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8.1 Introduction 

The analysis of crystal structures and magnetic ordering is usually based on diffraction 

phenomena caused by the interaction of matter with x-rays, neutrons or electrons. Even 

though modern electron microscopy (HRTEM) can achieve atomic resolution, more 

detailed and quantitative information on the 3D atomic arrangement in crystals and on 

3D magnetic structures and spin densities requires diffraction methods. In a more 

general nomenclature, diffraction is equivalent to coherent, elastic scattering. The basic 

theory of diffraction used for structural analysis (the so called kinematical theory) is 

similar for all types of radiation. Due to the different properties of x-rays, neutrons and 

electrons and their specific interaction with matter, complementary information is 

obtained from experiments with different types of radiation. 

Considering only x-rays and thermal neutrons one finds that their wavelengths are 

similar (0.5 Å <  < 2.4 Å) but they are scattered very differently by matter: While the 

electromagnetic x-radiation is scattered from the electrons and yields the total electron 

density distribution in the crystal, the nuclear scattering of neutrons is sensitive to the 

density distribution of the nuclei and the magnetic neutron scattering probes the 

magnetisation density of unpaired electrons. 

x-ray diffraction using conventional laboratory equipment and/or synchrotron 

installations is the most frequently used method for structure analysis. Neutrons are, 

however, indispensable in a number of applications. The purpose of this chapter is to 

discuss a few typical examples of structural analysis, for which, instead of or 

complementary to x-rays, neutrons are required to solve structural problems.  

 

8.2 Diffraction Contrast Variation 

 

A great advantage of neutrons over x-rays in the context of structural analysis is the 

very much different variation of the scattering length of atoms within the periodic 

system of the elements: The contrast in conventional x-ray diffraction is directly related 

to the ratio of the number of electrons Zj of the different atoms or ions j involved. The 

atomic scattering factor fj in the structure-factor formula, which represents the Fourier 

transform of the atomic electron density distribution, is proportional to Zj (fj = Zj for 

sin = 0). Standard x-ray techniques can hardly differentiate between atoms/ions with 

a similar number of electrons (like Si and Al or Cr and Mn). Even if the atoms are fully 

ordered on different sites, x-ray diffraction just ‘sees’ the average structure.  

For neutrons the atomic scattering factor fj is replaced by the nuclear scattering length 

(or coherent scattering amplitude) bj, which is of the same order of magnitude for all 

nuclei but varies from nucleus to nucleus in a non-systematic way. bj values can be 

either positive or negative and depend on the isotopes and nuclear spin states of the 

element j (see chapter 4). 

 

Crystal structure and site occupation of (Mn1-xCrx)1+Sb. 
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As an example of contrast variation, the combination of x-ray and neutron diffraction 

information is demonstrated for the intermetallic compounds (Mn1-xCrx)1+Sb, with 

0x  1 [1]. This solid solution system is interesting for its magnetic properties: One 

end member of the solid solution series (Mn1+Sb) shows isotropic ferromagnetic 

behaviour while the other one (Cr1+Sb) is a uniaxial antiferromagnet. Intermediate 

compositions are characterized by competing magnetic interactions leading to a 

complex magnetic phase diagram. The crystal structure is closely related to the 

hexagonal NiAs-type structure (space group: P63/mmc) with some additional partial 

occupation (14) of the interstitial site 2(d) (see Fig. 8.1): 

 
         

Fig. 8.1:  Left: NiAs structure, right: (Mn1-xCrx)1+Sb structure  

 

Conventional x-ray diffraction can hardly differentiate between chromium (ZCr= 24) 

and manganese (ZMn= 25) but still yields information on the overall occupation 

probabilities by (Mn,Cr) for site 2(a) (denoted as a) and site 2(d) (denoted as d). The Sb 

position is assumed to be fully occupied, thus serving as an internal standard for the 

scattering power. 

The compound formula can now be reformulated site-specifically as: 
 

     (Mn1-y Cry)a (Mn1-z Crz)d Sb 
        site 2(a)         site 2(d) 
 

corresponding to a chemical composition of Mn[(1-y)a + (1-z)d] Cr[ya +zd] Sb.  

