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1 Introduction

HycycleS, a project funded under the 7th Framework Programme of the European
Commission, is a cooperation of nine European partners and further non-European partners
and aims at the qualification and enhancement of materials and components for key steps of
solar and nuclear powered thermochemical cycles for hydrogen generation from water. The
focus of HycycleS is the decomposition of sulphuric acid which is the central step of the
sulphur-based family of those processes, especially the hybrid sulphur cycle [1] and the
sulphur-iodine cycle [2] Emphasis is put on materials and components for sulphuric acid
evaporation, decomposition, and sulphur dioxide separation. The suitability of materials and
components is demonstrated by decomposing sulphuric acid and separating its
decomposition products in scalable prototypes.

The key components, necessary for the high temperature part of the process, are a ceramic
compact heat exchanger for solar or nuclear SO; decomposition, a receiver-reactor for solar
H,SO, evaporation and SO; decomposition and an oxygen separator that will on one hand
separate the reaction products (i.e. SO, and O,) and on the other hand will act as a promoter
for SO; decomposition. One aspect essential for sufficient reaction rates is the development
of dedicated catalyst systems, which is also part of HycycleS. The final aim is to bring
thermochemical water splitting closer to realization by improving the efficiency, practicability
and costs of the key components involved and by elaborating detailed engineering solutions.

2 Materials and Catalysts

Firstly, candidate materials for the construction of the targeted key components of sulphur-
based thermochemical cycles as well as for possible and promising catalyst/substrate
combinations for the catalytic high temperature reduction of SO; have been reviewed.
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As a consequence of this review, HycycleS’ main development route will be based on
ceramic materials from the SiC family. Such materials seem to fulfil all necessary
requirements for the solar absorbers of the planned receiver reactor,, the plates of the
planned compact heat exchanger and for the catalyst support. As base material for the SO,-
O, separation membranes Yttria-Stabilised Zirconia (YSZ) has been identified and selected.

A first phase of the long-term exposure of samples concerning different corrosive
environments has already been carried out and completed. One kind of treatment are
corrosion tests of samples facing temperatures above 800 °C and a chemical environment
typical for SO; reduction applying a gaseous feed. A second kind of treatment is applied to
investigate the stability of samples facing boiling concentrated H,SO,4. Several of the
examined materials and samples, in particular the SiC based materials, withstand the
conditions and keep their structural integrity over a substantial period of time (1000 hrs).

Promising catalyst “families” have been identified exhibiting high and stable catalytic activity.
Catalysts based on mixed metal oxides with substantially higher activity than the reference
oxide material (i.e. Fe,O3) have been identified. A number of mixed oxides were synthesized
and tested in the decomposition of sulphuric acid for the production of SO, and O,. Materials
such as Fe-Cr, Cu-Al, Cu-Fe and Cu-Fe-Al mixed oxides showed initial activity comparable
to that of Pt/Al,O; [3], which is considered the most efficient material for this reaction so far.
This indicates that such materials could provide promising alternatives to the precious-metal-
based state-of-the-art catalysts. The reaction over these catalysts most likely proceeds via
the formation of intermediate sulphate species and this requires that the temperature is
sufficiently high in order to facilitate the rapid decomposition of these species.

An empirical kinetic law has been derived from experiments enabling the refinement of
reactor design and prototype development. The first order kinetics probably indicates that the
absorption of the reactant on the catalyst is the rate limiting step of the reaction mechanism.
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Figure 1: Conversion of H,SO, with time on stream over a Fe,Os-coated SiSiC honeycomb
(T =850 °C, P=1bar).



Proceedings WHEC2010 269

Absorber monoliths coated with Fe,O3; and CuO catalyst were exposed to typical reaction
environment for 100 hours without reduction of catalytic activity (Figure 1) and therefore
qualified as the reference catalyst systems of choice for the first experimental campaigns
with the solar receiver-reactor.

3 Heat Exchanger Reactor

The development and use of high temperature heat exchangers are essential for the
accomplishment of hydrogen production by high temperature processes powered by
concentrating solar systems or high temperature nuclear reactors.

Those heat exchangers have to withstand high temperature and, at the same time, have to
operate as reactors. In the case of the present sulphur based thermochemical cycles they,
therefore, have to resist in very corrosive environment. Only ceramics can match these
specifications. A shell and tubes concept of SiC heat exchangers does not achieve the
compactness required to reach the thermal efficiency aimed at. Therefore, a decision to
develop a compact SiC plate heat exchanger was made.

The assembly of a plates stack is a key technological point for such a component. The heat
exchanger will exhibit a large number of joints and some of them will have a large surface but
at the same time all requirements related to tightness, corrosion and mechanical resistance
must be satisfied. In terms of achieving an efficient assembly of the plates, brazing was
regarded as the most promising solution.

