. expert is based on event tracing and allows the analysis of mpi

1The work on expert is carried out as a part of the kojak project [5, 9] and is embedded in the esprit

working group apart [18].
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2 OVERALL ARCHITECTURE 2

[14], Openmp [17], or hybrid applications running on smp clusters as well as on more
traditional non-smp and non-cluster systems.

expert investigates the performance behavior along three dimensions: class of perfor-
mance behavior, position within the dynamic call tree, and location (e.g., node or process).
The comprehensive behavioral classification used by expert provides the ability to ex-
plain problems intelligibly in terms of common situations that result from a non-optimal
usage of the programming model they are related to. In addition, it is possible to integrate
application specific classifications by using appropriate extension mechanisms.

Each of the analyzed dimensions is organized in a hierarchy. The user can access these
hierarchies interactively using weighted trees, which provide a intuitive graphical presen-
tation of performance behavior on different levels of detail along each dimension. The
weighted trees indicate the severity of a performance problem using colors, which allows
maxima to be easily identified even in a large set of values. The trees are interconnected,
so that the user can view one dimension with respect to a selection in another dimension.

The remainder of this article is organized as follows: First, we describe the overall
architecture of our tool environment in the next section. Then, in Section 3 we deal with
event trace generation. In Section 4 we present the abstraction mechanism that is used
to specify complex situations representing inefficient performance behavior. After that,
we introduce the actual analysis component and how it can be extended to deal with
application specific requirements in Section 5. Section 6 proves our concept by applying
it to two real-world examples. Finally, we consider related work and conclude the paper.

2 Overall Architecture

The whole tool environment is made up of three components.

• The expert performance tool (Extensible PERformance Tool)

• The earl trace analysis language (Event Analysis and Recognition Language)

• The epilog tracing library (Event Processing, Investigating and LOGging)

The epilog library is used to generate event traces from parallel applications in the
epilog binary trace data format. The resulting trace files serve as input for the expert

performance tool, which carries out the actual performance analysis and presents its results
to the user. To make the analysis process simple and easy to extend, expert uses earl to
map the event trace onto a higher level of abstraction. Using these abstractions, expert is
able to easily identify complex compound events in the event trace that represent common
situations of inefficient behavior.

Early prototypes of earl [20] and expert [21] provided only limited assistance in
the analysis of mpi applications. This article describes a substantial redesign and many
enhancements including support for mpi collective communication and Openmp as well as
a graphical presentation of performance behavior.

3 Performance Data

Our analysis process relies on event traces as performance data source, because event
traces preserve the temporal and spatial relationships among individual events, which



4 ABSTRACTION MECHANISMS 3

are necessary to prove many interesting performance properties for the application being
investigated.

The event traces used in our approach are compliant with the newly designed portable
epilog binary trace data format. In contrast to traditional trace data formats, the epi-

log format is suitable to represent the executions of mpi, Openmp, or hybrid parallel
applications being distributed across one or more (possibly large) clusters of smp nodes.
It maps events onto their location within the hierarchical hardware as well as to their pro-
cess and thread of execution. It supports storage of all necessary source code and call site
information, hardware performance counter values, and marking of collectively executed
operations for both mpi and Openmp.

The user can generate event traces for C, C++, and Fortran applications just by linking
to the epilog trace library. To intercept function calls and returns, the library uses the
internal profiling interface of the pgi compiler suite [8] being installed on our Linux smp

cluster testbed zampano [11]. A portable source code instrumenter for Fortran, C, and
C++ based on the pdt toolkit [13] will be available soon, too. The implementation of
epilog is thread safe, a necessary feature not present in most traditional tools.

mpi-specific events are generated by a appropriate wrapper function library utilizing
the mpi standard profiling interface. In addition, opari [16], a portable tool for automatic
instrumentation of Openmp constructs on the source code level, allows Openmp-specific
events to be traced and linked back to the source code.

4 Abstraction Mechanisms

earl maps an epilog trace file to the earl event trace model. The earl event trace
model provides abstractions that allow compound events representing inefficient behavior
to be easily described.

