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“The combined influence of relaxation and diffusion processes on the dynamic behavior of stochastic models
for crystal growth is systematically investigated. The models are the kinetic Ising model, the discrete
Gaussian model, and the SOS-Kossel model. The relaxation kinetics are introduced by single-site
transition probabilities to account for adsorption and evaporation. The diffusion kinetics are introduced by
two-site transition probabilities to account for nearest-neighbor exchange. The kinetic equations are
studied by Monte Carlo simulation, quasichemical(pair) approximation (QCA), and high temperature
expansion. The diffusion is found to generally enhance the growth rate of the crystal. In the range of
validity of the QCA, i.e., outside the nucleation regime, the results are in very good quantitative
agreement with previous Monte Carlo simulations. In the limit of infinite diffusion speed the growth rate
approaches the Wilson-Frenkel rate. The local roughness or surface energy is reduced if surface diffusion
occurs. The relative influence of diffusion on the response of the system to a chemical potential difference
between the two phases depends significantly upon the particular type of tramsition probability. For the
homogeneous Glauber-Ising chain no influence of the diffusion upon the dynamic behavior could be

detected.

1. INTRODUCTION

Kinetic Ising models'™ and generalizations**® with
so-called solid-on-solid (SOS) restrictions have been
used for a long time as models for crystal growth from
the vapor.*™® Analytically, these models were always
studied with either pure relaxation kinetics (single-site
processes'™%), or pure diffusion kinetics (two- or more-
site processes®?). In crystal growthitis well known. }1+*?
that in addition to the basic adsorption- and evaporation
mechanism (relaxation kinetics), surface diffusion is
also very important in order to explain observed growth
rates and surface structures. Various phenomenologi-
cal studies'!’!? and computer simulations”™® were per-
formed in recent years for a better understanding of
this additional mechanism.

Since so far there exist no analytical investigations of
microscopic models which simultaneously consider re-
laxation and diffusion, we present here a number of re-
sults for these combined kinetics, starting from the
simplest one-dimensional kinetic Ising chain! and going
to a multilayer solid-on-solid model. *'

Because of the many parameters involved in those
models we restrict ourselves to certain characteristic
cases, from which one can easily make quantitative pre-
dictions for other parameter values. A major problem
will be the predicted existence of two temperature re-
gimes associated with qualitatively different static and
dynamic properties of the crystal surface.'®!* At low
temperatures the surface in equilibrium is localized
and growth is hampered by a nucleation barrier. At
higher temperatures above a roughening temperature
Ty the surface fluctuates freely and the growth rate is
proportional to the chemical potential difference Apu be-
tween the solid and the vapor. Available dynamic theo-
ries so far fail to give a satisfactory treatment of the
growth rate below Ty for arbitrary values of Apu.

Our main approximation scheme, the quasichemical'®
(QC) approximation, also produces unphysical meta-
stable states with infinite lifetime for small Ap <Ap,.
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But outside this region (Au> Au,) the scheme should
give reliable results at all temperatures. The only ap-
proach which so far seems to allow for a complete quan-
titative treatment of dynamics in the two-phase regime
is a cluster-reaction theory. 18 But since it has not yet
been applied to multilayer models of crystal growth it
is not clear whether it would work near the roughening
point.

The outline of the paper is as follows. Sectionllgives
an analysis of the one-dimensional Ising chain using
Monte Carlo methods and direct numerical integration
techniques. The results are also compared with recent
calculations of the cluster-reaction theory for the case
without diffusion.'? In Sec. III the discrete Gaussian
model'*!® is studied using a high temperature expansion,
which should be valid for one and two dimensions. Sec-
tion IV describes the QCA treatment of a (two-dimen-
sional) Ising-lattice-gas system as a model for the ad-
sorption of a monolayer on a substrate. This section
mainly serves as a first step in the direction of studying
diffusional effects in a metastable region. The main ap-
plication to crystal growth then is given in Sec. V,
where a multilayer SOS model is analyzed in QCA.
There the influence of surface diffusion on the growth
rate and local surface roughness is studied in some de-
tail and compared to previous computer simulation re-
sults.'® Finally an approximate formula for the growth
rate as a function of the diffusion speed is derived.