The development and construction of a heat exchanger prototype has to take into
consideration the possibilities and limitations of the specific fabrication process and therefore
it was supported by modelling of different design options as well as by the fabrication and
testing of manufacturability, tightness and structural integrity of smaller mock-ups
representing crucial parts of the prototype.

The final aim of this development is the qualification of a pilot-scale heat exchanger as
H,SO, decomposition reactor. The main research challenge is to implement a large scale
plate heat exchanger with a thermal efficiency of more than 85%.

From the beginning of the project, an optimized design has been proposed (about 800mm x
300mm x 200mm) taking into account kinetic and thermo-hydraulic correlations, chemical
engineering approach for the modeling and possibility to braze the final prototype. For the hot
source plates, wavy channels (so-called herringbone pattern, Figure 2 - left) were used to
improve the local heat transfer coefficient and ensure turbulent flow regime compared to
straight channels. For the reaction plates, large straight channels filled with catalyst and
meandering inside plates are used to ensure satisfactory reaction efficiency with a sufficient
residence time for the reactive fluid (Figure 2 - right). The main characteristic of this so-called
“catalyst bed” exchanger-reactor design is that it consists of permanent thermal exchange
and chemical reaction areas.
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Figure 2:  SiC channelled plates of the prototype: heat source plates (left) and a reaction
plate with one large meandering channel (right).

The full-size prototype is currently being manufactured and is estimated to be ready for
testing in June 2010.

4  Solar Receiver-reactor

As a concept for a direct coupling of concentrated solar radiation into the process, a multi-
chamber reactor was chosen which allows adaptation of each part of the reactor to the
requirements of both evaporation and decomposition reactions so that these two sub-
processes are performed separately. In particular, such a concept is advantageous when
considering a future up-scaling for a solar tower application. On the receiver of a solar tower,
there are typically regions with high heat flux in the center while significantly less solar
radiation reaches the outer part of the receiver. Consequently, a multi-chamber reactor with
two different temperature levels can exploit the energy input on a solar tower more efficiently
than a single-chamber requiring a more uniform heat flux distribution.

The reactions in the two chambers have different reaction enthalpies and require different
operating temperatures:

Evaporation: H,S0,,q = H2S0,4 — SOy, + H,0, T =350-400 °C

SO; reduction: SOy = SO, + 30,4, T =800-1000 °C

Consequently, the conditions needed for the evaporator and the decomposer differ
considerably. Therefore, the reactor design for a prototype solar receiver-reactor includes
two different chambers operating at different conditions: one for the evaporation of the acid,
the second for the SO3; reduction.



Proceedings WHEC2010 271

A o | [

8~ M
Solar radiation
(focus 1) :

Solar radiatién
(focus 2)

Figure 3:  Front (left) and rear view (right) of the HycycleS multi-chamber solar reactor: focus
1 — evaporator; focus 2 — decomposer.

Evaporator

The solar radiation enters the reaction chamber through a quartz window held by a flange
construction. The vaporization of the sulphuric acid is carried out in a cylindrical absorber
made of SiSiC foam. The acid is fed to the interior of the foam by tubes. The product gases,
primarily consisting of sulphur trioxide, water vapour and the carrier gas nitrogen, leave the
reaction chamber through an exhaust pipe and are subsequently directed to the second
chamber for the decomposition of SOs;.

Decomposer

The decomposer is powered by focus 2. The flange construction supporting the quartz
window is the same as in the case of the evaporator. The inlet gas coming from the
evaporator enters the decomposer through three inlets in the flange. The splitting of sulphur
trioxide takes place on a SiSiC honeycomb structure coated by the catalyst material. Product
gases of the decomposer are sulphur dioxide, unreacted sulphur trioxide, oxygen, water
vapour and carrier gas. After leaving the second chamber, the gas is spectrometrically
analyzed at the reactor outlet and subsequently neutralised in a gas washing unit.

The reactor has been constructed and installed at DLR'’s solar furnace in Cologne. Two test
series have already been carried out. The tests proved the practicability and suitability of all
reactor components. Moreover, sulphuric acid was successfully decomposed to provide the
required SO, product with yields of up to 90 % of the respective thermodynamic value and
with reactor efficiencies of up to 40 %.

Design activities and experimental series are accompanied and supported by different
methods of reactor and process simulation, e.g. the SiC foam used for the evaporation
chamber was analysed in depth. The accurate knowledge of its effective heat/mass transport
properties is crucial for the optimal design and operation of the solar reactor. Structure and
dimensions of the foam must allow for an efficient evaporation while avoiding reduced heat
transfer at the Leidenfrost point.
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The heat and mass transfer properties of the foam were determined. Computer tomography
in conjunction with numerical techniques were used to determine the morphological
characteristics and the effective transport properties of the foam, namely: extinction
coefficient, scattering phase function, thermal conductivity, interfacial heat transfer
coefficient, permeability, Dupuit-Forchheimer coefficient, tortuosity and residence time
distributions as well as the dispersion tensor [4]. These effective transport properties are
being incorporated in a continuum reactor model developed by spatial averaging the
governing equation in the fluid and solid phases. This allows for treating the distinct phases
as interpenetrating continuum, where the effective properties account for the complex pore-
level structure.