The model considers an event trace as a chronologically sorted sequence of primitive
events. Depending on the event type, each event is characterized by a set of attributes. The
event types are organized in a hierarchy. There are programming-model–independent event
types representing simple region enters and exits. Types indicating point-to-point and
collective communication are used to map the mpi model. Openmp event types comprise
fork and join operations, lock synchronization operations, and - similar to mpi - an event
type indicating the collective execution of parallel constructs.

Common to all event types are attributes indicating the position within the event
trace, the event location, and the time stamp. The position is used as a unique identifier,
by which events can be referenced. The location of an event is a tuple containing the
machine, the node within the machine, the process, and the thread. The event type itself
can also be accessed as value of an attribute.

Additionally, earl provides two types of abstractions on top of the basic part of the
model:

• System states

• Pointer attributes

System states map individual events onto a set of events that represent one aspect
of the parallel system’s execution state at the moment when the event happens. System
states include the region stack containing all events of entering the region instances, in
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which the program is currently executing, or the message queue containing all events of
sending a message that is currently in transfer. Other system states provide all events of
a mpi collective or Openmp parallel operation just being completed.

Pointer attributes connect related events, so that you can define compound events along
a path of related events. earl provides attributes pointing from an arbitrary event to the
region-enter event of the current region, from a message-receipt event to the corresponding
send event, from a join event to its corresponding fork event, and from a lock event to the
preceding lock event that modifies the same lock.

An essential part of the model is the dynamic call tree, which is computed from all
region-enter events. Each enter event has exactly one associated node in the tree, and thus
the call tree partitions these events into equivalence classes of events that are associated
with the same node in the call tree. Without loss of generality, the least recent event
in each class is chosen to be its representative. As an additional pointer attribute, earl

provides a link from each enter event to its representative. Thus, we have a simple means
to associate a performance relevant compound event with the corresponding execution
phase of the parallel program.

earl is implemented as a C++ class, whose interface is embedded in the Python
scripting language. The class provides efficient random access to the events of the trace
and allows the utilization of the abstractions mentioned in this section. [22] contains a
more detailed description of the underlying model.

5 Analysis Process

The design of the analysis process is based on the specifications and terminology as pre-
sented in [4]. The analysis process attempts to prove performance properties for one
execution of a parallel application and to classify them according to their influence on the
performance. A performance property characterizes a class of performance behavior. One
can prove it by evaluating an associated condition based on the events in the trace file.
A severity measure indicates the influence of a performance property on the performance
behavior and allows the comparison of different performance properties for one run of an
application.

The analysis process is carried out by the expert component. It is implemented in
Python using Tk for the graphical user interface and earl for trace access. Its architec-
ture is based on the idea of separating the analysis process from the specification of the
performance properties; that is, the performance properties are not hard-coded into the
expert tool but specified separately.

5.1 Specification of Performance Properties

The performance properties are specified in form of patterns. Patterns are Python classes,
which are responsible for detecting compound events indicating inefficient behavior. They
provide a common interface making them exchangeable from the perspective of the tool.
The specifications use the abstractions provided by earl and, for this reason, are very
simple.

The analysis process follows an event driven approach. expert walks sequentially
through the event trace and invokes for each single event call-back methods to the pat-
tern instances and supplies the event as an argument. A pattern can provide a different
call-back method for each event type. The call-back method itself then tries to locate
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a compound event representing an inefficiency, thereby following links (i.e., pointer at-
tributes) emanating from the supplied event or investigating system states. This mecha-
nism allows the simple specification of very complex performance relevant situations and
an explanation of inefficiency that is very close to the terminology of the programming
model.

The common interface also provides a method to launch a configuration dialog for the
input of pattern-specific parameters before the analysis process as well as a method to
launch a presentation dialog for the display of pattern-specific results afterward, which
allows the treatment of pattern-specific performance criteria.

expert organizes the performance properties in a hierarchy. The upper levels of the
hierarchy (i.e., those that are closer to the root) correspond to more general behavioral
aspects such as time spent in mpi functions. The deeper levels correspond to more specific
situations such as time lost due to blocking communication.