The last section, Sec. VI, contains a summary and con-
cluding remarks.

The basic master equation formalism used in these
investigations is described in Sec. II. Certain modifi-
cations necessary for the other models then are outlined
in each section separately.

fI. ONE-DIMENSIONAL KINETIC ISING MODEL

The simplest model system, which exhibits the basic
features of the interplay between relaxation and diffu-
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sion, is the kinetic Ising model in one space dimension. * _d H 9.1
Because of the absence of a phase transition in one == 2 2 SiSin 2 Z S (2.1)

dimension, effects associated with first-order phase
transitions cannot be studied on this system, but will be
discussed in the following sections.

where the local variables (spins) S, are restricted to the
values S;=z1.

Kinetics are introduced in the usual way'? by amaster

The Hamiltonian of the system is given by equation

d
d—tp({si}; ==Y {Wa(S,~ =S)P(S;, o, Sjy 3 )= Wel=S,~S)P(S;, - -+ 5=, .- 58)
7

+ Wp(Sy,Ss1 =S5 S5)0P(S1, o+ ,8;,Ssuty + « o9 8) = Wp(S5, STt = S5y S11)P(Sys - - +58), Shuy, - (2.2)

., 0h
where
S§=Sj’1, S;n_:S}.

Here P({S,}; #) is the probability that a state {S;} is realized at time ¢. Wg(S;~ - S,) is the transition probability for
a relaxation process, namely that a change of a single site variable (spin) S, into - S, occurs. Wy(S,, S,,,-S},S;,l)
with §7=S5,,4,S}.1=S; is the transition probability for a diffusional process,lo namely, that two neighboring spins §;

and S,,, are exchanged. Obviously the diffusional process W, conserves the order parameter m=N"! 2;S;, while

the relaxation Wy changes it.

These transition probabilities as usual are required
to fulfill a detailed balance condition which allows the
system to reach the thermodynamic equilibrium Py({S;})
for long times {-<. There is then still an infinite num-
ber of possibilities to define such probabilities. We
have studied two frequently used types of transition
probabilities.

The first one, which we will call “symmetric,” has
already been used by Glauber for the purely relaxational
1,2
case'“;

1
27,

W, =7—(1 —tanh(;AE,)). (2.3)
The subscript a stands for either R or D; 7, is a char-
acteristic time scale for the specific process; and AE,
is the change of energy in the system (divided by tem-
perature) due to a single relaxation or diffusion pro-

cess. Equation (2. 3) is written explicitly as

1 K L
WelS, - =S,) T {1 =S, tanh[i(s,_l +S411) +E]} , (2.4)

and
WplSy;Sis = Si, St
= 1 L
m{l ~1(S; = $,,1)(S.; — Si.2) tanh K}, (2.5)
with
$/=8,,, $.1=8;, K=d/kyT, L=H/ksT.
(2.8)

The second choice, which we will call “nonsymmet-
ric,” has been used in stochastic models of crystal
growth. %6 For those applications the spin variables
S;==x1 are replaced by concentration variables C,
={0, 1} through the identity

C,=(1+5))/2. 2.7

f

(C; =1 then means that a certain site is occupied by an
atom, C,=0 indicates an empty site.) The asymmetry
for the transition probabilities for adsorption (C;=0

- C,;=1) and evaporation (C,; =1~ C, =0) has its physical
grounds in the assumption that molecules impinge on a
crystal surface at random from the vapor, i.e., irre-
spective of the local structure of the surface. Conse-
quently, the adsorption rates C;=0-~1 {or S;==1-+1)
are assumed to be independent of the position ‘4,” while
only the evaporation rates depend upon ¢{. This consid-
eration becomes physically more relevant in the two-
and three-dimensional systems, which are studied in
the next sections, but the basic influence of different
transition probabilities already shows up in the one-
dimensional chain.

