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4.2  G. Roth 

4.1 Introduction 

Each scattering experiment performed with any type of radiation - regardless of whether 

it involves massive particles like neutrons and electrons or electromagnetic waves like 

x-rays or visible light - has a total of four attributes which altogether characterize the 

type of the scattering experiment as well as the information that can be obtained from 

such an experiment. These attributes and their characteristics are:  

Elastic scattering, which involves the conservation of the energy of the particle or 

quantum during the scattering process, inelastic scattering, corresponding to a loss or 

gain of particle or quantum  energy during the scattering event, coherent scattering 

which involves the interference of waves (recall that, according to the particle-wave 

dualism first stated by de Broglie (1924), each particle may also be described by wave 

which can interfere with other particle waves) and finally incoherent scattering which is 

scattering without interference. 

 

Fig. 4.1:  Scattering function S(Q,) of a general scattering experiment (Q: scattering 

vector, : frequency), its different contributions and information that can be 

obtained from them. 

 

This chapter will deal mostly with neutron diffraction which is, in the above 

nomenclature of a general scattering experiment, equivalent to elastic coherent 

scattering of neutrons.   

Most of the readers of this chapter will be more or less familiar with x-ray diffraction 

from crystals, which has been demonstrated for the first time by Laue in 1912 and, since 

then, has developed into the most powerful method for obtaining structural information 

on crystalline materials. Diffraction - in sharp contrast to imaging techniques like 

optical or electron microscopy - has no principal limitation as to the spatial resolution, 

expressed in units of the wavelength of the radiation used for diffraction or imaging: 

While the resolution of imaging is limited to half the wavelength (recall the Abbe 

diffraction limit) diffraction can yield useful information, for instance, on bond 

distances between atoms on a length scale that is by two to three orders of magnitude 

smaller than the wavelength. On the other hand, diffraction, other than imaging, 
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requires 3-dimensional periodicity that is underlying the concept of the crystalline state 

(see chapter 3, symmetry in crystals). 

This chapter will discuss the basics and peculiarities of neutron diffraction from either 

single- or polycrystalline matter. We will start by discussing scattering of neutrons from 

individual atoms, then turn to the geometry of diffraction from crystals, treat the subject 

of diffraction intensities and end with a discussion of a few experimental issues 

connected to the instruments which will be used in the practical part of the course. 

Examples of applications of these methods will be given in chapter 8 “structural 

analysis”. The subject of magnetic neutron diffraction and scattering will be discussed 

separately in chapter 7. 

 

4.2 Neutron waves & neutron scattering 

The three major probes for investigating condensed matter are photons, electrons and 

neutrons. While photons are the (massless) quanta of electromagnetic radiation (e.g. x-

rays, including synchrotron radiation, but also visible light, gamma-rays etc.) electrons 

and neutrons are massive particles. Owing to the wave-particle-duality, a central 

concept of quantum mechanics that states that all particles exhibit both wave- and 

particle-properties, the formal description of a scattering experiment does not differ for 

these different probes. However, the relation between energy and wavelength of the 

probes and also the mechanisms by which they interact with matter are vastly different.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2:  Comparison of the three probes - neutrons, electrons and photons - in a 

double logarithmic energy-wavelength diagram. Added to the figure are the 

typical size of objects to be studied and the energy of thermal neutrons. 

As the horizontal line at a wavelength of 1 Å shows, neutrons of this wavelength have 

an energy as low as about 80 meV, while 1 Å electrons correspond to about 150 eV and  

1 Å photons (x-rays) have energies in excess of 12 keV. All three types of radiation 
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with this wavelength are well suited for scattering experiments on objects like atoms, 

molecules and crystals. The investigation (by scattering) of larger objects like colloids 

(in the 100 nm size range) requires, correspondingly, much lower energy probes like, 

for instance, photons in the ultraviolet range (about 12 eV). 

 

The scattering process 

 

 

Fig. 4.3:  Sketch of the scattering process with the incoming wave characterized by 

wavevector k, diffracted wave by k' and the sample by scattering vector Q, 

assumed: plane waves, (Fraunhofer approximation, source-sample and 

sample-detector distances much larger than sample size), also assumed: 

monochromatic radiation (single wavelength) 

 

In the case of elastic scattering (diffraction) we have 

  
2

' 'k k k k



                                                                                    (4.1) 

k is also called the wave number of the neutron and is conserved during scattering 

because the neutron energy and therefore the wavelength does not change. 

 

The so-called scattering vector is defined by 

  'Q k k                                                                                                 (4.2) 

 

The units of k, k’ and Q are Å-1
. 

 

ħQ represents the momentum transfer during scattering, since according to de Broglie, 

the momentum of the particle corresponding to the wave with wave vector k is given by 

p=ħk. The magnitude of the scattering vector can be calculated from wavelength  and 

scattering angle 2 as follows 

  2 2 4
' 2 'cos 2 sinQ Q k k kk Q


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                                                (4.3) 

A scattering experiment comprises the measurement of the intensity distribution as a 

function of the scattering vector I(Q). The scattered intensity is proportional to the so-
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called cross section, where the proportionality factors arise from the detailed geometry 

of the experiment. For a definition of the scattering cross section see Figure 4.4.  

 

 
 

 

Fig. 4.4:  Geometry used for the definition of the scattering cross section. 

 

This is in close analogy to the absorption cross section derived in chapter 2. 

Let us drop, for a moment, the assumption of strictly elastic scattering and treat the 

universal case of a general scattering experiment (will be needed in other chapters):   

If n' particles are scattered per second into the solid angle d seen by the detector under 

the scattering angle 2 and into the energy interval between E' and E' + dE', then we 

can define the so-called double differential cross section by:  

                                                                                          (4.4) 

Here j refers to the incident beam flux in terms of particles per area and time. If we are 

not interested in the change of the energy of the radiation during the scattering process, 

or if our detector is not able to resolve this energy change, then we will describe the 

angular dependence by the so-called differential cross section: 

              (4.5) 

Finally the so-called total scattering cross section gives us a measure for the total 

scattering probability independent of changes in energy and scattering angle:  

              (4.6) 
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All the information about the scattering matter is contained in the (double differential) 

scattering cross section. This includes positions and possible motions of scatterers in the 

sample volume. Note that in most diffraction experiments (with x-rays in particular, but 

also with electrons and neutrons), the actual measurement is energy-integrated because 

the detectors used are energy-insensitive. Consequently, the inelastic scattering also 

contributes to the measured intensity, but it is usually much weaker than the purely 

elastic scattering. Neutron scattering, however, offers the unique opportunity to set a 

very narrow energy window and study purely elastic scattering as well as inelastic 

scattering at arbitrary energies.  

