

# **A Pilot Study of Nitrogen Composition and Effect on Biohydrogen Production**

S.-S. Cheng, M.-D. Bai, Y.-C. Chao, Y.-H. Lin

This document appeared in

Detlef Stolten, Thomas Grube (Eds.):

18th World Hydrogen Energy Conference 2010 - WHEC 2010

Parallel Sessions Book 2: Hydrogen Production Technologies – Part 1

Proceedings of the WHEC, May 16.-21. 2010, Essen

Schriften des Forschungszentrums Jülich / Energy & Environment, Vol. 78-2

Institute of Energy Research - Fuel Cells (IEF-3)

Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, 2010

ISBN: 978-3-89336-652-1

# Biohydrogen Production from Combined Dark-photo Fermentation under a high Ammonia Content in the Dark Fermentation Effluent

**Chun-Yen Chen<sup>1,2</sup>, Yung-Chung Lo<sup>1</sup>, Kuei-Ling Yeh<sup>1</sup>, Jo-Shu Chang<sup>1,2,3</sup>**

<sup>1</sup> Department of Chemical Engineering, National Cheng Kung University

<sup>2</sup> Sustainable Environment Research Center, National Cheng Kung University

<sup>3</sup> Microalgae Biotechnology and Bioengineering Laboratory, Center for Biotechnology and Biosciences, National Cheng Kung University, Tainan, Taiwan

## Abstract

Integrated dark and photo (two-stage) fermentation was employed to enhance the performance of H<sub>2</sub> production. First, the continuous dark fermentation using indigenous *Clostridium butyricum* CGS5 was carried out at 12 h HRT and fed with sucrose at a concentration of 18750 mg/l. The overall H<sub>2</sub> production rate and H<sub>2</sub> yield were fairly stable with a mean value of 87.5 ml/l/h and 1.015 mol H<sub>2</sub>/mol sucrose, respectively. In addition, a relatively high ammonia nitrogen content (574 mg/l) in the dark fermentation effluent was observed. The soluble metabolites from dark fermentation, consisting mainly of butyric, lactic and acetic acids, were directly used as the influent of continuous photo-H<sub>2</sub> production process inoculated with *Rhodopseudomonas palutris* WP 3-5 under the condition of 35°C, 10000 lux irradiation, pH 7.0 and 48 h HRT. The maximum overall hydrogen production rate from photo fermentation was 16.4 ml H<sub>2</sub>/l/h, and the utilization of the soluble metabolites could reach 90%. The maximum H<sub>2</sub> yield dramatically increased from 1.015 mol H<sub>2</sub>/mol sucrose (in dark fermentation only) to 6.04 mol H<sub>2</sub>/mol sucrose in the combined dark and photo fermentation. Surprisingly, the operation strategy applied in this work was able to attain an average NH<sub>3</sub>-N removal efficiency of 92%, implying that our photo-H<sub>2</sub> production system has a higher NH<sub>3</sub>-N tolerance, demonstrating its high applicability in an integrated dark-photo fermentation system.

## 1 Introduction

Hydrogen is a clean energy since combustion of H<sub>2</sub> produces only water without greenhouse gases. Hydrogen can also be directly utilized by hydrogen fuel cell to generate electricity at very high efficiency [1], thereby being considered a promising alternative energy carrier of the future [2,3]. To this end, developing hydrogen production technology leading to a sufficient and sustainable H<sub>2</sub> supply is highly demanded. Biological H<sub>2</sub> production considered as the most environmentally friendly route of producing H<sub>2</sub> [4], thereby fulfilling the goals of recycling of renewable resources and clean energy production [5]. Hydrogen can be produced biologically through dark fermentation and photo fermentation [6]. These routes all possess advantages and drawbacks, but they seem to interact complementarily. Thus, effective integration of the three pathways may lead to optimal performance of biohydrogen

production [7]. In this study, sucrose was used in a dark-fermentation batch bioreactor with *Clostridium butyricum* CGS5 to produce hydrogen and volatile fatty acids. The effluent from dark fermentation broth (containing mainly volatile fatty acids) was continuously introduced to photo fermentation culture inoculated by *Rhodopseudomonas palustris* WP3-5. The stability of continuous operation of the integrated dark/photo H<sub>2</sub> fermentation system was evaluated.

## 2 Materials and Methods

### 2.1 Bacterial strain and cultivation medium

The strain used for dark fermentation was *Clostridium butyricum* CGS5 isolated from municipal sewage sludge in central Taiwan [8]. The *Rhodopseudomonas palustris* WP3-5 isolated from a swine wastewater treatment plant located in central Taiwan [9] was used for phototrophic H<sub>2</sub> production. The culture medium was using 2000 mg/l sodium acetate as a sole carbon substrate. The cells were cultivated at 32°C anaerobically for 48 h under a light intensity of approximately 50 W/m<sup>2</sup> (illuminated by tungsten filament lamp). The initial pH value of medium prior to incubation was adjusted to 7.0-7.1. Argon gas was used to create an anaerobic condition.