This nonsymmefric transition probability then is
given explicitly as

1 -
WelS; - -s{)=27{(1 =S))el +(1+8,)e ¥ Sr3i-0) (2.8)
R
and
1 - +
WD(S“SHI'.S;’ :’1)247 {(1+si)(1 _Shl)e KiSygeh
D

+(1=8)1+S;,,)e S} (2, 9)
Si=S11, Sia=5;.

The evolution equation for the order parameter m(¢)
=N"! S¥1(S;) is obtained from the master equation, Eq.
(2.2), as

%m(t) =Nt ﬁ; (28, Wg(S; =~ ~S;»

= _?1; {x = (1= 2y)m(s) —5 ?_? (s,-lsi,.>} (2.10)

for the symmetric case, Eqs. (2.3), (2.4), and (2.5),
where?
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x=34{tanh(f L + K) + tanh(} L—- K)+ 2tanhs L},
y=4%{tanh(; L + K} + tanh(3 L - K)},
z=g{tanh(z L + K)+tanh(3 L - K) - 2tanh$ L}. (2.11)

The brackets (***) denote averages taken with the prob-
ability distribution P({S;}; ¢) at time ¢.

In the nonsymmetric case the order parameter
evolves as

%m(t) = -;1; {(m(t) —-1et+ Nt

XXN; (S; + 1)e"“5"-1*%+1’>} . (2.12)

Note that the diffusion process W, does not appear ex-
plicitly in either Eq. {2, 10) or Eq. (2.12). The equa-
tions are not closed but form only the first equation of
a hierarchy, containing up to N-point correlations. But
these correlations now are affected by the diffusion
process.

The different sensitivity of the two cases, Eqs. (2. 10)
and (2.12), to diffusion produced by the transition prob-
abilities W, is atready seen in the structure of the equa-
tions. For a process where the external “field” H is
switched off at a certain time #;, the correlation term
in Eq. (2.10) drops out, since H=0 implies x=2=0
[Egs. (2.6),(2.11)]. This is the original Glauber
model,! where m(f) shows the simple exponential relax-
ation. In the nonsymmetric equation (2. 12) the correla-
tions are always present, independent of the external
field.

The fact that the diffusion part W, does not enter ex-
plicitly in the evolution equation for the total order pa-
rameter m(f) can be used to treat a physically interest-
ing limit without further approximation. In the case of
very fast diffusion [Eqs. (2.4), (2.5) and Egs. (2.8),
(2.9), 7,/7r~ 0] the evolution equations for the correla-~
tions (which are not shown here explicitly) contain a
very rapidly varying part due to the diffusion process
and a very slowly varying part due to the slow relaxa-
tion of the order parameter. The correlations thus
evolve via the diffusion process very rapidly to a state,
which is only controlled by the practically time-indepen-
dent value of the order parameter. We call this state
where the correlations are in thermodynamic equilib-
rium with a given fixed value of the order parameter the
“instantaneous equilibrium” approximation. An arbi-
trary n-point correlation function <sil’ S,-2 cte S,-n > eq AC-
cordingly is given as a nonlinear function @ of the order
parameter m at time f:

<Silsiz”'sin>x °°=Q‘1»---vin(m(t))‘ (2.13)

In this limit of infinite diffusion speed the equations of
motion, Egs. (2.10) and (2,12), accordingly are closed
and can be integrated directly: Equation (2. 10) be-
comes

%m(t) - -Tl—R((x - %) — 20y - Pmlt)), (2.14)

and Eq. (2.12) becomes

Stochastic models for crystal growth
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FIG. 1. Ising—Glauber chain. Time dependence of the relaxa-

tion function ¢ after field inversion (—~L — L) with symmetric
transition probability, Eq. (2.3). Comparison of Monte
Carlo simulation, instantaneous equilibrium approximation,
and cluster reaction theory. " No dependence upon diffusion
time 7p can be detected within numerical accuracy.

d _ 1 L i
: dtm(t)——TR(M(t)—l)(e -e”), (2.15)
where ¥ and 5 are defined by Eq. (2. 11) with the field
L being replaced by an “effective” field L,

> Imev (1 - mP)e* + mPP

L=1n (l_mz)ezx

Since the equations are nonlinear one cannot generally
give the solution in closed form but has to resort to an
expansion technique or to numerical integration.