If we go back to elastic scattering the information on the positions of the scatterers is 

contained in the differential cross section . The relationship between scattered 

intensity and the structure of the sample is particularly simple in the so-called Born 

approximation, which is often also referred to as kinematic scattering approximation. In 

this case, refraction of the beam entering and leaving the sample, multiple scattering 

events and the extinction of the primary beam due to scattering within the sample are 

being neglected. According to Figure 4.5, the phase difference between a wave scattered 

at the origin of the coordinate system and at position r is given by 

                                                         (4.7) 

 

 
 

Fig. 4.5:  Elastic scattering from a non-periodic object, illustrating the phase difference 

between a beam scattered at the origin of the coordinate system (A) and a 

beam scattered at the position r. Additional caption: underlying assumptions of 

the kinematic scattering approximation.  

 

The scattered amplitude at position r is proportional to the scattering density s(r) at this 

position. s depends on the type of radiation used and the interaction of this radiation 

with the sample. In fact, s is directly proportional to the interaction potential, as will be 

shown in the next paragraph. Assuming a laterally coherent beam, the total scattering 

amplitude is given by a coherent superposition of the scattering from all points within 

the sample, i. e. by the integral 

                                                                                 (4.8) 
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Here A0 denotes the amplitude of the incident wave field. (4.8) demonstrates that the 

scattered amplitude is connected with the scattering density s(r) by a simple Fourier 

transform. Knowledge of the scattering amplitude for all scattering vectors Q allows us 

to determine via a Fourier transform the scattering density uniquely. This is the 

complete information on the sample, which can be obtained by the scattering 

experiment. Unfortunately, nature is not so simple. On one hand, there is the technical 

problem that one is unable to determine the scattering cross section for all values of 

momentum transfer ħQ. The more fundamental problem, however, is that normally the 

amplitude of the scattered wave is not measurable. Instead only the scattered intensity  

                                                                                                          (4.9) 

can be determined. Therefore the phase information is lost and the simple reconstruction 

of the scattering density via a reverse Fourier transform is no longer possible. This is the 

so-called phase problem of scattering. There are ways to overcome the phase problem, 

either experimentally, e. g. by use of reference waves (holography) or by using a priori 

information about the scattering density function (like positiveness or peakedness) 

which is the basis of the so called direct methods of structure determination that is very 

frequently used in x-ray crystallography. The question, which information we can ob-

tain from a conventional scattering experiment despite the phase problem will be 

addressed below. 

 

Which wavelength do we have to choose to obtain the required real space resolution? 

For information on a length scale L, a phase difference of about QL  2  has to be 

achieved. Otherwise k' and k will not differ significantly (see eqn. (4.7)). According to 

(4.3) Q  2/ for typical scattering angles (2 ~ 60°). Combining these two estimates, 

we end up with the requirement that the wavelength  has to be on the order of the real 

space length scale L under investigation. To give an example: with the wavelength in 

the order of 0.1 nm, atomic resolution can be achieved in a scattering experiment. 

 

Coherence 

 

In the above derivation, we assumed plane waves as initial and final states. For a real 

scattering experiment, this is an unphysical assumption. In the incident beam, a wave 

packet is produced by collimation (defining the direction of the beam) and 

monochromatization (defining the wavelength of the incident beam). Neither the 

direction , nor the wavelength  have discrete values but rather have a distribution of 

non-vanishing width about their respective mean values. This wave packet can be 

described as a superposition of plane waves. As a consequence, the diffraction pattern 

will be a superposition of patterns for different incident wavevectors k and the question 

arises, which information is lost due to these non-ideal conditions. This instrumental 

resolution is intimately connected with the coherence of the beam. Coherence is 

needed, so that the interference pattern is not significantly destroyed. Coherence 

requires a phase relationship between the different components of the beam. Two types 

of coherence can be distinguished: 

 

 

 

Temporal or longitudinal coherence due to a wavelength spread: 

2
~I A

k̂
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A measure for the longitudinal coherence is given by the length, on which two 

components of the beam with largest wavelength difference ( and +) become fully 

out of phase. 

According to the following figure, this is the case for .  

 

 

 

 

 

 

 

 

 

Fig. 4.6:  Sketch illustrating the longitudinal coherence due to a wavelength spread.  

 

From this, we obtain the longitudinal coherence length  as  

                                                                                                (4.10) 

 

Transverse coherence due to source extension: 

Due to the extension of the source (transverse beam size), the phase relation is 

destroyed for large source size or large divergence. According to the following figure, a 

first minimum occurs for .  

 

 

 

 

 

 

 

 

 

Fig. 4.7:  Sketch illustrating the transverse coherence due to source extension and beam 

divergence.  

 

From this, we obtain the transversal coherence length  as  

                                                                                                   (4.11) 

Here  is the divergence of the beam. Note that  can be different along different 

spatial directions: in many instruments, the vertical and horizontal collimations are 

different.  

Together, the longitudinal and the two transversal coherence lengths (in two directions 

perpendicular to the beam propagation) define a coherence volume. This is a measure 

for a volume within the sample, in which the amplitudes of all scattered waves 

superimpose to produce an interference pattern. Normally, the coherence volume is 
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significantly smaller than the sample size, typically a few 100 Å for neutron scattering, 

up to µm for synchrotron radiation. Scattering between different coherence volumes 

within the sample is no longer coherent, i. e. instead of the amplitudes the intensities of 

the contributions to the scattering pattern have to be summed up. This limits the real 

space resolution of a scattering experiment to the extension of the coherence volume. 