 

On the other hand, the nuclear scattering lengths of Cr and Mn for neutron diffraction 

are extremely different with bCr = +3.52 fm and bMn = -3.73 fm (see also chapter 4). 

In the structure analysis of the neutron data, site-specific effective scattering lengths beff 

(2a) and beff (2d) are refined, which in turn are expressed as: 

beff(2a) = a·[(1-y)·bMn + y·bCr]   and   beff(2d) = d·[(1-z)·bMn + z·bCr] 

solving for the unknown parameters y and z gives: 

y = [beff(2a)/a - bMn] / [bCr - bMn]   and   z = [beff(2d)/d - bMn] / [bCr - bMn]. 
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The combination of the overall occupation probabilities a and d - from conventional x-

ray studies – with the effective scattering lengths beff(2a) and beff(2d) determined in a 

neutron diffraction experiment allows the evaluation of the Cr and Mn concentrations 

on the different sites 2(a) and 2(d). 

It is evident, that the individual (Cr,Mn) distributions on the two crystallographically 

different sites 2(a) and 2(d) are not accessible merely by a chemical analysis. For most 

of the samples studied, the site 2(a) was found to be fully occupied: a  1.0. But the 

formula (Mn1-xCrx)1+Sb used normally is only correct for the special case of equal Cr : 

Mn ratios on both sites: 

x = y = z   and   1 +  = a + d. 

Note that, in general, a statistical occupation of one crystallographic site with three 

kinds of scatterers - e.g. Mn, Cr and "vacancies" - requires at least two independent 

experiments with sufficiently different relative scattering power of the atoms involved 

to determine the fractional occupancies.  

The detailed information on the (Cr,Mn) distribution is needed to explain the magnetic 

properties of these intermetallic compounds, but we will not further elaborate on this. 

 

8.3 The hydrogen problem in structural analysis 

 

The determination of the structural parameters (coordinates, displacement parameters) 

of hydrogen atoms in crystals is a special problem involving again the different 

properties of x-rays and neutrons. It is obvious that H or D atoms with Z = 1 give only a 

small contribution to the electron density and, therefore, they are hardly visible in x-ray 

structure analysis, particularly if heavy atoms are also present in the structure. However, 

there is an even more fundamental problem: The single electron of H or D is engaged in 

the chemical bonding and is by no means localised at the proton/deuteron position. 

Therefore, bond distances from x-ray diffraction involving hydrogen are notoriously 

wrong and any comparison with quantum mechanical calculations is quite hard to 

perform. This lack of sound experimental information is in sharp contrast to the 

importance of hydrogen bonding in solids, particularly in biological molecules like 

proteins, where hydrogen bonds govern to a large extent structures and functionalities of 

these ‘bio-catalysts’. A combination with neutron diffraction experiments is important 

to determine the structural parameters of the H/D atoms properly. More generally, the 

structure analysis by neutron diffraction yields separately and independently from the x-

ray data the structure parameters of all atoms including the mean square displacements 

due to static and dynamic (even anharmonic) effects.  

 

H/D ordering in ferroelectric RbH2PO4 (RDP): 

 

The hydrogen problem in crystal structure analysis is of special importance for 

structural phase transitions driven by proton ordering. KH2PO4 (KDP) is the most well-

known representative of hydrogen-bonded ferroelectrics. Here, we discuss the isotypic 

RbH2PO4 (RDP). The crystal structure consists of a three-dimensional network of PO4-

groups linked by strong hydrogen bonds (Fig. 8.2). 
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Fig. 8.2: Crystal structure of the paraelectric phase of RDP  (RbH2PO4) with a split-

model representation of the hydrogen disorder [3].  

 

In the paraelectric phase at room temperature KDP as well as RDP crystallise in the 

tetragonal space group I42d, where the H-atoms are dynamically disordered in 

symmetric O···H···O bonds, which are almost linear with short O–O distances, 

typically in the range of 2.5 Å. The disordered H-distribution may be interpreted as 

corresponding to a double-well potential [2].  