(2.18)

We have studied the two cases Eqs. (2. 10) and
(2. 12) with a standard Monte Carlo (MC) simulation
procedure and compared the results with the limiting
equations (2. 14) and (2. 15) for 7,/75~ 0 (numerically
integrated) and with recent numerical cluster expan-
sions'? of Eq. (2.10) (which onty exists for a purely re-
laxational system so far). We have used various types
of initial conditions, making a sudden change of the tem-
perature T or the external field H at time £=0. Char-
acteristic results are discussed in the following.

In Fig. 1 we plot the relaxation function for the order
parameter

m(t) — m(=)

m(0) = mi(=) (2.17)

o(t)=
for the case of symmetric transition probabilities Eq.
{(2.10). Initially the field is kept in equilibrium with a
field H/k;T=-0.4 at a temperature J/ksT=2. At time
£=0 the field is inverted to H/kzT=+0.4. MC simula-
tions on a chain of N =10000 sites do not show any ob-
servable difference in ¢(f) between the case with and
without diffusion (7, = 72/9). Note that 7, =7 means
that there is one attempt to make an exchange process
per every attempt to make a relaxation (spin flip, or
evaporation-adsorption) process. For comparison re-
laxation functions are also plotted which were obtained
from numerical integration of the “instantaneous equi-
librium” approximation Eq. (2. 14)—which is exact in
the limit of infinite diffusion speed (apart from numeri-
cal rounding errors)—and also the results from a clus-
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K=10, L=05S
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FIG. 2. The same analysis as in Fig. 1, but with nonsymmetric
transition probability equations (2.8) and (2.9). The relaxa-
tion clearly depends upon diffusion time and the direction of the
field inversion (+L —%L).

ter-reaction method!'? (for the other limit with no diffu-
sion). Within the numerical accuracies there is no
clear indication of any effect of the diffusion upon the
relaxation function ¢(#), even though the parameters
chosen for the initial and final conditions are in the re-
gime, where one would expect the strongest influence of
the diffusion upon the time evolution: The final value of
H should clearly be nonzero, the temperature should
clearly be not zero (critical point!), nor infinite.

The results for the case of nonsymmetric transition
probability [Eq. (2.12)] is plotted in Fig. 2, in the form
of a relaxation function as Eq. (2.17). Two types of
initial-final conditions are shown, starting at negative
and at positive values of the field. In both cases the
diffusion (7,=0.1 75) is clearly seen to lead to a faster
relaxation. Again the limit of infinite diffusion speed
is given. The two different initial conditions lead to
different relaxational behavior.

The difference of the relaxation functions for the two
different initial conditions in the nonsymmetric case
(Fig. 2), the acceleration of the relaxation due to the
diffusion process, and the different behavior for the
symmetric and the nonsymmetric case can be under-
stood in the following way. Because of the later appli-
cation to crystal growth problems we will use the ter-
minology of the lattice gas, where §;=1 (C;=1) means
“adsorbed atom” and S;=-1 (C,;=0) “vacancy.”

Consider first an essentially empty system ((C;) < 1)
with nonsymmetric transition probability, where the
order parameter in the final state has a larger value
than in the initial state. The site-independent adsorp-
tion rate creates many uncorrelated isolated atoms.
The system becomes rough and is driven into a state far
from equilibrium with little correlation between par-
ticles. In the absence of diffusion, the correlations are
brought towards equilibrium by the evaporation process
only, which re-evaporates the excess of isolated atoms.
The total number of adsorbed atoms thus is reduced.
The diffusion process opens a new channel for the cor-
relations to approach thermodynamic equilibrium, with~
out reducing the number of adsorbed atoms. The dif-

Stochastic models for crystal growth
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fusion therefore leads to an acceleration of the total re-
laxation process. For the opposite case of evaporation
(H - - H), where the order parameter of the initial state
has a larger value than in the final state, the argument
has to be reversed. There will be very few additionally
adsorbed isolated atoms and they are easily re-evapo-
rated. The evolution of the system, therefore, is main-
ly determined by the rather slow evaporationof clustered
atoms, which are energetically more stable than iso-
lated atoms. The total evaporation rate thus is slower
than the corresponding adsorption rate as seen in Fig.