 

Neutron scattering from atomic nuclei 

 

Neutrons interact with the nuclei of the atoms by potential scattering as well as with the 

magnetic moment of unpaired electrons in the electron shells of the atoms. Here we 

focus on the so-called nuclear scattering contribution. As the wavelength of thermal 

neutrons (approx. 10
-10 

m) is much larger than the diameter of the atomic nucleus (10
-14

 

...10
-15

 m), the atom is essentially a point scatterer. As the construction of Fig. 4.5 and 

equation (4.7) shows, this means that the length of the vector r (now a vector within the 

nucleus) is very small compared to the wavelength of the neutron and therefore the 

phase difference of waves from different parts of the nucleus is essentially zero. This is 

in sharp contrast to x-ray diffraction, where the scattering occurs from the electron 

cloud and the size of the scatterer and the wavelength of the radiation are similar. This 

results in the well-known formfactor falloff of the scattered intensity with increasing 

scattering angle. The same holds true for the magnetic formfactor for thermal neutrons. 

Magnetic neutron scattering will be the subject of chapter 7. For neutron scattering from 

the atomic nuclei, the formfactor is a constant. This is one big advantage of neutrons 

over x-rays because there is still an appreciable amount of scattered intensity even at 

very high scattering angles, where an x-ray experiment will yield hardly any useful 

information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8:  Form-factor of Cr [1]. On the Å length scale of the thermal neutron 

wavelength, the nucleus is point-like, therefore, nuclear scattering is 

independent of the scattering angle. For x-rays and magnetic neutron 

scattering, the form factor falls off with increasing scattering angle. For more 

details on magnetic neutron scattering see chapter 7.  

 

The interaction that governs nuclear neutron scattering (essentially potential scattering) 

is the strong nuclear force. Note that, despite the fact that the strong interaction of high 
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energy physics is responsible for the scattering of the neutron with the nucleus, the 

scattering probability is very small due to the small nuclear radius. 

The quantity that describes the interaction between neutrons and matter is the scattering 

length b, it is usually expressed in units of a Fermi (1 fm = 10
-15

 m). Another frequently 

used quantity is the total cross section of a given nucleus  corresponding to 

the surface area of a sphere with radius b.  is usually expressed in barns, 1 barn = 10
-24

 

cm
2
. A simple description of potential scattering predicts the smooth increase of the 

scattering length with increasing atomic weight depicted in Figure 4.9 by the dashed 

line. Obviously, this description is rather crude as resonance effects play an important 

role and, consequently, there are pronounced deviations from this line. As the interac-

tion potential depends on the details of the nuclear structure, scattering lengths b can be 

very much different for different isotopes of the same element and also for different 

nuclear spin states (see chapter 7). In fact, neutron nuclear scattering lengths are still 

very hard to calculate (in contrast to x-ray scattering where the scattering power of any 

atom can be calculated to a very high precision) illustrating our still quite limited 

knowledge of the nuclear structure of atoms as opposed to the very well understood 

electronic structure of atoms. Consequently, the tabulated values of b which can be 

found in [2] or at http://www.ncnr.nist.gov/resources/n-lengths/ are experimentally 

measured quantities, not calculated ones. The scattering length is mostly positive but 

can also adopt negative values, this negative sign corresponds to a phase shift of  (or 

180°) during the scattering process. The fact that different isotopes of the same element 

have different scatterings lengths also gives rise to the appearance of so-called 

incoherent scattering (see below). 

 

Fig. 4.9:  Scattering length as a function of atomic weight throughout the periodic table 

(from Research, London 7 (1954), 257). Note the two different curves for x-

rays at low- and high scattering angles, illustrating the formfactor falloff that 

is typical for x-rays but doesn’t exist for nuclear neutron scattering. 

 

In Figure 4.10, the scattering cross sections for x-rays and neutrons are compared. Note 

that the x-ray scattering cross sections are in general a factor of 10 larger as compared 

to the neutron scattering cross sections. This means that the signal for 

x-ray scattering is stronger for the same incident flux and sample size. For x-rays, the 

2
4 b 
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cross section depends on the number of electrons and thus varies in a monotonic fashion 

throughout the periodic table. Clearly it will be difficult to determine hydrogen 

positions with x-rays in the presence of heavy elements such as metal ions. Moreover, 

there is a very weak contrast between neighboring elements as can be seen for the 

transition metals Mn, Fe and Ni in Figure 4.10. However, this contrast can be enhanced 

by anomalous scattering, if the photon energy is tuned close to the absorption edge of an 

element. For neutrons the cross section depends on the details of the nuclear structure 

and thus varies in a non-systematic fashion throughout the periodic table. As an 

example, there is a very high contrast between Mn and Fe. With neutrons, the hydrogen 

atom is clearly visible even in the presence of such heavy elements as Uranium. 

Moreover there is a strong contrast between the two Hydrogen isotopes H and D. This 

fact can be exploited for soft condensed matter investigations by selective deuteration of 

certain molecules or functional groups. This will vary the contrast within the sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10: Comparison of the (coherent) scattering cross-sections σ for x-rays and 

neutrons for a selection of elements. The area of the colored circles repre-

sent the scattering cross section, where in the case of x-rays a scale factor 

10 has to be applied. For neutrons, the blue and green circles distinguish 

the cases where the scattering occurs with or without a phase shift of . For 

1H and 28Ni, scattering cross sections for certain isotopes are given in 

addition to the averaged values for the natural abundances. 

 

 

Coherent and incoherent scattering 

 

As mentioned above, the scattering length b is different for different isotopes of a given 

element and also for different nuclear spin states. This gives rise to an additional 

contribution to the total intensity, the incoherent scattering. In this chapter, we will 
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focus on isotope-incoherence and leave the detailed discussion of spin-incoherence for 

other chapters. 

 

Figure 4.11 shows a 2-D model crystal with atoms of two isotopes of the same element 

with two different scattering lengths bi sitting on fixed positions Ri in a crystal lattice.  