Figures 8.3 and 8.4 show the corresponding results for RDP, obtained from single 

crystal neutron diffraction [3]. 
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Fig. 8.3: Local configuration of two PO4-tetrahedra in the paraelectric phase of RDP  

(RbH2PO4)(at Tc + 4 K) linked by a strong, disordered hydrogen bond [3].  

 

 
 

Fig. 8.4: Difference-Fourier-plot of the negative proton density in the hydrogen bond 

of paraelectric RDP indicated by broken contour line [3]. The double-well 

potential model used to describe this density is inscribed in green. 

 

The two very close hydrogen positions with 50% occupation probability are, of course, 

an artefact of the time-space averaging that is inherent to diffraction. In this case, the 

hydrogen disorder is assumed to be a dynamic hopping process between the two 

energetically degenerate sites.  

At Tc = 147 K, RDP transforms to a ferroelectric phase of orthorhombic symmetry 

(space group: Fdd2) in which the protons order in short asymmetric O-H···O bonds 

(Fig. 8.5).  The PO4-tetrahedra show a characteristic deformation with two shorter and 

two longer P-O distances due to a transfer of electron density to the covalent O–H 

bonds. The electrical dipole moments are oriented ||z which give rise to a polarisation 

along the c-direction. 

 

 
model: dynamic H-disorder according to a double-well potential 
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Fig. 8.5: Ferroelectric, hydrogen-ordered structure of RDP close to the phase 

transition at TC – 1 K (major changes indicated by arrows, presentation as 

in Figure 8.3) [3].  

The phase transition temperatures of KDP-type compounds change drastically when H 

is substituted by D. For K(H,D)2PO4, for instance, the para- to ferroelectric TC changes 

from 122 K in the protonated to 229 K in the deuterated compound. This huge H/D-

isotope effect proves that hydrogen-ordering and -dynamics is the major factor 

controlling this phase transition. Another type of H/D-isotope effect was found for 

Tl(H,D)2PO4 (TDP/DTDP) and  Rb(H,D)2PO4 (RDP/DRDP), where a different poly-

morphism between the protonated and deuterated phases exists. 

Clearly, the use of neutron diffraction is detrimental to a better understanding of these 

compounds and their interesting physical properties. 

 

8.4 Atomic coordinates and displacement parameters 

As discussed above, neutron diffraction is very useful for obtaining precise atomic 

coordinates and displacement parameters. The improved accuracy (compared to x-rays) 

stems mainly from the absence of the form-factor fall-off. We will use measurements on 

Cobalt-olivine, Co2SiO4, (crystal size 3 x 2 x 2 mm) taken at the four-circle 

diffractometer HEiDi at the hot-neutron source of the FRM II reactor ( = 0.552 Å) for 

demonstrating this advantage for the thermal displacements: 
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Fig. 8.6: Structure  of  Co2SiO4  olivine  at  room  temperature, projected along c. 

Green: SiO4-tetrahedra, Dark blue: Co(1)O6-octahedra, light blue: 

Co(2)O6-octahedra. Displacement ellipsoids are plotted at the 95% 

probability level (from [4]). 

The olivine structure (fig. 8.6) consists of chains of two types of edge-sharing CoO6-

octahedra connected by SiO4-tetrahedra. A large data set with 1624 independent 

reflections up to sin θ/λ = 1.05 Å
-1

 had been measured. The data were then successively 

cut off in shells of sin θ/λ and the resulting partial data sets were used to analyse the dis-

placement parameters. Figure 8.7 shows two interesting observations: First of all, the 

precision improves significantly with increasing (sin θ/λ)max, as is evident from the 

decreasing size of the error bars. In the x-ray case, high angle reflections are usually 

very weak and their measurement does often not lead to improved precision. Secondly, 

there is a systematic change of the displacement values themselves, resulting from 

systematic errors that vary with (sin θ/λ)max. 

 

 

 

 

 

 

 

 

Fig. 8.7: Left: Statistical (error bars) and systematic errors of isotropic displace-

ments parameters in Co2SiO4 as a function of measured sin θ/λ range from 

single-crystal neutron diffraction data at room temperature [4]. Right: 
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Clinographic view of the CoO6 and SiO4 polyhedra in Co2SiO4 at room 

temperature [4]. 