2. When diffusion is included it tends to establish a
balance between isolated and clustered atoms. Diffusion
maintains a certain number of isolated atoms in spite

of the evaporation process, and therefore helps to break
the clusters up. The resulting isolated spins then are
the most likely candidates for evaporation and in this
way diffusion again leads to an acceleration of the total
evaporation rate.

These arguments now do not work ina straightforward
manner for the caseof symmetric transitionprobabilities
[Eq. (2.4)]. Since both the adsorption and the evapora-
tion process depend on the local environment of eachsite
the deviation of the short-range correlations from equi-
librium should always be smaller than in the nonsym-
metric case. Diffusion therefore cannot be as important
as in the nonsymmetric case.

Since the nonsymmetric case is probably a good as-
sumption for models of crystal growth we will restrict
our attention to this case in the next sections.

11l. DISCRETE GAUSSIAN MODEL

The discrete Gaussian model (DG)'418:2%:2! j5 3 model

for the solid-vapor interface of a crystal. In this sec-
tion we will consider the effect of surface diffusion upon
the steady state evolution of the system which then is
always kept away from thermodynamic equilibrium. We
will here restrict ourselves to the calculation of the
growth rate in the limit of high temperatures, i.e.,
above the roughening transition, and give a more com-
plete treatment for the whole temperature range in Sec.
V, resorting to numerical techniques.

The discrete Gaussian model for a crystal surface is
one of the so-called “solid-on-solid” models, where the
local height of the interface above some reference plane
is given by h;. hk; can take on all integer values between
+%, the index 7 for an interface in a d-dimensional sys-
tem runs over all lattice sites in the (d ~ 1)~-dimensional
sybsystem. The position of the interface between crys-
tal and vapor is then defined as (%;). The Hamiltonian
of the system is written as

x=J 2 Ihg-h;"-HZ ki,
{n

where the summation is taken over pairs of nearest
neighbors and H is the difference of chemical potentials
between crystal and vapor phases. The exponent p is 1
for the usual SOS model or Kossel model; p=2 corre-
sponds to the discrete Gaussian model. For mathemat-
ical convenience we restrict our attention to the latter
case.

J>0, (3.1)
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For the description of kinetic processes we use a
master equation formulation®® as in the previous sec-
tion, II. In equilibrium, the probability is given by a
canonical form

i

dP(hy "Ryt hy, ) _
dt B

b;:h{ x1

-ﬁ: i‘l Z: (Wplhih;~ RiRPC =« by, by
iz hy= ‘-*1

h; =h jgl

P (P < expl—~5c{n,})/ ks T] . (3.2)

The time-dependent probability distribution P changes
according to the following master equation:

S [Walk; = BP(+ g3 1) = Well = B)P(*+ + 1} D)

o) = Wik, k= R JP(- -+, )], (3.3)

where Wg(h, - k) represents the single-site transition rate such as adsorption (4] =h; + 1) and evaporation (4] = 1’
-1), and W, represents the two-site transition rate or exchange rate. The summation 3"’ runs over the nearest
neighbor sites with respect to site . The expectation value of a quantity A(%;) is given by

(AR, = (Z, APy}, 1) . (3.4)
hj
From the master equation (3. 3), we obtain the evolu-
tion of the averaged quantity as

d<Ad(th,)> - <E {A(h,) = A, + PYWh, =+ r)> . (3.5

where the total transition rate W is given by

Wik = hy+7) = Welh; = hy +7)

[
R j; Wolhy, b= byt 7y =7) . (3.6)

We will now consider the concrete form of the single-
and double-site transition rate, and investigate the dif-
fusional effect on the growth of the system.

