Electrocatalysis and Catalyst Degradation Challenges in Proton Exchange Membrane Fuel Cells

H.A. Gasteiger, D.R. Baker, R.N. Carter, W. Gu, Y. Liu, F.T. Wagner, P.T. Yu

This document appeared in

Detlef Stolten, Thomas Grube (Eds.):

18th World Hydrogen Energy Conference 2010 - WHEC 2010

Parallel Sessions Book 1: Fuel Cell Basics / Fuel Infrastructures

Proceedings of the WHEC, May 16.-21. 2010, Essen

Schriften des Forschungszentrums Jülich / Energy & Environment, Vol. 78-1

Institute of Energy Research - Fuel Cells (IEF-3)

Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, 2010

ISBN: 978-3-89336-651-4

Electrocatalysis and Catalyst Degradation Challenges in Proton Exchange Membrane Fuel Cells

Hubert A. Gasteiger, Daniel R. Baker, Robert N. Carter, Wenbin Gu, Yuxin Liu, Frederick T. Wagner, and Paul T. Yu

Abstract

After a brief review of the kinetics of the cathodic oxygen reduction and the anodic hydrogen oxidation reaction, a fundamental membrane electrode assembly performance model is outlined, which demonstrates that a 4–10-fold reduced amount of platinum is required for commercially viable large-scale vehicle applications. The various catalyst technology roadmaps to achieve this goal are discussed. With the increasing number of prototype proton exchange membrane fuel cell (PEMFC)-powered vehicles, catalyst durability has also become a strong focus of academic and industrial R&D. Therefore, the key issues of platinum sintering/dissolution under dynamic vehicle operation and of carbon-support corrosion during PEMFC startup/shutdown are reviewed.

Copyright

Stolten, D. (Ed.): *Hydrogen and Fuel Cells - Fundamentals, Technologies and Applications*. Chapter 1. 2010. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.