000135189 001__ 135189
000135189 005__ 20240610120300.0
000135189 0247_ $$2doi$$a10.1111/jace.12182
000135189 0247_ $$2ISSN$$a0002-7820
000135189 0247_ $$2ISSN$$a1551-2916
000135189 0247_ $$2WOS$$aWOS:000317407600039
000135189 037__ $$aFZJ-2013-03154
000135189 082__ $$a660
000135189 1001_ $$0P:(DE-HGF)0$$aBretos, Iñigo$$b0$$eCorresponding author
000135189 245__ $$aDysprosium-Doped (Ba,Sr)TiO 3 Thin Films on Nickel Foilsfor Capacitor Applications
000135189 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2013
000135189 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1396507615_15295
000135189 3367_ $$2DataCite$$aOutput Types/Journal article
000135189 3367_ $$00$$2EndNote$$aJournal Article
000135189 3367_ $$2BibTeX$$aARTICLE
000135189 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000135189 3367_ $$2DRIVER$$aarticle
000135189 500__ $$3POF3_Assignment on 2016-02-29
000135189 520__ $$aThe substitution in (Ba0.70Sr0.30)TiO3 thin films by the rare-earth element dysprosium prepared at 1000°C by chemical solution deposition on nickel foils was investigated. The relatively large thermal budget applied (via annealing temperature) is shown to enhance the solubility of the Dy3+doping ion into the crystal lattice of the perovskite films. Preference for B-site occupancy of this amphoteric cation was further promoted by the addition of BaO excess (1 mol%), which results in slightly larger grains in the films as observed by scanning electron microscopy. Despite this Ba-rich composition, the presence of secondary phases in the thin films was not detected by X-ray diffraction. Transmission electron microscopy revealed no evidence for local segregation of Dy at grain boundaries, neither the formation of NiO at the interface between the film and the metal foil was observed. The substitution of Ti4+ by Dy3+ leads to the formation of strong electron acceptors in the system, which balance the number of ionized oxygen vacancies arisen from the reductive crystallization atmosphere used during processing. As a consequence, the dielectric loss (tan σ) and leakage conduction measured in the resulting thin-film capacitors were significantly reduced with respect to nominally undoped samples. The improvement of this capacitor feature, combined with the relatively high permittivities obtained in the films (490–530), shows the effectiveness of dysprosium doping within a thin-film fabrication method for potential application into the multilayer ceramic capacitor technology.
000135189 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000135189 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000135189 7001_ $$0P:(DE-HGF)0$$aSchneller, Theodor$$b1
000135189 7001_ $$0P:(DE-HGF)0$$aHennings, Detlev F.$$b2
000135189 7001_ $$0P:(DE-HGF)0$$aPark, Daesung$$b3
000135189 7001_ $$0P:(DE-Juel1)131029$$aWeirich, Thomas$$b4
000135189 7001_ $$0P:(DE-HGF)0$$aParanthaman, P.$$b5
000135189 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b6$$ufzj
000135189 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.12182$$gVol. 96, no. 4, p. 1228 - 1233$$n4$$p1228 - 1233$$tJournal of the American Ceramic Society$$v96$$x0002-7820$$y2013
000135189 8564_ $$uhttps://juser.fz-juelich.de/record/135189/files/FZJ-2013-03154.pdf$$yRestricted$$zPublished final document.
000135189 909CO $$ooai:juser.fz-juelich.de:135189$$pVDB
000135189 9141_ $$y2013
000135189 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000135189 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000135189 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000135189 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000135189 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000135189 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000135189 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000135189 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000135189 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000135189 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000135189 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000135189 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000135189 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131029$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000135189 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000135189 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000135189 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000135189 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000135189 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000135189 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000135189 980__ $$ajournal
000135189 980__ $$aVDB
000135189 980__ $$aI:(DE-Juel1)PGI-7-20110106
000135189 980__ $$aI:(DE-Juel1)PGI-5-20110106
000135189 980__ $$aI:(DE-82)080009_20140620
000135189 980__ $$aUNRESTRICTED
000135189 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000135189 981__ $$aI:(DE-Juel1)PGI-5-20110106