A. Adsorption and evaporation

First we consider the single-site processes of ad-
sorption and evaporation of crystal atoms on the inter-
face. The adsorption of a crystal atom is assumed to
depend only on the temperature T and the vapor pres-
sure (or the chemical potential difference H}, and to be
independent of the interfacial configuration.® Then the
adsorption rate at site ¢ is given by

Wylh; = by + 1)=i el =k, (3.7
TR

where Ty is the appropriate relaxation time, and L is

defined by Eq. (2.6). This rate 4 represents the as-

ymptotic growth rate of the crystal, when His very large

and evaporation or other processes become negligible.

The transition probabilities are required to satisfy
the detailed balance condition between evaporation (n,
—h; ~1) and adsorption (&, =k, +1),

WR(hi"h{—l)_P ('.'

Py ’lli"l’“')

WR(hi"l"hi)— Peq(.”’hi:“')

AE‘/kBT-H/kBT ,

=e

(3.8)
where the energy difference AE,; is given by
AE‘ZJC("‘h“")—ﬁC("'hi—l"')
G
=2JZj (ry = ny) —2d . (3.9)

[

z is the coordination number of the (d — 1)~dimensional
lattice. The evaporation rate then is given as

1 i
WR(h,-h‘—l)zT—-exp(ZKi(h,-h,)—Kz), (3.10)
R 7

with K from Eq. (2.86).

If there is an isolated crystal atom at the ith site or
h;=h; -1 for all the neighboring sites j, the evaporation
rate is given by

1 Kz

k[]:— 4

— (3.11)

This will serve as a characteristic evaporation rate.

B. Interface diffusion

As well as the above single-site transition, the con-
figuration of the crystal surface changes due to the dif-
fusion of crystal atoms to the nearest neighboring sites,
but maintaining the SOS restriction where overhangs
are excluded. The exchange rate is assumed to depend
only on the energy changes associated with the migra-
tion of the crystal atom. It is given by

1 (i
WD(h,,h,-—h, -1, h+ 1):?—exp<2K2 (h; =1y —Kz) .
D
(3.12)

Here T, represents the proper time constant of atomic
exchange, j is one of the z nearest neighbor sites of the
ith site.

When there is an isolated atom on the ith site where
the heights of all the neighboring sites are lower by
unit height, the hopping rate to a neighboring site is
given by

1 4,
kop=2 —e"*. (3.13)
Tp
Such an isolated atom diffuses a distance x; in its life-
time &';
X =Vga/ ko =VETR/TD -

This diffusion length x, is a measure of the effect of in-
terfacial migration relative to the evaporation. The

(3.14)
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characteristic rates of the various Kkinetic processes
are given by Egs. (3.7), (3.10), and (3.12). In order
to investigate the growth rate of the crystal, we have to
consider the change of the average height (#,(#)). In the
next subsection, we will consider this in a high temper-
ature limit, and investigate the influence of surface dif-
fusion on the growth rate of the crystal.

1. Crystal growth: High temperature approximation

The expectation value of the interface position is de-
fined as

HO-3 3 s

and the growth rate of the interface R is given by
R=dn/dt.

(3.15)

(3.186)

The equation of motion for the local interface position
is obtained from the master equation (3. 5) as

d—gitL): Z; (P Wik = By + 7))

=TLR [e" - e'K‘<exp{2K (Z: {n, - kk)}> J
. ef ﬁ: <exp {2}( Ej (, -h,)}
- exp{ZK (f: (h, - h,‘)}>‘. (3.17)

Combining this with Eq. (3. 15), one obtains the growth
rate

R=TLR [eL _e-x.]_\lr f‘: <exp{2K$ (h —h,,)}>‘] . (3.18)

It does not directly depend on the exchange process,
which is only implicitly included in the nonlinear part.

