000134962 001__ 134962
000134962 005__ 20210129211746.0
000134962 0247_ $$2doi$$a10.1063/1.4773406
000134962 0247_ $$2ISSN$$a1089-7690
000134962 0247_ $$2ISSN$$a0021-9606
000134962 0247_ $$2WOS$$aWOS:000313642500071
000134962 0247_ $$2Handle$$a2128/19022
000134962 037__ $$aFZJ-2013-02977
000134962 041__ $$aEnglish
000134962 082__ $$a540
000134962 1001_ $$0P:(DE-Juel1)144747$$aHoffmann, Falk$$b0$$eCorresponding author$$ufzj
000134962 245__ $$aProtein structure prediction using global optimization by basin-hopping with NMR shift restraints
000134962 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2013
000134962 3367_ $$2DRIVER$$aarticle
000134962 3367_ $$2DataCite$$aOutput Types/Journal article
000134962 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1384521559_13121
000134962 3367_ $$2BibTeX$$aARTICLE
000134962 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000134962 3367_ $$00$$2EndNote$$aJournal Article
000134962 500__ $$3POF3_Assignment on 2016-02-29
000134962 520__ $$aComputational methods that utilize chemical shifts to produce protein structures at atomic resolution have recently been introduced. In the current work, we exploit chemical shifts by combining the basin-hopping approach to global optimization with chemical shift restraints using a penalty function. For three peptides, we demonstrate that this approach allows us to find near-native structures from fully extended structures within 10 000 basin-hopping steps. The effect of adding chemical shift restraints is that the α and β secondary structure elements form within 1000 basin-hopping steps, after which the orientation of the secondary structure elements, which produces the tertiary contacts, is driven by the underlying protein force field. We further show that our chemical shift-restraint BH approach also works for incomplete chemical shift assignments, where the information from only one chemical shift type is considered. For the proper implementation of chemical shift restraints in the basin-hopping approach, we determined the optimal weight of the chemical shift penalty energy with respect to the CHARMM force field in conjunction with the FACTS solvation model employed in this study. In order to speed up the local energy minimization procedure, we developed a function, which continuously decreases the width of the chemical shift penalty function as the minimization progresses. We conclude that the basin-hopping approach with chemical shift restraints is a promising method for protein structure prediction.
000134962 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0
000134962 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000134962 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b1$$ufzj
000134962 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.4773406$$gVol. 138, no. 2, p. 025102 -$$n025102$$p1-7$$tThe @journal of chemical physics$$v138$$x0021-9606$$y2013
000134962 8564_ $$uhttp://scitation.aip.org/content/aip/journal/jcp/138/2/10.1063/1.4773406
000134962 8564_ $$uhttps://juser.fz-juelich.de/record/134962/files/FZJ-2013-02977.pdf$$yOpenAccess
000134962 909CO $$ooai:juser.fz-juelich.de:134962$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000134962 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144747$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000134962 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000134962 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0
000134962 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0
000134962 9141_ $$y2013
000134962 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000134962 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000134962 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000134962 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000134962 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000134962 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000134962 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000134962 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000134962 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000134962 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000134962 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000134962 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000134962 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000134962 920__ $$lyes
000134962 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000134962 9801_ $$aFullTexts
000134962 980__ $$ajournal
000134962 980__ $$aVDB
000134962 980__ $$aUNRESTRICTED
000134962 980__ $$aI:(DE-Juel1)ICS-6-20110106
000134962 981__ $$aI:(DE-Juel1)IBI-7-20200312