000135902 001__ 135902
000135902 005__ 20240711113911.0
000135902 0247_ $$2ISSN$$a0366-0885
000135902 0247_ $$2Handle$$a2128/2894
000135902 037__ $$aPreJuSER-135902
000135902 041__ $$aGerman
000135902 082__ $$a530
000135902 0881_ $$aJUEL-2367
000135902 088__ $$2JUEL$$aJUEL-2367
000135902 1001_ $$aSchorn, Ralph P.$$b0$$eCorresponding author
000135902 245__ $$aUntersuchungen zur Zersträubung von Kupfer/Lithium-Legierungen
000135902 260__ $$aJülich$$bForschungszentrum Jülich, Zentralbibliothek, Verlag$$c1990
000135902 3367_ $$0PUB:(DE-HGF)29$$2PUB:(DE-HGF)$$aReport$$mreport
000135902 3367_ $$2DataCite$$aOutput Types/Report
000135902 3367_ $$2BibTeX$$aTECHREPORT
000135902 3367_ $$2ORCID$$aREPORT
000135902 3367_ $$010$$2EndNote$$aReport
000135902 3367_ $$2DRIVER$$areport
000135902 4900_ $$0PERI:(DE-600)2414853-2$$aBerichte der Kernforschungsanlage Jülich$$vJuel-2367
000135902 500__ $$aRecord converted from JUWEL: 18.07.2013
000135902 500__ $$aBurkhardt
000135902 520__ $$aThe sputtering behavior of a copper based alloy containing 17 at-% of lithium has been studied under fusion relevant ion bombardment by D+, He', Ne+, and Ar+ with energies between 0.1 keV and 6 keV and flux densities of up to 10'6 particles/cm2s. The main question was, whether surface segregation of the lithium component can balance the losses due to sputtering and evaporation, and whether this way a protective lithium surface layer can be maintained under high particle flux irradiation. To investigate time-dependent sputtering phenomena, laser-induced fluorescence spectroscopy (LIF) has been employed to detect atoms emitted from the multicomponent material . With LIF, velocity distributions and absolute densities of Cu and Li have been measured, offering the possibility to calculate absolute partial sputtering yields.
At room temperature, the alloy target showed almost no reduction of the Cu sputtering yield under Argon bombardment, compared to pure copper. Under light ion irradiation by D+ and He" reduction factors of up to two have been observed. The surface composition was deduced from measured velocity distributions of the two constituents by assuming a Thompson-distribution and
fitting the resp. surface binding energies, as well as from the reduction factor of the Cu sputtering.
Under Ar+-irradiation, the surface showed the same composition as the bulk, while under bombardment by lighter ions the lithium concentration increased to a maximum of about
50 at-% (D+) in the outmost atomic layer.
A sufficient protective lithium surface layer could be achieved at elevated temperatures above 400°C by heating up the sample for about two hours without ion irradiation. After a subsequent deposition of roughly 10'9 Ar+/cm2 of 6 keV energy, the thickness of the built-up layer has decreased considerably. Losses of lithium atoms due to high-flux sputtering dominate segregation also at elevated temperatures, although the ion dose being necessary to decrease the lithium surface content to its original value has risen by about four orders of magnitude with
respect to room temperature.
The use of the present Cu/Li-material therefore seems useless in a continuously operating fusion reactor. The alloy can only maintain a protective lithium surface layer at elevated temperatures in a pulsed reactor concept, if the plasma is operated with a limited duty-cycle. Moreover, a relatively high rate of lithium evaporation was measured at temperatures above 400°C, which furthermore limits the application of Cu/Li-alloys in fusion devices.
000135902 8564_ $$uhttps://juser.fz-juelich.de/record/135902/files/Schorn_1990.Untersuchungen.pdf$$yOpenAccess
000135902 909CO $$ooai:juser.fz-juelich.de:135902$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000135902 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000135902 9201_ $$0I:(DE-Juel1)VDB812$$kIEF-4$$lPlasmaphysik$$x0
000135902 970__ $$a2128/2894
000135902 9801_ $$aFullTexts
000135902 980__ $$aI:(DE-Juel1)IEK-4-20101013
000135902 980__ $$aUNRESTRICTED
000135902 980__ $$aJUWEL
000135902 980__ $$aConvertedRecord
000135902 980__ $$areport
000135902 980__ $$aFullTexts
000135902 980__ $$aVDB
000135902 981__ $$aI:(DE-Juel1)IFN-1-20101013
000135902 981__ $$aI:(DE-Juel1)IEK-4-20101013