As stated above, the scattering amplitude is obtained from a Fourier transform:  

                                                                                       (4.12) 

When we calculate the scattering cross section, we have to take into account that the 

different isotopes are distributed randomly over all sites. Therefore, we have to average 

over the random distribution of the scattering length in the sample:  

                                              (4.13) 

As isotopes of the same element are chemically undistinguishable, the distribution of 

the scattering lengths bi and bj on the different sites is completely uncorrelated. This 

implies that for i  j, the expectation value of the product equals to the product of the 

expectation values. Only for i = j a correlation occurs, which gives an additional term 

describing the mean quadratic deviation from the average:  

             (4.14) 

The line for i = j results from the identity:  

                                             (4.15)  

Therefore, we can write the cross section in the following form:  

                                                     (4.16)  

The scattering cross section is a sum of two terms. Only the first term contains the phase 

factors e
iQR

, which result from the coherent superposition of the scattering from pairs of 

scatterers. This term takes into account interference effects and is therefore named 

coherent scattering. The scattering length averaged over the isotope- and nuclear spin- 

distribution enters this term. This is in complete analogy to the “isotope insensitive” x-

ray-diffraction. The second term in (4.16) does not contain any phase information and is 

proportional to the number N of atoms (and not to N
2
). This term is not due to the 

interference of scattering from different atoms and it has no direct counterpart in x-ray 

scattering. As we can see from (4.14) (line i = j), this term corresponds to the scattering 

from single atoms, which subsequently superimpose in an incoherent manner (adding 

intensities, not amplitudes!). This is the reason for the intensity being proportional to the 

number N of atoms. Therefore the second term is called incoherent scattering.  
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Fig. 4.11: Upper panel: Sketch of the scattering process from a 2-D lattice of N 

chemically identical atoms with two isotopes (small dotted circles and large 

hatched circles). The area of the circle represents the scattering cross 

section of the single isotope. Middle panel: The incident wave is scattered 

coherently only from the average structure. This gives rise to Bragg peaks in 

certain directions. Lower panel: Additionally, an isotropic background 

(incoherent scattering) is observed, which is proportional to the number N of 

atoms and to the mean quadratic deviation from the average scattering 

length.  

 

The most prominent example for isotope incoherence is elementary nickel. The 

scattering lengths of the nickel isotopes are listed together with their natural abundance 

in Table 4.1 [2]. The differences in the scattering lengths for the various nickel isotopes 

are enormous. Some isotopes even have negative scattering lengths. This is due to 

resonant bound states, as compared to the usual potential scattering. 

 

Isotope Natural Abundance Nuclear Spin Scattering Length [fm] 
58

Ni 68.27 % 0 14.4(1) 
60

Ni 26.10 % 0 2.8(1) 
61

Ni 1.13 % 
3
/2 7.60(6) 

62
Ni 3.59 % 0 -8.7(2) 

64
Ni 0.91 % 0 -0.37(7) 

Ni   10.3(1) 

 

Tab. 4.1: The scattering lengths of the nickel isotopes and the resulting scattering 

length of natural 28Ni [2], see also fig. 4.9.  

 

Neglecting the less abundant isotopes 
61

Ni and 
64

Ni, the average scattering length is 

calculated as:  

   (4.17) 

which gives the total coherent cross section of:  
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   (4.18) 

The incoherent scattering cross section per nickel atoms is calculated from the mean 

quadratic deviation:  

     (4.19) 

Values in parentheses are the exact values taking into account the isotopes 
61

Ni and 
64

Ni 

and the nuclear spin incoherent scattering (see chapter 7). From (4.18) and (4.19), we 

learn that the incoherent scattering cross section in nickel amounts to more than one 

third of the coherent scattering cross section.  

 

The most prominent example for nuclear spin incoherent scattering is elementary 

hydrogen. The nucleus of the hydrogen atom, the proton, has the nuclear spin I = ½. 

The total nuclear spin of the system H + n can therefore adopt two values: J = 0 and J = 

1. Each state has its own scattering length: b- for the singlet state (J = 0) and b+ for the 

triplet state (J = 1).  

 

Total Spin Scattering Length Abundance 

J = 0 b- = - 47.5 fm 
 

J = 1 b+ = 10.85 fm 
 

 <b> = - 3.739(1) fm  

 

Tab. 4.2: Scattering lengths for hydrogen [2].  

 

As in the case of isotope incoherence, the average scattering length can be calculated:  

   (4.20) 

This corresponds to a coherent scattering cross section of about  1.76 barn [2]:  

   (4.21) 

The nuclear spin incoherent part is again given by the mean quadratic deviation from 

the average:  

   

 

            (exact value: 80.26(6) barn) (4.22) 

 

Comparing (4.21) and (4.22), it is immediately clear that hydrogen scatters mainly 

incoherently. As a result, we observe a large background for all samples containing 

hydrogen. We should avoid all hydrogen containing glue for fixing our samples to a 

sample stick. Finally, we note that deuterium with nuclear spin I = 1 has a much more 

favorable ratio between coherent and incoherent scattering:  
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The coherent scattering lengths of hydrogen (-3.74 fm) and deuterium (6.67 fm) are 

significantly different. This can be used for contrast variation by isotope substitution in 

all samples containing hydrogen, i. e. in biological samples or soft condensed matter 

samples, see the corresponding chapters.  

 

A further important element, which shows strong nuclear incoherent scattering, is 

vanadium. Natural vanadium consists to 99,75 % of the isotope 
51

V with nuclear spin 

7/2. By chance, the ratio between the scattering lengths b+ and b- of this isotope are 

approximately equal to the reciprocal ratio of the abundances. Therefore, the coherent 

scattering cross section is very small and the incoherent cross section dominates [2]: 

   

For this reason, Bragg scattering of vanadium is difficult to observe above the large 

incoherent background. On the other hand, this fact can be turned into an advantage: By 

using vanadium metal, one can make sample containers which are practically invisible 

for (coherent) neutron scattering: They produce almost no reflections but rather a 

diffuse background (since incoherent scattering is isotropic) which usually doesn’t 

cause severe problems in diffraction experiments. 