High dhkl-value resolution data from neutron diffraction is also useful to derive precise 

temperature dependent displacement parameters (fig. 8.8): 

 

Fig. 8.8: Temperature dependence of the isotropic displacement parameters of 

Co2SiO4 [4]. 

Just as in the case of high quality single crystal x-ray diffraction data, anisotropic 

displacement parameters can be determined as well. In addition to that, the quality of 

single crystal neutron data also often allows refining anharmonic displacement 

parameters. Anharmonic oscillations of atoms in crystals occur if the atoms are 

vibrating in a non-parabolic potential well. In such cases, the harmonic approximation, 

which is the basis of the description of thermal displacements by the Debye-Waller 

factor, fails. Analysis of the anharmonic displacements allows to reconstruct the non-

parabolic potential at the site of the vibrating atom.  

 

8.5 Magnetic structures from neutron diffraction 

Cobalt-Olivine, Co2SiO4, orders magnetically below about 50 K. The magnetic 

moments of the Co
2+

-ions turn from a paramagnetic phase with no long range order of 

the magnetic moments into an antiferromagnetically ordered arrangement. We use 

Co2SiO4 again to briefly demonstrate the application of neutron diffraction to the 

structural analysis of magnetic structures. This time, a powder neutron diffraction 

experiment has been performed at the diffractometer D20 (ILL, France) in its high-

resolution mode, at temperatures between 70K and 5K, with a neutron wavelength of  

= 1.87 Å and approximately 2 g of powdered Co2SiO4 [4]. 
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Fig. 8.9: Thermal evolution of the neutron powder diffraction pattern (low angle 

part) of Co2SiO4 [4]. 

 

At about 50 K, new magnetic reflections (001), (100), (110), (300) etc. appear (fig. 8.9). 

The nuclear reflections don’t change much at the magnetic phase transition. The new 

reflections can be indexed with the same unit cell as the nuclear reflections, but they 

were forbidden in the paramagnetic phase with space group P n m a. Obviously, the 

symmetry has changed at the magnetic ordering transition. The task is then - just as in 

‘ordinary’ structure determination - to find a structural model (that is: magnetic 

moments and their orientation on the magnetic ions, here Co
2+

) that fits the observed 

positions and intensities of the magnetic Bragg peaks. Magnetic structure determination 

is outside the scope of this chapter, but assumed such a model has been constructed, it 

can be refined - in the case of powder data by the Rietveld method (fig. 8.10). 
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Fig. 8.10: Neutron powder diffraction pattern (dots), Rietveld fit (black line) and 

allowed Bragg reflections (green marks) at 5 K of Co2SiO4 [4]. 

 

The lower trace (blue) is the difference Iobs - Icalc on the same scale.  The upper row of 

the green marks shows Bragg reflections corresponding to the nuclear phase and the 

lower row represents the allowed positions of the magnetic peaks. Some of the Bragg 

peaks are indexed. ‘N’ and ‘M’ denote the nuclear and magnetic contributions, 

respectively [4]. Note that the magnetic Bragg peaks are only visible at low diffraction 

angles. 

 

 
Fig. 8.11: Graphical representation of the magnetic structure of Co2SiO4 below 50 K. 

The non-magnetic atoms (Si and O) are excluded for simplicity. The figure 

shows the zigzag chains of Co(1) and Co(2) in layers perpendicular to the  c 

axis [4]. 
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From the Rietveld refinements, one can derive the exact spin orientation (fig. 8.11) as 

well as parameters describing quantitatively the magnetic moments on the two 

symmetrically non-equivalent Co
2+

-sites (see table below). However, magnetic neutron 

diffraction from single crystals often gives additional and more accurate information: 

 

 

 

 

 

 

 

 

 

 

 

 

 

The table shows cartesian (Mx, My and Mz) and spherical (M, φ and θ) components of 

the Co1 and Co2 magnetic moments according to the single-crystal neutron diffraction 

data at 2.5 K. The directions of the magnetic moments for other cobalt ions in the unit 

cell can be obtained by applying the symmetry operations of the magnetic space group 

(Schubnikov group) Pnma. 

