000134963 001__ 134963
000134963 005__ 20210129211746.0
000134963 0247_ $$2doi$$a10.1002/jcc.21425
000134963 0247_ $$2ISSN$$a1096-987X
000134963 0247_ $$2ISSN$$a0192-8651
000134963 0247_ $$2WOS$$aWOS:000276918800007
000134963 037__ $$aFZJ-2013-02978
000134963 041__ $$aEnglish
000134963 082__ $$a540
000134963 1001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b0$$ufzj
000134963 245__ $$aSymmetrization of the AMBER and CHARMM force fields
000134963 260__ $$aNew York, NY [u.a.]$$bWiley$$c2010
000134963 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1384521751_13121
000134963 3367_ $$2DataCite$$aOutput Types/Journal article
000134963 3367_ $$00$$2EndNote$$aJournal Article
000134963 3367_ $$2BibTeX$$aARTICLE
000134963 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000134963 3367_ $$2DRIVER$$aarticle
000134963 520__ $$aThe AMBER and CHARMM force fields are analyzed from the viewpoint of the permutational symmetry of the potential for feasible exchanges of identical atoms and chemical groups in amino and nucleic acids. In each case, we propose schemes for symmetrizing the potentials, which greatly facilitate the bookkeeping associated with constructing kinetic transition networks via geometry optimization.
000134963 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0
000134963 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000134963 7001_ $$0P:(DE-HGF)0$$aKhalili, Mey$$b1
000134963 7001_ $$0P:(DE-HGF)0$$aTrygubenko, Semen$$b2
000134963 7001_ $$0P:(DE-HGF)0$$aFejer, Szilard N.$$b3
000134963 7001_ $$0P:(DE-HGF)0$$aWales, David J.$$b4
000134963 7001_ $$0P:(DE-HGF)0$$aMałolepsza, Edyta$$b5$$eCorresponding author
000134963 773__ $$0PERI:(DE-600)1479181-x$$a10.1002/jcc.21425$$gp. NA - NA$$n7$$p1402-1409$$tJournal of computational chemistry$$v31$$x1096-987X$$y2010
000134963 8564_ $$uhttp://onlinelibrary.wiley.com/doi/10.1002/jcc.21425/abstract
000134963 8564_ $$uhttps://juser.fz-juelich.de/record/134963/files/FZJ-2013-02978.pdf$$yRestricted
000134963 909CO $$ooai:juser.fz-juelich.de:134963$$pVDB
000134963 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000134963 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0
000134963 9141_ $$y2013
000134963 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000134963 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000134963 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000134963 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000134963 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000134963 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000134963 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000134963 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000134963 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000134963 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000134963 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000134963 920__ $$lyes
000134963 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000134963 980__ $$ajournal
000134963 980__ $$aVDB
000134963 980__ $$aUNRESTRICTED
000134963 980__ $$aI:(DE-Juel1)ICS-6-20110106
000134963 981__ $$aI:(DE-Juel1)IBI-7-20200312