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3.1 Introduction 
 
The term “crystal” comes from the Greek κρύσταλλοςwhich was first used as description of 
ice and later on - more general - of transparent minerals with regular morphology (regular 
crystal faces and edges). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1:  Example: rock crystal – quartz (SiO2), mineral from the Gotthard-Massif.  

 
Matter is usually classified into three states: gaseous – liquid – solid. Crystals are 
representatives of the solid state. Crystalline solids are thermodynamically stable in 
contrast to glasses and are characterised by a regular three-dimensional periodic 
arrangement of atoms (ions, molecules) in space.  

 

3.2 Crystal lattices 
 
The three-dimensional periodicity of crystals can be represented by the so-called crystal 
lattice. The repeat unit in form of a parallelepiped - known as the unit cell – is defined by 3 
non-linear basis vectors a1, a2, and a3, whose directions form the reference axes X, Y, and Z 
of the corresponding right-handed crystallographic coordination system. The 6 lattice 
parameters are given as the lengths of the basis vectors a = a1, b = a2, c = a3 and the 
angles between the basis vectors: angle (a1,a2) = , angle (a2,a3) = , angle (a3,a1) = . The 
faces of the unit cell are named as face (a1,a2) = C, face (a2,a3) = A, face (a3,a1) = B. 

If the vertices of all repeat units (unit cells) are replaced by points, there results the crystal 
lattice in the form of a point lattice. Each lattice point is given by a vector a = ua1+va2+wa3, 
with u, v, w being integers. As a symmetry operation of parallel displacement, a – also known 
as translation vector – maps the atomic arrangement of the crystal (crystal structure) onto 
itself. 
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Fig. 3.2:  Notation for a unit cell and a point lattice. 

 

A lattice point is named “uvw”, according to the coefficients (integers) of the translation 
vector a = ua1+va2+wa3 from the origin to the lattice point. A lattice direction - given by the 
symbol [uvw] - is defined by the direction of the corresponding translation vector. 

A plane passing through three lattice points is known as a lattice plane. Since all lattice 
points are equivalent (by translation symmetry) there will be infinitely many parallel planes 
passing through all the other points of the lattice. Such a set of equally spaced planes is 
known as a set of lattice planes. If the first plane from the origin of a set of lattice planes 
makes intercepts a/h, b/k, c/l on the X, Y, Z axes, respectively, where h, k, l are integers, then 
the Miller indices of this set of lattice planes are (hkl), the three factors h, k, l being enclosed 
in parentheses. 

The equation of lattice planes can be written in intercept form as 

(hx/a) + (ky/b) + (lz/c) = n, (3.1)

where n is an integer. If n = 0 the lattice plane passes through the origin; if n = 1 the plane  
makes  intercepts  a/h,  b/k,  c/l  on  the  X,  Y,  Z  axes  respectively; if  n = 2  the intercepts 
are 2a/h, 2b/k, 2c/l; and so on.  

The line of intersection of any two non-parallel lattice planes is a row of lattice-points 
common to both planes. This lattice point row defines a lattice direction [uvw] which is 
known as zone axis. All lattice planes intersecting in a common lattice-point row are said to 
lie in the same zone. The condition for lattice planes to be parallel to a lattice vector a = 
ua1+va2+wa3 is the zone equation  

uh + vk + wl = 0 (3.2)

The zone axis symbol [uvw] for the zone containing the two planes (h1k1l1) and (h2k2l2) is 
obtained by solving the simultaneous equations uh1 + vk1 + wl1 = 0 and uh2 + vk2 + wl2 = 0, 

[  uvw] = [k1l2-k2l1, l1h2-l2h1, h1k2-h2k1] (3.3)
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3.3 Crystallographic coordinate systems 
 