 

8.6 Electron densities from x-rays and neutrons 

 

Another advanced application of neutron diffraction in structural analysis is the 

determination of 3-dimensional high resolution maps of the electron density in the unit 

cell to study, for instance, details of the chemical bonding. The most involved method 

of electron density studies (called x-N-synthesis) uses a combination of high quality 

single crystal neutron and x-ray diffraction experiments. In the present case, a single 

crystal of Co2SiO4 with dimensions 3 x 2 x 2 mm, was measured on the four-circle 

diffractometer HEiDi at the hot-neutron source of the FRM II reactor (Garching) at  = 

0.552 Å, the single crystal x-ray (synchrotron) experiment was performed on 

Diffractometer D3 at the synchrotron facility HASYLAB/DESY (Hamburg) with a 

Co2SiO4-sphere, diameter 150 μm as the sample and an x-ray wavelength of  = 0.5 Å.  

The next step is to take the x-ray-data, do a Fourier-transform (Fourier-synthesis) to 

obtain the electron density map: 

 

 (r) = 1/V ·      F() · exp[2i(·r)],   with  F() = |F()|·exp[i()].  

 

The  phases () are calculated from the atomic model (structure factor equation, see ch. 

4), the moduli |F()| are taken from the measured x-ray intensities. The result is a 3-

dimensional map of the total electron density (r) within the unit cell: 


  
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Fig. 8.12: Electron density distribution (r) of Co2SiO4 at 12 K from Fourier synthesis 

of x-ray data. Contours range from −8 e/Å
3
 (blue) to 10 e/Å

3
 (red). A plane 

which intersects the Co1O6 octahedron and contains the Co1, O1 and O3 

atoms is shown together with a sketch of the crystal structure [4]. 

 

 

In favourable cases, such a map already shows interesting features of the (anisotropic) 

bonding electron density, however, the information content of the map can be very 

significantly improved by taking the coordinates and displacement parameters from the 

more accurate neutron diffraction experiment (see above for the reasons) and calculate, 

in a second step, the so called deformation density. This is done by subtracting from the 

total electron density (r) the density ρ(r)spherical corresponding to a superposition of 

spherical atoms at the nuclear positions. More specifically: atomic positions xj, yj, zj and 

thermal displacements Tj of atoms j derived from the neutron experiment, ‘decorated’ 

with the calculated spherical single atom electron densities. 

ρ(r)deform = ρ(r) −  ∑ ρ(r)spherical, where the sum runs over all atoms in the unit cell.  

ρ(r)spherical corresponds to the expectation value of the electron density within the unit 

cell without any effects which are due to chemical bonding. The deformation density 

then represents the deformation of the charge distribution as a result of the formation of 

chemical bonds. Figure 8.13 shows such a deformation density map for Co2SiO4. In 

favourable cases, the electron density in the hybridized bonding orbitals (in this case of 

Co3d- and O2p character) can be directly observed. 
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Fig. 8.13: Deformation density from the x-N-difference Fourier map of Co2SiO4  at  

300 K: Section through the O1–Co1–O3 plane  The difference density varies 

from −1.25 e/Å
3
  (blue) to 1.15 e/Å

3
  (red) [4]. 

 

8.7 Magnetization densities from neutron diffraction 

As a final example for the application of neutron diffraction in structural analysis, we 

briefly sketch how a 3-dimensional map of the magnetization density, that is: the 

density of magnetic moments (spin- as well as orbital-moments) within the unit cell can 

be determined. These maps are sometimes lucidly called ‘spin density maps’, but in 

systems with non-vanishing orbital moments, the term magnetization density is really 

the correct one. 

