000135068 001__ 135068
000135068 005__ 20250129092431.0
000135068 0247_ $$2doi$$a10.1088/0957-0233/24/8/085005
000135068 0247_ $$2ISSN$$a1361-6501
000135068 0247_ $$2ISSN$$a0957-0233
000135068 0247_ $$2WOS$$aWOS:000321943100014
000135068 037__ $$aFZJ-2013-03056
000135068 041__ $$aEnglish
000135068 082__ $$a600
000135068 1001_ $$0P:(DE-Juel1)143969$$aZhao, Y$$b0$$eCorresponding author$$ufzj
000135068 245__ $$aBroadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects
000135068 260__ $$aBristol$$bIOP Publ.$$c2013
000135068 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1384336710_23682
000135068 3367_ $$2DataCite$$aOutput Types/Journal article
000135068 3367_ $$00$$2EndNote$$aJournal Article
000135068 3367_ $$2BibTeX$$aARTICLE
000135068 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000135068 3367_ $$2DRIVER$$aarticle
000135068 500__ $$3POF3_Assignment on 2016-02-29
000135068 520__ $$aElectrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with inductive coupling between the double wire pairs for current injection and potential measurement and capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with 8 electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now be made in the mHz to kHz frequency range. This increased accuracy in the kHz range will allow a more accurate field characterization of the complex electrical conductivity of soils and sediments, which may lead to improved estimation of saturated hydraulic conductivity from electrical properties. Although the correction methods have been developed for a custom-made EIT system, they also have potential to improve to the phase accuracy of EIT measurements made with commercial systems relying on multicore cables.
000135068 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000135068 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000135068 7001_ $$0P:(DE-Juel1)133962$$aZimmermann, Egon$$b1
000135068 7001_ $$0P:(DE-Juel1)129472$$aHuisman, J A$$b2$$ufzj
000135068 7001_ $$0P:(DE-Juel1)144273$$aTreichel, A$$b3$$ufzj
000135068 7001_ $$0P:(DE-Juel1)133958$$aWolters, Bernd$$b4
000135068 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, S$$b5$$ufzj
000135068 7001_ $$0P:(DE-HGF)0$$aKemna, A.$$b6
000135068 773__ $$0PERI:(DE-600)1362523-8$$a10.1088/0957-0233/24/8/085005$$gVol. 24, no. 8, p. 085005 -$$n8$$p085005 -$$tMeasurement science and technology$$v24$$x1361-6501$$y2013
000135068 8564_ $$uhttp://iopscience.iop.org/0957-0233/24/8/085005/
000135068 8564_ $$uhttps://juser.fz-juelich.de/record/135068/files/FZJ-2013-03056.doc$$yRestricted
000135068 909__ $$ooai:juser.fz-juelich.de:135068$$pVDB
000135068 909CO $$ooai:juser.fz-juelich.de:135068$$pVDB:Earth_Environment$$pVDB
000135068 9141_ $$y2013
000135068 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000135068 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000135068 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000135068 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000135068 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000135068 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000135068 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000135068 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000135068 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000135068 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000135068 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000135068 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)143969$$aZentralinstitut für Elektronik$$b0$$kZEA-2
000135068 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143969$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000135068 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)133962$$aZentralinstitut für Elektronik$$b1$$kZEA-2
000135068 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133962$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000135068 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000135068 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144273$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000135068 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)133958$$aZentralinstitut für Elektronik$$b4$$kZEA-2
000135068 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133958$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000135068 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)142562$$aZentralinstitut für Elektronik$$b5$$kZEA-2
000135068 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000135068 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)VDB736$$aExternal Institute$$b6$$kExtern
000135068 9132_ $$0G:(DE-HGF)POF3-259H$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vAddenda$$x0
000135068 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000135068 920__ $$lyes
000135068 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000135068 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x1
000135068 980__ $$ajournal
000135068 980__ $$aVDB
000135068 980__ $$aUNRESTRICTED
000135068 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000135068 980__ $$aI:(DE-Juel1)IBG-3-20101118
000135068 981__ $$aI:(DE-Juel1)PGI-4-20110106
000135068 981__ $$aI:(DE-Juel1)IBG-3-20101118