Total

Execution

Idle threads

MPI

OpenMP

Communication

Synchronization

Collective

Point to Point

Late Sender

Late Receiver

Lock

Late Broadcast

Early Reduce

Wait at N x N

Synchronization

Barrier

Messages in Wrong Order

Messages in Wrong Order

IO

Figure 1: Hierarchy of performance properties.

Figure 1 shows the complete hierarchy of performance properties being currently sup-
ported by expert. We shall briefly discuss some of the most interesting ones in Section
5.1.1 and 5.1.2.

5.1.1 Examples of MPI Performance Properties

Late Sender This property refers to the time wasted, when a call to a blocking receive
operation (e.g, MPI RECV or MPI Wait) is posted before the corresponding send op-
eration is executed.

Late Receiver This property refers to the inverse case. A send operation blocks until
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the corresponding receive operation is called. This can happen for several reasons.
Either the mpi implementation is working in synchronous mode by default or the
size of the message to be sent exceeds the available MPI-internal buffer space and
the operation blocks until the data is transferred to the receiver.

Messages in Wrong Order This property, which has been motivated by [7], deals with
the problem of passing messages out of order. The sender is sending messages in
a certain order, but the receiver is expecting the arrival in another order. The
implementation locates such situations by querying the message queue each time a
message is received and by looking for older messages with the same target as the
current message. This situation can be a specialization of either Late Sender or Late
Receiver.

Wait at N x N Collective communication operations that send data from all processes
to all processes exhibit an inherent synchronization, that is, no process can finish
the operation until the last process has started. The time until all processes have
entered the operation is measured and used to compute the severity. Note that this
property requires to identify all parts of a collective-operation instance in the event
stream.

5.1.2 Examples of OpenMP Performance Properties

Barrier Synchronization The time spent on implicit (compiler-generated) or explicit
(user-specified) Openmp barrier synchronization.

Lock Synchronization The time a thread waits for a lock that is owned by another
thread.

Idle Threads Idle times on processors caused by sequential execution before or after an
Openmp parallel region.

5.2 Representation of Performance Behavior

Each applied pattern instance computes a two-dimensional severity matrix, which contains
the severity as a function of the node in the dynamic call tree and the location. Thus,
we can represent the complete performance behavior using a three-dimensional matrix,
where each cell contains the severity for a specific performance property, call tree node,
and location.

The first dimension describes the kind of inefficient behavior. The second dimension
describes both its source code location and the execution phase during which it occurs.
Finally, the third dimension gives information on the distribution of performance losses
across different processes or threads, which allows to draw additional conclusions (e.g.,
load imbalance, see also [21]).

In addition, each of the dimensions is arranged in a hierarchy: the performance prop-
erties in a hierarchy of general and more specific ones, the call tree nodes in their evident
hierarchy, and the locations in a hierarchy consisting of the levels machine, node, process,
and thread. Thus, it is possible to analyze the behavior on different levels of granularity.
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5.3 Presentation of Performance Behavior

The user can interactively access each of the hierarchies constituting a dimension of per-
formance behavior using weighted trees, a display technique developed for expert. A
weighted tree is a tree browser that labels each node with a weight. expert uses as
weight a percentage of the application’s total cpu allocation time (e.g., the percentage of
time spent in a subtree of the call tree). The weight that is actually displayed depends
on the state of the node, that is, whether it is expanded or collapsed. The weight of a
collapsed node represents the whole subtree associated with that node, whereas the weight
of an expanded node represents only the fraction that is not covered by its descendants be-
cause the weights of its descendants are now displayed separately. This allows the analysis
of performance behavior on different levels of granularity.

For example, the call tree may have a node main with two children foo and bar (Fig
2). In the collapsed state, this node is labeled with the weight representing the time spent
in the whole program. In the expanded state it displays only the fraction that is spent
neither in foo nor in bar.

 10  main

  30  foo

  60  bar

100  main

Figure 2: Weighted tree in collapsed and expanded state.