 

4.3 Diffraction geometry 

For purely elastic scattering, the scattering function S(Q,) reduces to the special case 

without energy transfer (E0 = E1 and ħ   = E0 – E1 = 0) and equal length of the wave 

vectors of the incident and scattered beams (k0 = k1). S(Q, = 0) and the scattering 

intensity then only depends on the scattering vector Q = k0 - k1. The coherent elastic 

neutron scattering (   neutron diffraction) yields information on the positions 

(distribution) of the atomic nuclei and the arrangement of the localised magnetic spins 

in crystalline solids, the pair correlation function of liquids and glasses, and the 

conformation of polymer chains. 

Figure 4.12 shows a sketch of a general diffraction experiment. More specifically, it is a 

typical setup of a constant wavelength, angular dispersive diffraction experiment. There 

are other methods to perform a diffraction experiment (e.g. time of flight- (TOF-), 

Laue-, energy-dispersive diffractometers etc.) but these are outside the scope of this 

introductory lecture.  

For constant wavelength diffraction, the energy (wavelength) and direction 

(collimation) of the incident neutron beam needs to be adjusted. For that purpose, the 

diffractometer is equipped with a crystal monochromator to select a particular 

wavelength band (  ) out of the “white” beam. Collimators are used to define the 

beam direction and divergence pretty much as is done in x-ray diffraction. 

In the case of a crystalline sample, the diffraction geometry is most conveniently 

described by the concepts of the reciprocal lattice and the Ewald construction which are 

both well-known from x-ray-diffraction. 

barnbarn V
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Fig. 4.12: Schematic representation of a constant wavelength diffractometer. 

 

Reciprocal lattice 

The characteristic feature of the crystalline state (see chapter 3) is its periodic order, 

which may be represented by a (translation) lattice. In the 3D case, three basis vectors 

a1, a2, a3 define a parallelepiped, called unit cell. Each lattice node of the crystal lattice 

can be addressed by a general lattice vector 

   a = u a1 + v a2 + w a3.        (4.23) 

which results from a linear combination of the basis vectors with coefficients u, v, and w 

(positive or negative integers, including 0).  

The position of atom j in the unit cell is given by the vector  

 rj = xj a1 + yj a2 + zj a3.        (4.24) 

The coefficients xj, yj, and zj are called atomic coordinates (0xj<1; 0yj<1; 0zj<1). 

For an ideal crystal and an infinite lattice with the basis vectors a1, a2, a3 there is only 

diffraction intensity I() at the vectors 

  = h 1 + k 2 + l 3.        (4.25) 

of the reciprocal lattice. h,k,l are the integer Miller indices and1, 2, 3 are the basis 

vectors of the reciprocal lattice, satisfying the two conditions 

 1a1 = 2a2 = 3a3 = 1 and 1a2 = 1a3 = 2a1 = ... = 0, 

or in terms of the Kronecker symbol with i, j and k = 1, 2, 3 

 ij = 0 for i  j and ij = 1 for i = j with ij = I  j.    (4.26) 
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The basis vectors of the reciprocal lattice can be calculated from those of the unit cell in 

real space 

 i = (aj ak)/Vc,         (4.27) 

where  means the cross product, and Vc = a1(a2a3) is the volume of the unit cell. 

In solid state physics,  

 Q = 2            (4.28) 

is used instead of    

Here is a compilation of some properties of the reciprocal lattice: 

 Each reciprocal lattice vector is perpendicular to two real space vectors: I  aj and ak 

(for i  j, k) 

 The lengths of the reciprocal lattice vectors are i = 1/Vcajaksin(aj,ak). 

 Each point hkl in the reciprocal lattice refers to a set of planes (hkl) in real space. 

 The direction of the reciprocal lattice vector  is normal to the (hkl) planes and its 

length is reciprocal to the interplanar spacing dhkl:   = 1/dhkl. 

 Duality principle: The reciprocal lattice of the reciprocal lattice is the direct lattice. 

Performing a diffraction experiment on a single crystal actually means doing a Fourier 

transform of the 3D-periodic crystal (see chapter on symmetry in crystals) followed by 

forming the square of the resulting (complex) amplitude function. The Fourier 

transform of the (infinite) crystal lattice is essentially the reciprocal lattice derived 

above and yields directly the positions of the reflections in space (directions of the 

diffracted beams). The atomic arrangement within the unit cell determines the reflection 

intensities which may be envisaged as a weight attached to the nodes of the reciprocal 

lattice.  

Doing a (single crystal) diffraction experiment therefore corresponds to measuring the 

positions and weights of the reciprocal lattice points. Their position yields information 

on the lattice parameters and the orientation of the crystal on the diffractometer while 

the weights (the reflection intensities) allow reconstructing the atomic positions within 

the unit cell.  

Ewald construction 

The concept of the reciprocal space also provides a handy tool to express geometrically 

the condition for Bragg scattering in the so-called Ewald construction. In this way the 

different diffraction methods can be discussed. 

We consider the reciprocal lattice of a crystal and choose its origin 000. In Fig. 4.13 the 

wave vector k0 (defined in the crystallographers’ convention with k0 = 1/) of the 

incident beam is marked with its end at 000 and its origin P. We now draw a sphere of 

radius k0 = 1/ around P passing through 000. Now, if any point hkl of the reciprocal 

lattice lies on the surface of this “Ewald sphere”, then the diffraction condition for the 

(hkl) set of lattice planes is fulfilled: The wave vector of the diffracted beam k (with its 

origin also at P) for the set of planes (hkl), is of the same length as k0 (k = k0) and the 

resulting vector diagram satisfies k = k0 + . Introducing the scattering angle 2 (and 
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hence the Bragg angle hkl), we can deduce immediately from 2ksin =  the Bragg 

equation 2dhklsinhkl = .      

 

Fig. 4.13: Ewald construction in reciprocal space, showing the diffraction 

condition for reflection (hkl). 

 

In the case of single crystal diffraction a rotation of the crystal and therefore also of the 

corresponding reciprocal lattice (which is rigidly attached to the crystal) is often used to 

set the diffraction conditions for the measurement of intensities I(). 