The experiment is performed by polarized neutron diffraction on a single crystal using 

the flipping ratio method For details on the experimental method see the chapter on 

magnetic scattering. The flipping ratio method allows to separate nuclear and magnetic 

contributions to the diffracted intensities. It is performed above the magnetic phase 

transition in the paramagnetic state (in the case of Co2SiO4 above TN=50K) and the 

sample is in a strong external magnetic field (here: 7 T). 207 Bragg reflection flipping 

ratios were measured at diffractometer 5C1 of the ORPHÉE reactor (Laboratory Léon 

Brillouin, CEA Saclay, France) for Co2SiO4 at 70K  up to sin θ/λ ≈ 0.62 Å
−1

 at a neutron 

wavelength of λ = 0.845 Å. Given the flipping ratios and the nuclear structure factors, 

the magnetic structure factors can be calculated which are then Fourier transformed to 

give the spatially resolved magnetization density shown in figure 8.14 in a section 

through the unit cell of Co2SiO4. 
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Fig. 8.14: Reconstruction of  the density (projected along the b axis) corresponding to 

the observed magnetization distribution of Co2SiO4  at 70 K with contours 

ranging from 0 μB/Å
3
  (blue) to 2 μB/Å

3
  (red) [4]. 

 

 

Among the interesting features of this map is the observation of magnetization density 

on the, nominally non-magnetic, oxygen atoms coordinating the Co
2+

-ions. These 

‘transferred moments’ are direct experimental evidence for the hybridization of the 

oxygen 2p- with Co-3d-orbitals which is not only responsible for covalent bonding but 

also for the magnetic exchange interaction along the Co-O-Co-bond network. 
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Exercises 

 

E8.1  Rietveld refinement 

A. What is the basic problem in refining crystal structures from powder diffraction data?  

B. Sketch the fundamental idea to solve this problem. 

C. What kind of data can be obtained from a Rietveld refinement? 

(collect a list and sort into categories: Structural parameters, instrumental parameters, 

others) 

D. Can powder diffraction data be used for structure determination? (yes or no plus 

arguments) 

 

E8.2  Thermal displacement Parameters 

A. Write down the (isotropic) displacement factor ("Debye-Waller-factor”) that enters the 

structure factor formula (for x-rays) 

 

B. Discuss the physical origin of this factor. 

 

C. Describe the overall effect of this displacement factor on the diffracted intensities. 

 

D. Do you expect the formal description to be fundamentally different for neutron diffraction 

as compared to x-ray diffraction?  

 

E. It is generally said, that neutron diffraction yields much more precise displacement 

parameters than x-ray diffraction. Correct? If so: Why? 

 

F. What are anisotropic displacement parameters and how can they be visualized? 

 

G. Is it correct, that all atoms in cubic crystals have to vibrate isotropically? 

 

H. Discuss the symmetry restrictions (shape and orientation of the ellipsoid) following from 

the point symmetry at the atomic sites for the following cases: -1, 2/m, 4/m -3 2/m  

 

E8.3  Displacements at low temperatures 

A. Discuss the reduction of the displacement parameters with decreasing temperature 

(fig.8.8): Is this effect real or an artefact? Arguments?  

 

B. Discuss the non-zero values of the displacements factors for T => 0 K in the same figure 

and the different values for different atom types. 
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E8.4  Choice of neutron wavelengths 

A. Magnetic neutron diffraction experiments are usually done with rather long wavelengths 

(see chapter 8.7:   = 1.87 Å): Why? 

 

B. Diffraction experiments aiming at obtaining precise atomic coordinates and displacements 

are done with much shorter wavelengths (see chapter 8.8:  = 0.552 Å): Why? 

 

C. Powder diffraction experiments usually use longer wavelengths than single crystal 

experiments: Why? 

(Discuss this issue in terms of the competition between angular and direct space resolution.) 

 

E8.5  Density maps from diffraction experiments 

A. How can one obtain (from diffraction) the bonding electron density map? 

(discuss the experiment(s), the necessary calculations and the information obtained) 

 

B. Discuss the difference between the bonding electron density map and a magnetization 

density map. (which kind of data is used, what is the specific information?) 

 

E8.6  Hydrogen bonded crystals 

Assume you have grown a new hydrogen-bonded compound in the form of a single crystal 

and you want to know how the hydrogen bonds are arranged within the structure. 

 

A. Collect arguments pro & con the usage of single crystal x-ray- vs. neutron diffraction 

experiment to study your new crystal. 

(Discuss availability / costs of the experiment, required size of the crystal, scattering power of 

hydrogen, absorption & incoherent scattering, additional effort to deuterate etc.) 
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