The weight is displayed simultaneously using both a numerical value as well as a colored
icon. The color is taken from a spectrum representing the whole range of possible weights
(i.e., 0 - 100 percent). Colors enable the easy identification of nodes of interest even in
a large tree, whereas the numerical values enable the precise comparison of individual
weights.

The weighted trees of the different analysis dimensions are interconnected, so that the
user can display the call tree with respect to a particular performance property, and the
distribution across the locations with respect to a particular node in call tree (Fig. 3).

Weighted trees provide a uniform and very intuitive display for each of the analyzed
dimensions. Once the user is familiar with this kind of display, she can investigate the
performance behavior in a scalable but still accurate way along all its interconnected
dimensions.

5.4 Extension Mechanisms

expert provides a large set of built-in performance properties, which cover the most
frequent inefficiency situations. But sometimes the user may wish to consider application-
specific metrics such as iterations or updates per second. In this case, he can simply write
another pattern class that implements his own application-specific performance property
according to the common interface of all pattern classes, and place it into a plug-in module.

At startup time, expert dynamically queries the module’s name space and looks for
newly inserted patterns from which it is now able to build instances. The new patterns
are integrated into the graphical user interface and can be used like the predefined ones.



6 EXAMPLE 8

6 Example

We tested our environment for two real-world applications on our smp cluster testbed [11]
having eight nodes with four cpus each. The first one, trace, is a pure mpi application.
The second one, remo is a hybrid mpi/Openmp application. cpu allocation was done in
a way, such that no cpu was assigned to more than one computational thread or single-
threaded process.

6.1 TRACE

trace [10] simulates the subsurface water flow in variable saturated porous media. The
parallelization is based on a parallelized cg algorithm. We ran the application using eight
nodes with two process per node (8 processes x 2 processes).

Using the performance property view (Fig. 3, left), it was easy to see that most of the
time used for communication routines was spent on waiting due to the situations Wait at
N x N and Late Sender, which are described in Section 5.1.1.

Using the call tree view (Fig. 3, middle), we quickly located two paths that are major
sources of the previously identified performance problems:

(a) Wait at N x N:
trace → cgiteration → parallelcg → paralleldotproduct

→ globalsum r1 → MPI Allreduce

(b) Late Sender:
trace → cgiteration → parallelcg → parallelfemultiply

→ exchangedata → exchangebufferswf → mrecv → MPI Recv

The numerical results of our analysis are listed in Table 1. The values represent
percentages of total cpu allocation time. The first column refers to the whole program,
whereas the second and third column refers only to the call paths listed above. The first
row corresponds to the time spent in mpi communication statements. For the two call
paths this is just the time needed for the completion of the specific mpi calls at their end.
The second and third row correspond to the waiting times caused by Wait at N x N and
Late Sender situations.

Table 1: Performance problems found in trace in percent of total cpu allocation time.

Performance Property Whole program (a) (b)

Communication 16.7 4.5 8.5

Wait at N x N 3.8 3.6

Late Sender 8.1 7.0

In addition, one can see (Fig. 3, right) that the idle times for Late Sender in call path
(b) expose an uneven but still symmetric distribution across the different processes. Obvi-
ously, there is a correlation to the pattern of communication among different subdomains,
which the user should examine in a next step.
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6.2 REMO

remo [2] is a weather forecast application of the dkrz (Deutsches Klima Rechenzentrum).
It implements a hydrostatic limited area model, which itself is based on the Deutsch-
land/Europa weather forecast model of the German Weather Service (Deutscher Wetter-
dienst (dwd)). For this paper we analyzed an early experimental mpi/Openmp version of
the production code. The application was executed on four nodes with one processes per
node and four threads per process (4 processes x 4 threads).

Figure 4 shows that one half of the total cpu allocation time is idle time, which
has been occurred as a result of Openmp sequential execution outside of parallel regions.
Although during this time period the idle threads actually do not execute any code, the
time is mapped onto the call tree according to the corresponding master thread. That is,
expert assumes that outside parallel regions the slave threads “execute” the same code
as their master thread. This method of call tree mapping helps to identify parts of the
call tree that might be optimized in order to reduce the amount sequential execution. In
case of remo, we identified the following paths as major sources of idle times:

(a) remo → remorg → ec4org → progec4 → phyec

(b) remo → remorg → ec4org → progec4 → progexp

The numerical results are listed in Table 2. The values represent percentages of total
cpu allocation time lost as a result of performance property Idle Threads. The first column
refers to the whole program, whereas the second and third column refers only to the call
paths listed above.

