000134965 001__ 134965
000134965 005__ 20210129211746.0
000134965 0247_ $$2doi$$a10.1021/jp801222x
000134965 0247_ $$2ISSN$$a1520-6106
000134965 0247_ $$2ISSN$$a1520-5207
000134965 0247_ $$2ISSN$$a1089-5647
000134965 0247_ $$2WOS$$aWOS:000258290000053
000134965 037__ $$aFZJ-2013-02980
000134965 041__ $$aEnglish
000134965 082__ $$a530
000134965 1001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b0$$eCorresponding author$$ufzj
000134965 245__ $$aCharacterizing the First Steps of Amyloid Formation for the ccβ Peptide
000134965 260__ $$aWashington, DC$$bSoc.$$c2008
000134965 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1384521782_13491
000134965 3367_ $$2DataCite$$aOutput Types/Journal article
000134965 3367_ $$00$$2EndNote$$aJournal Article
000134965 3367_ $$2BibTeX$$aARTICLE
000134965 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000134965 3367_ $$2DRIVER$$aarticle
000134965 520__ $$aWe employ constant-temperature and replica exchange molecular dynamics to survey the free energy landscape of the ccbeta peptide using a united-atom potential and an implicit solvent representation. Starting from the experimental coiled-coil structure we observe alpha to beta conversion on increasing the temperature, in agreement with experiment. Various beta-sheet trimers are identified as free energy minima, including one that closely resembles the amyloid beta-sheet model previously proposed from experimental data. We characterize two alternative pathways leading to beta-sheets. The first proceeds via direct alpha to beta conversion without dissociation of the trimer, and the second can be classified as a dissociation/reassociation pathway.
000134965 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0
000134965 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000134965 7001_ $$0P:(DE-HGF)0$$aFitzpatrick, Anthony W.$$b1
000134965 7001_ $$0P:(DE-HGF)0$$aVendruscolo, Michele$$b2
000134965 7001_ $$0P:(DE-HGF)0$$aDobson, Christopher M.$$b3
000134965 7001_ $$0P:(DE-HGF)0$$aWales, David J.$$b4
000134965 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/jp801222x$$gVol. 112, no. 32, p. 9998 - 10004$$n32$$p9998 - 10004$$tThe @journal of physical chemistry <Washington, DC> / B$$v112$$x1520-5207$$y2008
000134965 8564_ $$uhttp://pubs.acs.org/doi/abs/10.1021/jp801222x
000134965 8564_ $$uhttps://juser.fz-juelich.de/record/134965/files/FZJ-2013-02980.pdf$$yRestricted
000134965 909CO $$ooai:juser.fz-juelich.de:134965$$pVDB
000134965 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000134965 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0
000134965 9141_ $$y2013
000134965 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000134965 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000134965 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000134965 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000134965 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000134965 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000134965 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000134965 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000134965 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000134965 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000134965 920__ $$lyes
000134965 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000134965 980__ $$ajournal
000134965 980__ $$aVDB
000134965 980__ $$aUNRESTRICTED
000134965 980__ $$aI:(DE-Juel1)ICS-6-20110106
000134965 981__ $$aI:(DE-Juel1)IBI-7-20200312