### 2.2 Setup of the bioreactor

The batch dark H<sub>2</sub> fermentation conducted by inoculating 3 ml of *C. butyricum* CGS5 into 200 ml flasks containing 150 ml of dark-fermentation medium, which was incubated at 37°C and an initial pH of 7.5. A continuously stirred tank reactor (CSTR) was also conducted to produce H<sub>2</sub> from sucrose via dark fermentation using *C. butyricum* CGS5 as the H<sub>2</sub> producer. The continuous culture was operated at 37°C, pH 6.5. The dark H<sub>2</sub> fermentation broth was centrifuged (9000 × g, 10 min) and the collected supernatant was diluted and then the pH was adjusted to 7.1. This pretreated supernatant was used as the substrate for phototrophic H<sub>2</sub> production with *R. palustris* WP3-5. The photobioreactor (PBR) was a 1-liter glass-made vessel equipped with external light sources (100 W tungsten filament lamps) adjusted to a light intensity of ca. 95 W/m<sup>2</sup>.

## 3 Results and Discussion

### 3.1 Continuous dark-fermentation H<sub>2</sub> production using sucrose as substrate

In this work, a pure strain of *Clostridium pasteurianum* CGS5 was used to produce H<sub>2</sub> via continuous dark fermentation using sucrose as the carbon source. The soluble products generated from dark fermentation were then used for phototrophic H<sub>2</sub> production in the following stage. The dark fermentation operated at 32 °C, 12 h HRT and fed with a sucrose concentration of 18750 mg/l gave an H<sub>2</sub> yield of 1.105 mol H<sub>2</sub>/mol sucrose, and overall H<sub>2</sub> production rate of 87.5 ml/l/h, respectively. Moreover, a relatively high ammonia nitrogen content of 574 mg/l was observed in the effluent of dark fermentation system. Meanwhile, the nearly 70-90% of soluble metabolites in the dark fermentation broth (mainly lactate, acetate, and butyrate) was produced to serve as substrates for photo fermentation, which

seems to be feasible substrates for H<sub>2</sub> production in the photo fermentation system as will be discussed next.

### 3.2 Continuous bioH<sub>2</sub> production with integrated photo fermentation processes

The dark fermentation metabolites mentioned above were further utilized as the influent of continuous photo-H<sub>2</sub> fermentation process inoculated with *R. palutris* WP3-5 under the condition of 32°C, 100 W/m<sup>2</sup> irradiation, pH 7.0 and 96 h HRT. The overall H<sub>2</sub> production rate in photo fermentation was fairly stable with a mean value of 16.4±1.31 ml H<sub>2</sub>/l/h. The cell concentration also reached a steady-state value of nearly 5.18±0.51 g/l over a 5-day operation. The H<sub>2</sub> content in biogas was essentially constant at 91.3±1.75% for 5-fold soluble metabolites. The total hydrogen yield calculated from integration of the yield from dark and photo fermentation reached a high value of 6.04 mol H<sub>2</sub>/mol sucrose, which is nearly 5.95-fold of that obtained from using dark fermentation alone (1.015 mol H<sub>2</sub>/mol sucrose). Nearly 92.0±1.5% for 5-fold soluble metabolites of the ammonia nitrogen entering the photo fermentation process was consumed, implying that our photo-H<sub>2</sub> production system has a higher NH<sub>3</sub>-N tolerance, demonstrating its high applicability in an integrated dark-photo fermentation system. This suggests the feasibility and advantage of using the two-stage process combining dark and photo fermentation for high-yield bioH<sub>2</sub> production with an excellent stability.

## References

- [1] H. Su, J. Cheng, J. Zhou, W. Song, K. Cen, Improving hydrogen production from cassava starch by combination of dark and photo fermentation, *Int. J. Hydrogen Energy*, 34 (2009) 1780-1786.
- [2] C.Y. Chen, J.S. Chang, Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination, *Process Biochem.*, 41 (2006) 2041-2049.
- [3] N.Q. Ren, B.F. Liu, J. Ding, G.J. Xie, Hydrogen production with *R. faecalis* RLD-53 isolated from freshwater pond sludge, *Biores. Technol.*, 100 (2009) 484-487.
- [4] S. Meher Kotay, D. Das, Biohydrogen as a renewable energy resource—Prospects and potentials, *Int. J. Hydrogen Energy*, 33 (2008) 258-263.
- [5] V. Gadhamshetty, A. Sukumaran, N. Nirmalakhandan, M. Thein Myint, Photofermentation of malate for biohydrogen production-- A modeling approach, *Int. J. Hydrogen Energy*, 33 (2008) 2138-2146.
- [6] P.C. Hallenbeck, J.R. Benemann, Biological hydrogen production: fundamentals and limiting processes, *Int. J. Hydrogen Energy*, 27 (2002) 1185-1193.
- [7] J.S. Chang, Bioenergy engineering for clean and sustainable energy production, *J. Biosci. Bioeng.*, 108 (2009) S41.
- [8] S.D. Chen, K.S. Lee, Y.C. Lo, W.M. Chen, J.F. Wu, C.Y. Lin, J.S. Chang, Batch and continuous biohydrogen production from starch hydrolysate by *Clostridium* species, *Int. J. Hydrogen Energy*, 33 (2008) 1803-1812.

[9] C.Y. Chen, W.B. Lu, J.F. Wu, J.S. Chang, Enhancing phototrophic hydrogen production of *Rhodopseudomonas palustris* via statistical experimental design, Int J Hydrogen Energy, 32 (2007) 940-949.