The description of a crystal structure consists first of the choice of a unit cell as smallest 
repeat unit of the crystal with its basis vectors. In this way a crystal-specific coordinate 
system is defined which is used to localize all the atoms in the unit cell. Whereas in physics 
and chemistry usually Cartesian coordinate systems are used, in crystallography quite 
different systems are applied. The conventional crystallographic coordinate systems are based 
on the symmetry of the crystals. In three dimensions there exist 7 different crystal systems 
and hence 7 crystallographic coordinate systems: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a = b = c; ===90° four triads  –  3 or 3   

(‖space diagonals of cube) 
cubic 

a = b  c; ==90°, =120° one hexad  –  6 or 6  (‖Z) hexagonal 

a = b  c; ==90°, =120° one triad  –  3 or 3  (‖Z) 
trigonal 

(hexagonal cell) 

a = b  c; ===90° one tetrad  –  4 or 4  (‖Z) tetragonal 

a  b  c; ===90° 
three mutually perpendicular diads 

–  2 or m (‖X, Y and Z) 
orthorhombic 

a  b  c; ==90°, >90°  one diad  –  2 or m (‖Y)  
monoclinic 

(unique axis b) 

a  b  c;      1 or 1  triclinic 

conventional unit cell minimum symmetry system name 

The choice of the origin of the coordinate system is free in principle, but for convenience it is 
usually chosen in a centre of symmetry (inversion centre), if present, otherwise in a point of 
high site symmetry of the space group. 

In order to complete the symmetry conventions of the coordinate systems it is necessary to 
add to the 7 so-called primitive unit cells of the crystal systems (primitive lattice types with 
only one lattice point per unit cell) 7 centred unit cells with two, three or four lattice points 
per unit cell (centred lattice types). These centred unit cells are consequently two, three or 
four times larger than the smallest repeat units of the crystals. The resulting 14 Bravais 
lattice types with their centring conditions are collected in figure 3.3. 
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Fig. 3.3:  The 14 Bravais lattices consisting of the 7 primitive lattices P for the 7 crystal  
systems with only one lattice point per unit cell + the 7 centred (multiple) lattices A, 
B, C, I, R and F with 2, 3 and 4 lattice points per unit cell.  

 

tetragonal I hexagonal P hexagonal/ 
rhombohedral R 

cubic P 

cubic I cubic F 

A set of lattice planes (hkl) is separated by a characteristic interplanar spacing d(hkl). 
According to the different crystallographic coordinate systems these d(hkl) values are 
calculated in a specific manner: 

For the cubic lattice (a = b = c,  =  =  = 90°), ex. NaCl 
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For the hexagonal lattice (a = b, c,  =  = 90°,  = 120°), ex. Graphite 
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For the tetragonal lattice (a = b, c,  =  =  = 90°) 
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For the orthorhombic lattice (a, b, c,  =  =  = 90°) 
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For the monoclinic lattice (a, b, c,  =  = 90°,  > 90°) 
1
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For the triclinic lattice (a, b, c, , , ), the most general case, 
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 (3.9)

 

 

 

 

 

3.4 Crystallographic symmetry operations and symmetry 
elements 
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The symmetry operations of a crystal are isometric transformations or motions, i.e. 
mappings which preserve distances and, hence, also angles and volumes. An object and its 
transformed object superpose in a perfect manner, they are indistinguishable. 

The simplest crystallographic symmetry operation is the translation, which is a parallel 
displacement of the crystal by a translation vector a (see chapt. 3.2). There is no fixed point, 
the entire lattice is shifted and therefore, theoretically, the crystal lattice is considered to be 
infinite. 

Crystallographic rotations n around an axis by an angle  = 360°/n (n-fold rotations) and 
rotoinversions (combination of rotations and inversions)n are called point symmetry 
operations because they leave at least one point of space invariant (at least one fixed point). 
An important fact of crystallographic symmetry is the restriction of the rotation angles by the 
three-dimensional crystal lattice to  = 360° (n = 1), 180° (n = 2), 120° (n = 3), 90° (n = 4), 
60° (n = 6). Only for these crystallographic rotations the space can be covered completely 
without gaps and overlaps. The rotoinversionn =1 is an inversion in a point,n =2  m 
(mirror) describes a reflection across a plane. 

