000134963 001__ 134963 000134963 005__ 20210129211746.0 000134963 0247_ $$2doi$$a10.1002/jcc.21425 000134963 0247_ $$2ISSN$$a1096-987X 000134963 0247_ $$2ISSN$$a0192-8651 000134963 0247_ $$2WOS$$aWOS:000276918800007 000134963 037__ $$aFZJ-2013-02978 000134963 041__ $$aEnglish 000134963 082__ $$a540 000134963 1001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b0$$ufzj 000134963 245__ $$aSymmetrization of the AMBER and CHARMM force fields 000134963 260__ $$aNew York, NY [u.a.]$$bWiley$$c2010 000134963 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1384521751_13121 000134963 3367_ $$2DataCite$$aOutput Types/Journal article 000134963 3367_ $$00$$2EndNote$$aJournal Article 000134963 3367_ $$2BibTeX$$aARTICLE 000134963 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000134963 3367_ $$2DRIVER$$aarticle 000134963 520__ $$aThe AMBER and CHARMM force fields are analyzed from the viewpoint of the permutational symmetry of the potential for feasible exchanges of identical atoms and chemical groups in amino and nucleic acids. In each case, we propose schemes for symmetrizing the potentials, which greatly facilitate the bookkeeping associated with constructing kinetic transition networks via geometry optimization. 000134963 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0 000134963 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000134963 7001_ $$0P:(DE-HGF)0$$aKhalili, Mey$$b1 000134963 7001_ $$0P:(DE-HGF)0$$aTrygubenko, Semen$$b2 000134963 7001_ $$0P:(DE-HGF)0$$aFejer, Szilard N.$$b3 000134963 7001_ $$0P:(DE-HGF)0$$aWales, David J.$$b4 000134963 7001_ $$0P:(DE-HGF)0$$aMałolepsza, Edyta$$b5$$eCorresponding author 000134963 773__ $$0PERI:(DE-600)1479181-x$$a10.1002/jcc.21425$$gp. NA - NA$$n7$$p1402-1409$$tJournal of computational chemistry$$v31$$x1096-987X$$y2010 000134963 8564_ $$uhttp://onlinelibrary.wiley.com/doi/10.1002/jcc.21425/abstract 000134963 8564_ $$uhttps://juser.fz-juelich.de/record/134963/files/FZJ-2013-02978.pdf$$yRestricted 000134963 909CO $$ooai:juser.fz-juelich.de:134963$$pVDB 000134963 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000134963 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0 000134963 9141_ $$y2013 000134963 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000134963 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000134963 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000134963 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000134963 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000134963 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000134963 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000134963 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000134963 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000134963 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000134963 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000134963 920__ $$lyes 000134963 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0 000134963 980__ $$ajournal 000134963 980__ $$aVDB 000134963 980__ $$aUNRESTRICTED 000134963 980__ $$aI:(DE-Juel1)ICS-6-20110106 000134963 981__ $$aI:(DE-Juel1)IBI-7-20200312