Table 2: Performance problems found in remo in percent of total cpu allocation time.

Performance Property Whole program (a) (b)

Idle Threads 50.0 13.4 10.3

7 Related Work

Miller and associates [15] developed automatic on-line performance analysis according to
the W

3 Search Model in the well-known Paradyn project. In contrast to our approach,
the W

3 model describes performance behavior along the dimensions performance problem,
program resource, and time. Performance problems are expressed in terms of a threshold
and one or more metrics such as cpu time, blocking time, message rates, I/O rates, or
number of active processors. Program resources include both hardware resources such as
processor nodes or disks and software resources such as procedures, message channels, or
barrier instances. The time dimension tries to divide the program execution into phases
with certain performance characteristics.

Espinosa [3] implemented an automatic trace analysis tool kappa-pi for evaluating
the performance behavior of mpi and pvm message passing programs. Here, behavior
classification is carried out in two steps. At first, a list of idle times is generated from
the raw trace file using a simple metric. Then, based on this list, a recursive inference
process continuously deduces new facts on an increasing level of abstraction. Finally,
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recommendations on possible sources of inefficiencies are built from the facts being proved
on the one hand and from the results of source code analysis on the other hand.

Vetter [19] performs automatic performance analysis of mpi point-to-point commu-
nication based on machine learning techniques. He traces individual message passing
operations and then, classifies each individual communication event using a decision tree.
The decision tree has been previously trained by microbenchmarks that demonstrate both
efficient as well as inefficient performance behavior. The ability to adapt to a special target
system’s configuration helps to increases the technique’s predictive accuracy.

Hoeflinger and associates [6] integrated the vampir [1] event trace browser with the
GuideView [12] Openmp analyzer to a new tool vgv for mpi/Openmp applications. vgv

provides a scalable time-line view of an event traces, which highlights sections of multi-
threaded program execution. The user can select individual sections and analyze them
using a graphical profile display. However, as far as we know vgv does not support
automatic behavioral classification.

8 Conclusion

The expert tool environment provides a complete but still extensible solution for auto-
matic performance analysis of mpi, Openmp, or hybrid application running on smp cluster
machines.

expert represents performance properties on a very high level of abstraction that
goes beyond simple metrics and provides the ability to explain performance problems
in terms of the underlying programming model(s). The performance property specifica-
tions are embedded in a flexible architecture and can be extended and custom tailored to
application-specific needs.

The performance behavior is presented along three interconnected dimensions: class
of performance behavior, position within the running program and thread of execution.
The last dimensions allows even the effects of different communication patterns among
subdomains to be investigated.

Each dimension is arranged in a hierarchy, so that the user can view the behavior
on varying levels of detail. In particular the hierarchical structure of hybrid applications
and smp cluster hardware is reflected this way. The user can access all three dimensions
interactively using a scalable but still accurate tree display. Colors make it easy to identify
interesting nodes even in case of large trees.

expert is well suited to analyze a single trace file. But the development process of
parallel applications often demands for comparison of trace files representing different ex-
ecution configurations or development versions. For the future, we intend to integrate
mechanisms for comparative performance analysis. In addition, we plan to improve our
result presentation by integrating it with an event trace browser such as vampir [1] to visu-
alize instances of an performance problem as time lines and adding source code displays.
Finally, we will work on further improving and completing our performance properties
catalog.
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Figure 3: Display of performance behavior in expert for mpi application trace. The
values and colors on the left are percentages of the total cpu allocation time. The per-
centages in the middle refer only to the selection (yellow box) on the left. The percentages
on the right refer only to the selection in the middle.
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Figure 4: Display of performance behavior in expert for mpi/Openmp application remo.
In contrast to Fig. 3 the values and colors of all three views are percentages of the total
cpu allocation time.