If  > 2/ (then dhkl < /2) the reflection hkl cannot be observed. This condition defines 

the so called limiting sphere, with center at 000 and radius 2/: only the points of the 

reciprocal lattice inside the limiting sphere can be rotated into diffraction positions. 

Vice versa if  > 2dmax, where dmax is the largest interplanar spacing of the unit cell, then 

the diameter of the Ewald sphere is smaller than min. Under these conditions no node 

of the reciprocal lattice can intercept the Ewald sphere. That is the reason why 

diffraction of visible light (wavelength  5000 Å) can never be obtained from crystals. 

min determines the amount of information available from a diffraction experiment. In 

ideal conditions min should be short enough to measure all points of the reciprocal 

lattice with significant diffraction intensities. 

For a real crystal of limited perfection and size the infinitely sharp diffraction peaks 

(delta functions) evolve into broadened reflections. One reason can be the local 

variation of the orientation of the crystal lattice (mosaic spread) implying some angular 

splitting of the vector . A spread of interplanar spacings d/d, which may be caused by 

some inhomogeneities in the chemical composition of the sample, gives rise to a 

variation of its magnitude . The ideal diffraction geometry on the other hand also 

needs to be modified: In a real experiment the primary beam has a non-vanishing 

divergence and wavelength spread. The detector aperture is also finite. A gain of 

intensity, which can be accomplished by increasing the angular divergence and 

wavelengths bandwidth, has to be paid for by some worsening of the resolution function 
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(see below) and hence by a limitation of the ability to separate different Bragg 

reflections. 

All of these influences can be studied by the Ewald construction. The influence of a 

horizontal beam divergence on the experimental conditions for a measurement of 

Bragg-intensities of a single crystal is illustrated in Fig. 4.14 where strictly 

monochromatic radiation (only one wavelength  with  = 0) is assumed. To collect 

the complete intensity contained in the spread out reflection, a so-called -scan, where 

the crystal is rotated around the sample axis perpendicular to the diffraction plane, may 

be used. The summation over the whole reflection profile yields the so-called integral 

diffraction intensities. 

 

Fig. 4.14: Ewald-construction: Influence of the horizontal beam divergence on the 

experimental conditions for the measurement of Bragg-intensities. 

 

Finally, the geometry of powder diffraction experiments can also be discussed in terms 

of the Ewald-construction: 

 

Fig. 4.15: Ewald construction for a powder diffraction experiment. 
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An ideal polycrystalline sample is characterised by a very large number of arbitrarily 

oriented small crystallites. Therefore, the reciprocal lattice point hkl is smeared out on a 

sphere and the 3D-information contained in vector  is reduced to only 1D-information 

contained in . In Figure 4.15 the corresponding sphere with radius  = 1/dhkl is drawn 

around the origin of the reciprocal lattice at 0,0,0. For each Bragg-reflection the circle 

of intersection of the “reciprocal lattice sphere” with the Ewald-sphere yields a 

diffraction cone. These cones are recorded on a point or position sensitive detector. And 

the resulting information is plotted as a intensity vs. diffraction angle (or Q) diagram. 

All reflections with equal interplanar spacing dhkl are perfectly superimposed and cannot 

be separated experimentally. 

 

 

Fig. 4.16: Sketch of a powder diffraction experiment, diffraction cones are recorded 

          on a 2D- or 1D- detector (reproduced from [3]). 

 

4.4 Diffraction intensities 

As stated in chapter 4.2, a scattering experiment is equivalent to performing a Fourier 

transform of the scattering object (eqn. 4.8) followed by taking the square of the 

resulting complex amplitude (eqn. 4.9). The latter step is very simply due to the fact, 

that our detectors can measure the magnitude (the absolute value) of a diffracted wave 

but are completely insensitive to its phase. This results in an intrinsic loss of 

information and poses the so-called “phase problem of crystallography”. There are 

methods to reconstruct the missing phase information from the measured magnitudes 

and from a-priori information about the scattering object (e.g. the so-called direct 

methods of structure determination), but these methods are again outside the scope of 

this lecture. The first step of a diffraction experiment - the Fourier transform - needs 

some further elaboration: In a diffraction (elastic, coherent scattering) experiment we 

can safely ignore time as a variable and concentrate only on the spatial Fourier 

transform of the scattering object (here: the crystal). For those who are not particularly 

familiar with the Fourier transform, figure 4.17 shows a very simple one-dimensional 

analogue. The transformation from A to E (labelled FT, ||) corresponds to the diffraction 

experiment: Fourier-transform (harmonic analysis) plus calculation of the absolute 

value. If we could also retrieve the phases φ, the inverse Fourier transform (labelled FT
-

1
, φ) would lead directly to the structure of the scattering object A (harmonic synthesis).  
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Fig. 4.17: 1D illustration of the Fourier transform, A: scattering object: 1D-density 

function, assumed: periodic in 1D, B-D: decomposition of A into 3 

harmonic (co-)sine waves, F: synthesis of A (red curve) via summation of B-

D with the correct phases, E: “diffractogramm” of A: Fourier transform, 

only the magnitudes of waves in B to D are plotted, figures taken from[4]. 

 

Without the phase information, we need an approximate model of the crystal structure 

and a formula to calculate diffraction intensities from the model. In the kinematical 

approximation (see above) we use the so called structure factor formula for that purpose 

(see below). The model is then iteratively improved to give an optimum match between 

observed and calculated intensities. This is referred to as the structure refinement. 

Structure factor and Bragg intensities 

In the kinematical approximation, which assumes that the magnitude of the incident 

wave amplitude is the same at all points in the specimen (this implies a small sample 

size, weak scattering intensities, no multiple diffraction and negligible absorption), the 

diffracted intensity is proportional to the square of the amplitude of the scattered wave 

for each individual reflection; it can be regarded as a weight ascribed to the reciprocal-

lattice nodes (see eqn. 4.25). 