Assuming the interface profile (i. e., the configura-
tion of the model system) to be in equilibrium config-
uration [H=0, Eq. (3.18)]:

e'K‘<exp{2K$ (i - hk)}> Hab,eq b

(3.19)

d(hhy)e/dt = 2{(}1" rWlh;=hy+ )+ yWlhy = hy+7) Ry + 8, AWk = by + 7)), - 8 s Wollyhj=hy+ 7, iy =D, ),
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we obtain the “Wilson-Frenkel” value?* for the growth
rate,

1
RWF =T—R(€L - 1) .

(3. 20)

In reality, the interface structure in a nonequilibrium
situation is different from the equilibrium profile, and
the growth rate is different from Ryy. The nonlinear
equation (3. 18) contains expectation values for a hier-
archy of correlations. An explicit expression for the
growth rate can be derived in a high temperature ex-
pansion for small K. Using Eq. (3.19), the growth rate
(3. 18) can be expanded as

= L -Kt_l < < >
R=Ryy e N2 exp2K Y (b ~h,) )

1 ., 1w (2KP 2

(3.21)

where (***), represents the difference of the expecta-
tion value from the equilibrium value without field;

Codp=Cr = Vb 00 (3.22)

For the spatially homogeneous system, i.e., {(k;),=h{f),
the growth rate is given by the correlation of the height
deviation

Ohy = hy = (hy)e=hy = h(2)
to be

R=Ryy -TiRe'“2K2<{§: (6n, - th)}z>o . (3.24)

The difference of this growth rate with respect to the
Wilson—-Frenkel rate is contained in the correlations

(6R8hy) p = {(hy = KON Ry = WD),
- ((h; - <hi>H=0,eq)(hk - (hk>H=0,eq)>Hﬂ,eq .

We now investigate the diffusional effect on this height
correlation.

(3.23)

(3.25)

The evolution of the height correlation (h;k}), is gov-
erned by

(3.28)

where the term containing §;; gives the contribution to the equal-site correlation and the last term gives the con-

tribution for ¢ and j being nearest neighbor sites.

From this expression follows the kinetic equation:

d(6h;0h)p/dt= Z:‘ [K6h;s ¥ Wk = hy+ 7Y+ ¥ Wlhy = by + )8R ) p+ 8, A Wlky =~ by + 7)) p = 64, o Wil by, hy= By + 7, hy— 7)) ]

(3.27)

Using the explicit form of W and expanding to the lowest order of inverse temperature X, we obtain

1 . i { (3
d(éh;ékj)p/dt=;—e e 2K<6h" ﬁ (6hy — 6h,) + i (67; — Shy)" 61 ,> +—Tl— ke 2K<6ki- ﬁ {2 (67, — 6h,)
R D D m

J)

- Z (6n, - Oh,,)} + ﬁf {iﬁ (6h, — 8h,) — %(Gh‘ - Oh,,)} . 5h,> +Ti- 6, (e = 1)+ O(K?).
m n D R

(3.28)

Equation (3. 28) is a closed equation for the pair correlation (5k;6k;), and can be solved exactly. In the Fourier

transformed form
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1 R
(6hOh-g)p "'ﬁ ﬁ; ]ﬁ_; exp{— iq(R; - Rj)}(éhiﬁhﬁb ,

the evolution equation (3. 28) is rewritten as

1. 1 .
A(8hydh.g)p/dt=~—-¢ *24K2(1 - y(q)X6h,5h.)p -—e K2 4KZ%(1 ~ y(9))¥(6h,0h. >D+Ti(eL -1),
R D R

where

_1t ie(R.-R )
'y(q)—z ,- e i,

By solving (3. 30), we obtain the time-dependent solu-
tion of the correlation function, and then from (3. 24) we
can obtain the relaxation of the growth rate to the steady
value. We are now mainly interested in the steady rate
R of crystal growth, where the interface is moving with
constant velocity without changing the interface config-
uration. In this steady state, the height correlation is
directly given from Eq. (3. 30) as

L_1 o 1
o= TRAT () T3 X1 = (g)) ’

where the diffusion length X is given in (3. 14).