The combination of n-fold rotations with m/na translation components (m < n) ‖ to the 

rotation axis leads to the so-called screw rotations nm, e.g. 21, 32, 42, 65. These symmetry 
operations have no fixed points.  

The combination of a reflection through a plane (glide plane) with translation components 

(glide vectors) of a1/2, a2/2, a3/2, (a1+a2)/2, … ‖ to this plane are known as glide reflections 

a, b, c, n, …, d. Again no fixed points exist for these symmetry operations. 

In addition to the symmetry operations which represent isometric motions of an object, 
symmetry can also be described in (static) geometrical terms by symmetry elements. They 
form the geometrical locus, oriented in space, on which a symmetry operation is performed 
(line for a rotation, plane for a reflection, and point for an inversion) together with a 
description of this operation. Symmetry elements are mirror planes, glide planes, rotation 
axes, screw axes, rotoinversion axes and inversion centres. The geometrical descriptions of 
the crystallographic symmetry operations are illustrated in Figs. 3.4-3.6.  

A symmetry operation transforms a point X with coordinates x, y, z (according to a position 
vector X = xa1 + ya2 + za3) into a symmetrically equivalent point X’ with coordinates x’, y’, 
z’ mathematically by the linear equations  

x’ = W11x + W12y + W13z + w1 

y’ = W21x + W22y + W23z + w2 

z’ = W31x + W32y + W33z + w3 

(3.10)

or, in matrix notation:  

 

 

 

 

 

 
Point symmetry operations 

rotations rotoinversions 

1=identity
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Fig. 3.4:  Rotations: n=1 (identity), n=2 (rotation angle 180°), n=3 (120°), n=4 (90°),  n=6 
(60°).  
Rotoinversions:1 (inversion),2  m (reflection), 3 = 3 +1,4,6 = 3/m.  
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120° 

1/3 

31 = 3 + 1/3 

a

60° 

2/6 

62 = 6 + 2/6  
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Fig. 3.5:  Screw rotations nm: combination of rotations n and translation components m/na ‖ 

to the rotation axis.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3.6:  Examples of reflections and glide reflections.  

 

a
m 

m reflection: mirror plane  image plane (plane of the paper) 

a
a 

a/2 

 with glide vector a/2 glide reflection: glide plane a   
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3
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1

333231

232221

131211

w

w

w

z

y

x

WWW

WWW

WWW

z'

y'

x'

 ;  X’ = WX + w = (W, w)X (3.11)

The (33) matrix W is the rotation part and the (31) column matrix w the translation part of 
the symmetry operation. The two parts W and w can be assembled into an augmented (44) 
matrix W according to 
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1131211

  = WX (3.12)

Since every symmetry transformation is a “rigid-body” motion, the determinant of all 
matrices W and W is det W = det W =  1 (+ 1: preservation of handedness; - 1: change of 
handedness of object). 

The sequence of two symmetry operations (successive application) is given by the product of 
their matrices W1 and W2: 

W3 = W1W2 (3.13)

whereby W3 is again a symmetry operation.  

 

 