 I()  |F()|2.          (4.29) 

The structure factor F() is the Fourier transform of the scattering density within the 

unit cell. For a 3D-periodic scattering density function composed of discrete atoms (the 

crystal), the integral in (4.8) describing the Fourier transform in its most general form, 

simplifies to a sum over all atoms j in the unit cell The structure factor F() contains the 

complete structural information, including the atomic coordinates rj = xj a1 + yj a2 + zj 

a3 (see eqn. 4.24), site occupations and the thermal vibrations contained in Tj. 
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 F() = ∑    ·exp[2i(·rj)]·Tj() = |F()|·exp[i()].     (4.30) 

In the case of nuclear scattering of neutrons the structure factor has the dimension of a 

length, as has the scattering length bj() = bj = const. of nucleus j. Tj() is the Debye-

Waller factor which takes into account dynamical and static displacements of the 

nucleus j from its average position rj in the unit cell. With the fractional coordinates xj, 

yj and zj, the scalar product in the exponential function can be written as 

   rj = hxj + kyj +lzj        (4.31) 

In a diffraction experiment normally only relative Bragg intensities are measured. A 

scale factor SCALE takes into account all parameters which are constant for a given set 

of diffraction intensities. Additional corrections have to be applied, which are a function 

of the scattering angle. For nuclear neutron diffraction from single crystals the 

integrated relative intensities are given by 

  I() = SCALE  L  A  E  |F()|2        (4.32) 

The Lorentz factor L is instrument specific. The absorption correction A depends on the 

geometry and linear absorption coefficient of the sample and the extinction coefficient 

E takes into account a possible violation of the assumed conditions for the application 

of the kinematical diffraction theory. 

Information on the crystal system, the Bravais lattice type and the basis vectors a1, a2, 

a3 of the unit cell (lattice parameters a, b, c,  , ) may be directly deduced from the 

reciprocal lattice. The |F()|2 values associated as weights to the nodes of the reciprocal 

lattice give the diffraction symbol and hence valuable information on the space-group 

symmetry (see chapter 3). Here, systematic absences (zero structure factors) can be used 

to determine non-primitive Bravais lattices or detect the presence of non-symmorphic 

symmetry operations (symmetry operations with translation components).  

As an example, consider a body centered cubic lattice with atoms at 0,0,0 and ½,½,½. 

Using eqn. 4.31 and dropping the Debye-Waller factor for the moment, eqn. 4.30 may 

be rewritten as:  

 F(hkl) = ∑    ·exp[2i(hxj + kyj +lzj)]·Tj() = |F()|·exp[i()].    (4.33) 

For a centrosymmetric structure, F is a real quantity (instead of complex), the 

exponentials in (4.33) reduce to cosines and the phase factor assumes only the values + 

or -. For this simple structure, index j just runs over the two equivalent atoms with 

scattering length b within the unit cell. Thus we get:  

             (4.34) 

The first term cos(0) = 1 and we therefore have: 

             (4.35) 

If h+k+l is even, the cosine term is +1, otherwise it is -1. 

Reflections with h+k+l=2n+1 are therefore systematically absent.  

These statements apply equally well to x-ray and neutron diffraction and to powder as 

well as to single crystal diffraction data. 
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In the case of a powder sample, orientational averaging leads to a reduction of the 

dimensionality of the intensity information from 3D to 1D: Diffraction intensity I is 

recorded as a function |   | = 1/dhkl  or, by making use of Bragg’s law, of sin()/ or just 

as a function of 2. For powders, two additional corrections (M and P in eqn. 4.36) need 

to be applied in order to convert between the measured intensities I and the squared 

structure factor magnitudes F
2
: 

  I(| |) = SCALE  L  A  E  M  P  |F(| |)|2      (4.36) 

M is the multiplicity of the individual reflections and takes into account how many 

symmetrically equivalent sets of lattice planes correspond to a given hkl. In the cubic 

crystal system, for instance, M111=8 (octahedron) while M100=6 (cube). P is the so-

called preferred orientation parameter which corrects the intensities for deviations from 

the assumption of randomly oriented crystals in the powder sample. 

4.5 Diffractometers 

Single Crystal Neutron Diffractometry 

 

 

Fig. 4.18:  Principle components of a constant wavelength single crystal 

diffractometer. 

 

Monochromator and collimator 

For constant wavelength diffraction, the energy (wavelength) and direction 

(collimation) of the incident neutron beam needs to be adjusted. For that purpose, the 

diffractometer is equipped with a crystal monochromator to select a particular 

wavelength band (  ) out of the “white” beam according to the Bragg condition 

for its scattering plane (hkl) 

 2dhklsinhkl = ,         (4.37) 

with the interplanar spacing dhkl and the monochromator scattering angle 2hkl = 2M. 

The width of the wavelengths band , which is important for the Q-resolution, 
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depends on the divergences of the beam before and after the monochromator 

(collimations 1 and 2), on the mosaic spread of the monochromator crystal M, and 

on the monochromator angle 2M. In order to increase the intensity of the 

monochromatic beam at the sample position the monochromator crystal is often bent in 

vertical direction perpendicular to the diffraction plane of the experiment. In this way 

the vertical beam divergence is increased leading to a loss of resolution in reciprocal 

space. The diffracted intensity from the sample is measured as a function of the 

scattering angle 2 and the sample orientation (especially in case of a single crystal). 2 

is again defined by collimators. As there is no analysis of the energy of the  

scattered beam behind the sample, the energy resolution E/E of such a 2-axes 

diffractometer is not well defined (typically of the order of some %). In addition to the 

dominant elastic scattering also quasi-elastic and some inelastic scattering contributions 

are collected by the detector.  