5 S0,-0, Separation

The decomposition of SO; to SO, is thermodynamically favourable at temperatures above
800°C in order to produce a sensible equilibrium conversion. Le Chatelier's principle
suggests that oxygen removal will shift the equilibrium in favour of increased decomposition.
Identifying suitable methods for carrying out this separation is complicated by the lack of
membrane materials able to withstand the severe process conditions involved. Therefore
dense oxygen transport membranes, made from novel and complex ceramics, are
investigated to evaluate their stability and suitability to the H,SO, decomposition section.
This may enable a highly pure oxygen product stream to be produced without the need for a
further oxygen separation step in the process. Alternatively, such a membrane could be used
to reduce the maximum temperature required, enabling the use of a wider range of heat
sources for the thermochemical cycle.

Calculations were performed to evaluate the process stability of candidate materials. As a
result, YSZ is considered to be a good candidate material and is being investigated further.
Experimental stability and permeation testing of the membranes is carried out using a high
temperature membrane cell held within a furnace. It was found that at an operating
temperature of 850°C, the oxygen flux through the membrane reaches a pseudo-steady state
of approximately 20% of the original flux after eight hours of exposure to SO,/O, mixtures.
Work is currently concentrated on maximising the flux during that pseudo steady state.

In order to make commercial progress in the near future, it will be necessary to proceed with
a detailed design of a conventional oxygen separator. The necessary materials information,
in terms of reliable thermodynamic data on the equilibrium between oxygen and the solutions
of SOz and SO, downstream of the decomposition reactor, do not exist in the literature and
yet represent a major obstacle to the immediate design of an operating cycle. Thus, multi-
component equilibrium data for SO,, oxygen and water are being measured and models to
allow prediction of the relevant properties are being developed. The data are being
measured using a separate and independent apparatus which already exists in prototype
form.

E.g. thermodynamic modelling of the binary SO,-H,O and multi-component SO,-H,0-O,
systems has already been accomplished [5]. Equations to describe the vapour liquid
equilibrium of sulphur dioxide in water have been developed. These equations were then
solved and the results were compared with own experimental data and with data from the
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literature. The resulting average error between the calculated and experimental solubility at
the range of temperatures studied was in the region of £ 1.5 %.

An experimental apparatus was designed to provide data points to verify the thermodynamic
models created. A photo of the apparatus, shown without insulation for illustration, is given in
Figure 4a.

Molality Sy\/
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2
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Figure 4: a) photo of the equilibrium still; b) Comparison of values for sulphur dioxide
solubility at 40 °C.

Results obtained for the SO,-H,O system show very good agreement with both the model
and the literature data, as shown in Figure 4b. The deviation is generally lower than 5%. This
finding was taken as strong indication that equilibrium can be measured using the apparatus.
Another test rig has been developed and is currently used to measure the oxygen solubility in
multi-component mixtures.

6 Techno-economics

The main parameters that crucially influence the investment costs of a high temperature
hydrogen production plant are the components costs mainly based on the obligatory choice
of quite expensive materials. In the majority of cases, these are the only ones which are able
to withstand the extreme conditions of the sulphur-based thermochemical cycles. HycycleS
evaluates the impact of the key alternatives concerning the choice of materials,
manufacturability, reliability etc. both on investment cost and on the production cost of
hydrogen. An analysis is carried out in order to assess the critical aspects regarding
component costs, reliability, maintenance that greatly influence the hydrogen production
cost.

A general calculation method and a procedure of assessing the process have been
developed. Currently, data from the experimental parts of the project including choice of
materials, plant and components design, efficiencies and chemical yields are used to be fed
into the model to calculate investment costs, operation and maintenance costs and
consequently hydrogen production costs and to enable sensitivity studies.
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7 Summary

The project HycycleS identified potential construction and catalyst materials for the targeted
key components of solar and nuclear powered sulphur based thermo-chemical cycles and for
the catalytic high temperature reduction of SO3; as one of the crucial steps of those
processes.

HycycleS’ main development route is based on ceramic materials from the SiC family — to be
used as construction materials for sulphuric acid decomposers of two different
configurations: on the one hand a solar receiver reactor and on the other hand a compact
heat exchanger. Base materials for separation membranes are YSZ.

Mock-ups of sub-units and prototypes of the mentioned decomposers have been developed
and are currently being tested. Laboratory test rigs for different purposes such as corrosion
tests, catalyst development, catalyst stability tests and selectivity of separation membranes -
have been built and are being used to qualify materials and to prepare and accompany the
prototypes’ test operation.

The experimental data will be used to refine models of components, process units, and of the
process as a whole to eventually enable the evaluation of plant and hydrogen production
costs.
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