3.5 Crystallographic point groups and space groups 
 

The symmetry of a crystal and of its crystal structure can be described by mathematical group 
theory. The symmetry operations are the group elements of a crystallographic group G and 
the combination of group elements is the successive execution of symmetry operations. All 
possible combinations of crystallographic point-symmetry operations in three-dimensional 
space lead to exactly 32 crystallographic point groups ( crystal classes) which all are of 
finite order (the maximum order is 48 for the cubic crystal class m3m ). For the different 
crystal systems they are represented by stereographic projections in figure 3.7. There are two 
types of group symbols in use: for each crystal class the corresponding Schoenflies symbol is 
given at the bottom left and the Hermann-Mauguin (international) symbol at the bottom right. 
A maximum of 3 independent main symmetry directions (“Blickrichtungen”) is sufficient to 
describe the complete symmetry of a crystal. These Blickrichtungen are specifically defined 
for the 7 crystal systems (Hermann-Mauguin symbols). As an example the Blickrichtungen of 
the cubic system are shown in figure 3.8.  
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Fig. 3.7:  The 32 crystallographic point groups (crystal classes) in three-dimensional space 
represented by their stereographic projections. The group symbols are given 
according to Schoenflies (bottom left) and to Hermann-Mauguin (bottom right).  
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Fig. 3.8: Symmetry directions (“Blickrichtungen”) of the cubic lattice (a=b=c, 90°). 
Along [100]: 4/m, along [111]:3, along [110]: 2/m.  

 

The point-group symmetries determine the anisotropic (macroscopic) physical properties of 
crystals, i. e. mechanical, electrical, optical and thermal properties. By diffraction methods 
normally only the 11 centrosymmetric Laue classes can be determined: 

 

2/m 3  = m 3  
4/m 3 2/m = m 3 m 

cubic 

6/m 
6/m 2/m 2/m = 6/m m m 

hexagonal 

3  
3 2/m = 3 m 

trigonal 

4/m 
4/m 2/m 2/m = 4/m m m 

tetragonal 

2/m 2/m 2/m = m m m orthorhombic 

1 2/m 1 = 2/m monoclinic 

1triclinic 

Laue class crystal system  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In three dimensions all possible combinations of the point symmetries of the 32 
crystallographic point groups with the lattice translations of the 14 Bravais lattices lead to 
exactly 230 space groups, all of infinite order. As already mentioned, there result new 
symmetry operations: screw rotations and glide reflections. The conventional graphical 
symbols for the symmetry elements according to the International Tables for Crystallography 
Vol. A (ITA, 2002 [1]) are shown in figure 3.9. 
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Fig. 3.9:  Conventional graphical symbols for symmetry elements: 
  - symmetry axes: (a) perpendicular, (b) parallel, and (c) inclined to the image   

plane; 
 - symmetry planes: (d) perpendicular and (e) parallel to the image plane.  

 

In the International Tables for Crystallography Vol. A [1] all space groups are described in 
detail with their Hermann-Mauguin symbols and corresponding crystal classes, the relative 
locations and orientations of the symmetry elements with respect to a chosen origin and the 
crystal-specific basis vectors, a listing of the general and all special positions (with their 
symmetrically equivalent points) and the related reflection conditions. 

 

 

 

 

3.6 Example of the crystal structure description of 
YBa2Cu3O7- using the ITA 

 

The crystal structure determination with atomic resolution is achieved by diffraction 
experiments with X-rays, electron or neutron radiation. As an example, the results of a 
structure analysis by neutron diffraction on a single crystal of the ceramic high-TC 
superconductor YBa2Cu3O7- with TC = 92 K are presented. The atomic arrangement of the 
orthorhombic structure, space group Pmmm, and the temperature-dependent electrical 
resistivity is shown in figure 3.10. 
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Fig. 3.10: Crystal structure (unit cell) of YBa2Cu3O7- with the CuOx-polyhedra (left) and 

the electrical resistivity as a function of temperature ‖ and  to the [001] 

direction (right).  

 

Information from ITA on the relative locations and orientations of the symmetry elements 
(symmetry operations 1, 2z, 2y, 2x,1, mz, my, mx) of the orthorhombic space group Pmmm, 
together with the choice of the origin (in an inversion centre), is shown in figure 3.11. The 
general position (site symmetry 1) of multiplicity 8 and all special positions with their site 
symmetries are listed in figure 3.12. There are no special reflection conditions for this space 
group. 
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Fig. 3.11: Description of the orthorhombic space group Pmmm in ITA (2002).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

YBa2Cu3O7-
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Fig. 3.12: General and special positions (coordinates of all symmetrically equivalent 
positions) of space group Pmmm with their site symmetries and multiplicities as well 
as reflection conditions. The special positions of the YBa2Cu3O7- structure are 
indicated by frames.  