Neutron filters and the problem of λ/2 contamination 

Unfortunately, the monochromator crystals not only “reflect” the desired wavelength λ 

by diffraction from the set of lattice planes (hkl) but also the higher orders of λ/2 or λ/3 

etc. from 2h,2k,2l or 3h,3k,3l to the same diffraction angle:   

sinθ=λ/dhkl = (λ/2)/d2h 2k 2l  = (λ/3)/d3h 3k 3l     (4.38)  

The only requirement is, that the higher order reflection (2h,2k,2l) or (3h,3k,3l) has a 

reasonably large structure factor (see chapter 4). Higher order contamination causes 

measurable reflection intensities at “forbidden” reflection positions and in addition to 

that can modify intensities at allowed positions. Thus it can very much affect the correct 

determination of the unit cell as well of the symmetry (from systematically absent 

reflections). The solution to this problem is to minimize the λ/2 contamination by using 

filters which suppress the higher orders stronger than the desired wavelength. One such 

type of filters uses resonance absorption effects - completely analogous to the 

suppression of the Kβ line in x-ray diffractometers. Another way to attenuate short 

wavelengths is to use the scattering from materials like beryllium or graphite. These 

filters use the fact that there is no Bragg diffraction if  > 2dmax, where dmax is the 

largest interplanar spacing of the unit cell. As we have shown above, for such long 

wavelengths the Ewald sphere is too small to be touched by any reciprocal lattice point. 

Below this critical wavelength, the neutron beam is attenuated by diffraction and this 

can be used to suppress higher order reflections very effectively. Frequently used 

materials are polycrystalline beryllium and graphite. Due to their unit cell dimensions, 

they are particularly suitable for experiments with cold neutrons because they block 

wavelengths smaller than about 3.5 A and 6 A respectively.  

 

Resolution function: 

An important characteristic of any diffractometer is its angular resolution. Fig. 4.19 

shows (on the right) the resolution function (reflection half width as a function of 

scattering angle) for the four circle single crystal neutron diffractometer HEiDi at FRM 

II shown on the left. The resolution depends on a number of factors, among them the 

collimation, the monochromator type and quality, the 2 and (hkl) of the reflection used 

for monochromatization etc. 
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Fig. 4.19: Left: Experimental setup of the four circle single crystal diffractometer 

HEiDi at FRM II. Right: Resolution function of HEiDi for different 

collimations, monochromator: Cu (220), 2ΘMono = 40° → λ = 0.873 Å. 

 

Powder Neutron Diffractometry: 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.20: Left: Typical setup of a (constant wavelength) powder neutron 

diffractometer with position sensitive detector (PSD). Right: Neutron 

powder diffractometer SPODI at FRM II  

 

Neutron Rietveld analysis: 

The conversion from 3D- to 1D-intensity data caused by the averaging over all 

crystallite orientations in a powder sample severely restricts the informative value of 

powder neutron (or x-ray) diffraction experiments and makes the resolution function of 

the instrument even more important than in the single crystal case. Even with optimized 

resolution, the severe overlap of reflections on the 2θ-axis often prohibits the extraction 
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of reliable integrated intensities from the experiment. Instead, the Rietveld method, also 

referred to as full pattern refinement, is used to refine a given structural model against 

powder diffraction data. The method, which is widely used in powder x-ray diffraction, 

has actually been invented by Hugo Rietveld in 1966 for the structural analysis from 

powder neutron data. Full pattern refinement means that along with the structural 

parameters (atomic coordinates, thermal displacements, site occupations) which are also 

optimized in a single crystal structure refinement, additional parameters like the shape 

and width of the reflection profiles and their 2θ-dependence, background parameters, 

lattice parameters etc. need to be refined.  

 

Fig. 4.21: Results of a Rietveld refinement at the magnetic phase transition of 

CoGeO3 [5], red: measured intensity, black: calculated from model, blue: 

difference, green: tick-marks at allowed reflection positions. The figure 

shows the low-angle part of two diffractograms measured at SPODI at 

35K and 30K. Note the strong magnetic reflection appearing below the 

magnetic ordering transition (in the inset).   
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Exercises 

 

E4.1  Types of Scattering Experiments 

Discuss/define the following terms:  

A. Elastic scattering, B. Inelastic scattering, C. Coherent scattering, D. Incoherent scattering 

What is the major source of incoherent elastic scattering that is specific to neutrons? 

 

E4.2  Energy and Wavelength 

Give orders of magnitudes for the energy [eV] and the wavelength [Å] of the following types 

of radiation which are being used for diffraction experiments: 

 

A. Thermal neutrons, B. x-ray photons, C. Electrons 

 

E4.3  Scattering Length 

Discuss the terms (units, similarities, differences): 

A. Elastic scattering length, B. Elastic scattering cross section,  

C. Atomic form factor (for x-rays)  

 

E4.4  The Phase Problem 

Describe, in simple terms, the “phase problem of crystallography” 

A. Formulate the diffraction experiment in terms of the Fourier transform with subsequent 

squaring of the modulus of the Fourier coefficients 

B. Discuss in how far these operations may be inverted.  

C. Describe qualitatively how the phase problem is solved.  

  

E4.5  Ewald Construction 

Sketch the Ewald-construction for a single crystal experiment. 

What is this geometric construction useful for? 

 

E4.6  Intensity Corrections 

The experimental Bragg-reflection intensity I() and the squared modulus of the calculated 

structure factor |F()|2 (from the structure factor formula) are proportional to each other.  



4.28  G. Roth 

A number of corrections have to be made to get from I() to |F()|2 or vice versa. 

 

A. Recall (from your experience with x-rays) and discuss the physical origin of these intensity 

corrections: 

 

SCALE: Scalefactor; L: Lorentz factor; A:  Absorption correction, E: Extinction correction. 

For powder methods also: M: Multiplicity, P: Preferred orientation. 

 

B. Discuss the relative importance of these factors for neutrons and x-rays. 

 

C. The polarisation correction, which is important in x-ray scattering, is missing in the 

neutron case: Discuss this fact in terms of the different physical meaning of “polarization” for 

x-rays and neutrons. 

 

E4.7  Fourier Transform 

A. Define the terms “Fourier-analysis” and “Fourier-synthesis” in the context of a diffraction 

experiment (formula and description) 

 

B. What is the purpose of calculating a Fourier synthesis in crystallography? 

 

E4.8  Filtering 

A. How does a beryllium filter work? What is it used for? 

B. Discuss why filters are also used in laboratory x-ray diffraction. 

 

E4.9  Systematic absences 

Calculate (from the structure factor formula) the systematic absences of reflections for an 

orthorhombic C-centered lattice. 
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