000135265 001__ 135265
000135265 005__ 20240708132758.0
000135265 037__ $$aFZJ-2013-03219
000135265 041__ $$aEnglish
000135265 1001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b0$$eCorresponding author$$ufzj
000135265 1112_ $$aINORGANIC MEMBRANES FOR GREEN CHEMICAL PRODUCTION AND CLEAN POWER GENERATION SUMMER SCHOOL$$cValencia$$d2013-09-04 - 2013-09-06$$wSpanien
000135265 245__ $$aTHIN-FILM MANUFACTURING OF INORGANIC OXYGEN TRANSPORT MEMBRANES BY PHYSICAL VAPOR DEPOSITION
000135265 260__ $$c2013
000135265 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1376987813_16814
000135265 3367_ $$033$$2EndNote$$aConference Paper
000135265 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000135265 3367_ $$2ORCID$$aOTHER
000135265 3367_ $$2DRIVER$$aconferenceObject
000135265 3367_ $$2BibTeX$$aINPROCEEDINGS
000135265 520__ $$aKeywords: oxygen transport membrane, physical vapor deposition
Gases with high oxygen content or even pure oxygen can be used in certain future power plants for the combustion process (e.g. so-called OXYFUEL process), or in e.g. production processes in glass and cement industry. Inorganic membrane systems are considered as an efficient way to separate oxygen from air. It is evident that – as long as materials with extremely high oxygen permeation are not available – high oxygen fluxes through a membrane require thin membranes.
This paper discusses the manufacturing of thin inorganic oxygen transport membranes by physical vapor deposition (PVD). After a short review of the technology in general, the focal point of the presentation are ion-assisted techniques for the deposition of ceria-, zirconia- and perovskite-based oxygen transport membranes. Ion-assisted processes lead to layers with high density but also to higher compressive stresses, which the entire arrangement has to sustain. As a major finding from the experiments, a balancing of layer density and mechanical stress is necessary. Moreover, it is illustrated that the surface morphology of the substrate crucially determines the morphology of the PVD layers.
000135265 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0
000135265 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000135265 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b1$$ufzj
000135265 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b2$$ufzj
000135265 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, Hans Peter$$b3$$ufzj
000135265 909CO $$ooai:juser.fz-juelich.de:135265$$pVDB
000135265 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000135265 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000135265 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000135265 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000135265 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000135265 9141_ $$y2013
000135265 920__ $$lyes
000135265 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000135265 980__ $$aabstract
000135265 980__ $$aVDB
000135265 980__ $$aUNRESTRICTED
000135265 980__ $$aI:(DE-Juel1)IEK-1-20101013
000135265 981__ $$aI:(DE-Juel1)IMD-2-20101013