The atomic parameters of the structure refinement of YBa2Cu3O6..96 at room temperature [2] 
are given in the following Table: 

 

 

 

 

 

 

 

 

 

 

0 ½ 0 2/m 2/m 2/m 1 O4/O2- 

0.37631(2) 0 ½ m m 2 2 O3/O2- 

0.37831(2) ½ 0 m m 2 2 O2/O2- 

0.15863(5) 0 0 m m 2 2 O1/O2- 

0.18420(6) ½ ½ m m 2 2 Ba/Ba2+ 

½ ½ ½ 2/m 2/m 2/m 1 Y/Y3+ 

0.35513(4) 0 0 m m 2 2 Cu2/Cu2+ 

0 0 0 2/m 2/m 2/m 1 Cu1/Cu2+ 

z y x site symmetry multiplicity atom/ion 

Atomic positions of YBa2Cu3O6.96 
orthorhombic, space group type P 2/m 2/m 2/m 

a = 3.858 Å, b = 3.846 Å, c = 11.680 Å (at room temperature) 
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Exercises 
 

Exercise 3.1 Crystal lattice 
 

A projection of an orthorhombic lattice on the lattice plane (001) is given in the following 
figure (this means a projection parallel to the c-axis). The dots represents the lattice points 
(not atoms) according to the translation symmetry of a crystal with the general translation 
vector a = ua1+va2+wa3 (a1, a2, and a3 are the basis vectors of the unit cell and u, v, w being 
integers) 

Please indicate in the figure 

a)  the lattice points uvw = 030, -120, 1-20, and 450, 

b) the lattice directions [uvw] = [100], [210], and [-2-10], 

c) and the traces of the lattice planes (hkl) = (100), (300), (210), (-210), and (140). 

 

 

 
 

a

a
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d) Which conditions of the crystallographic coordinate system must be fulfilled  

 for [100]  (100),  

 for [110]  (110),  

 and for [111]  (111)? 

Please give the conditions for the lattice parameters (a1 = a1, a2 = a2, a3 = a3, and
, , . Indicate for each case the possible corresponding crystal systems. 

 

3):  

e) Which is the zone axis for the lattice planes (110), (111), and (001) in the cubic 
 system? 

 

 

Exercise 3.2 Space group symmetry 
 

La2MnO4 crystallizes in the so-called T-phase with the space group I4/mmm. The lattice 
parameters are a1 = 3.787 and a3 = 13.154 Å. The atoms occupy the following positions in 
the asymmetric unit (given by the x, y, and z coordinates according to the positional vector of 
the atom j rj = xa1+ya2+za

 

a2 

a1  

a3 

 

 

 

 

 

 

 

 

 

Unit cell of  La2MnO4. 

 

O(2):  0, 0, 0.174 

O(1): 0, 0.5, 0 

La: 0, 0, 0.356 

Mn:  0, 0, 0  
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a) Indicate the crystal system and the Bravais lattice type of La2MnO4. How many 
formula units are in one unit cell? 

b) Plot in the given projection on (001), i. e. on the (a1, a2)-plane, for the marked 
manganese in 0, 0, 0 the positions of the nearest neighbour oxygen-atoms and indicate 
their z-parameters. 

 

a2 

a1 

   

  

 

 

 

 

 

 

 

 

 

 

 

 

c) Determine the coordination number and coordination geometry of Mn by the 
surrounding O-atoms. 

d) Please draw the symmetry elements (rotation axes and mirror planes), which you can 
identify. 

  Is there an inversion centre 1  at the Mn position? 

 Which is the site symmetry (one of the 32 crystallographic point groups) of the Mn 
position? Give the Hermann-Mauguin symbol according to the Blickrichtungen of the 
tetragonal crystal system. 
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