(3.31)

(8h k., (3.32)

Since the growth rate R is given by (3. 24) or

1
R=Ryp - 2K

E (1= o) (ShSh.p, (3.83)

where the ¢ summation is taken for the first Brillouin
zone, R is expressed in the high temperature case as

—x o 1-9(q)
R= RwF[l" (27 )df d"qm] (3.34)
Rysll - Kz/2] XZS_,O
TRyl —K2/2X%): X%aw, (3. 35)

As shown in Eq. (3. 34), the growth rate is lower than
the Wilson-Frenkel law if there is no diffusion. The
suggestive interpretation that the temperature at which
R goes to zero in Egs. (3. 34) and (3. 35) corresponds to
a mean-field treatment of the roughening point is not
useful here. For small enough driving forces L the
roughening temperature T, cannot dependupon diffusion,
since it is a static limit. The high temperature expan-
sion equation (3. 34) therefore is only valid at tempera-
tures sufficiently far above T;. (For dynamics without
diffusion, see Refs. 20 and 21).

For large diffusion length X -, the growth rate
asymptotically increases to the Wilson-Frenkel value.
The local roughness? of the surface may be expressed
by the internal energy of the model:

U——JZ (hy =R

[ER )

(3. 36)

The increase of the internal energy from fhe equilibri-
um value without field is given by

(=202 3 (1= a))eh,0h o

T 2r 1
T (e ‘”f (21r)" 1+ X1 —(9)

o

Stochastic models for crystal growth

(3.29)
(3.30)
-
by T(et —1)/2 Xim0
BECE NGl N
( : 2X5 b @ 1-{g) Xi-w. (3.37)

The energy difference (U), is positive for arbitrary dif-
fusion length X and goes to zero for X ~«. It depends
upon the driving force L in the same way as the Wilson-~
Frenkel growth rate, i.e., (U)p~L for L-0. The de-
crease of (I),, i.e., the decrease of local roughness,
with increasing importance of the diffusion process
leads to a faster growth of the crystal, since the ran-
domly adsorbed atoms are incorporated more easily in-
to stable clusters.

IV. TWO-DIMENSIONAL ISING SYSTEM
A. General method

In the following two sections (IV and V) we will treat
the dynamics of crystal-growth models in the quasi-
chemical approximation.’® We will use a formulation
in “macrovariables” of the system?®:?¢ right from the
beginning rather than developing the approximation for-
mulas from the microscopic master equation for both

cases separately.

The macroscopic state of a system can be described
in terms of extensive quantitites X;, the absolute values
of which increase with the system size N. X,, for ex-
ample, are the total number of adatoms on the crystal
surface or the energy, etc.

As before, we may describe the adsorption or evapor-
ation of atoms at the surface of a crystal by a Markov-
ian master equation

PO _ 5™ (- o vl

- WX, - r}~{x;PDP{X, - »,}, ], 4.1)

where P({X,}, #) is the probability distribution that the
system is found in a macrostate {X;} at time ¢, and
W({X,}~{X, + 7} is the transition probability per unit
time from a macrostate {X;} to {X; + »,} with changes
{r;}. We may normalize the instantaneous changes 7,

to order unity. Since various microscopic transition
processes induce changes of the macrovariables X;, the
transition probability W is proportional to the system
size N:

WX} = 1%, + 7P =Nwl{x 3 {7.]), (4.2)
where x; is the intensive quantity of order unity
%=X;/N. (4.3)

With these two definitions, (4.2) and (4. 3), one can de-
rive the phenomenological equations of motion® for the
expectation values x,(?),
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), 3 ot O (4.4)
J

from the master equation (4.1). This kind of phenome-

nological description is commonly used in the chemical

reaction theories. We will now apply this formalism to

the surface adsorption in this section, and the crystal

growth for SOS model in the next section.

B. Monolayer-adsorption model

We use a two-dimensional tinetic Ising system with
nearest neighbor interaction and with both relaxation
and exchange kinetics as a model for the adsorption of
a monolayer of atoms on a given planar substrate, %
The lattice structure, therefore, is assumed to be
given; long ranged elastic forces are not taken into ac~
count. The local concentration of adatoms then is de-
fined by C;, where C; =1 stands for an occupied site and
C,;=0 for a vacancy.

The Hamiltonian then is given as

j==2J) C,C;~Ap Z Cy,

[EEM)

(4.5)

where the first sum goes over nearest neighbor sites,
and Au is the chemical potential difference between the
solid and the vapor (or solution).

The macroscopic state of the system can be described
by the total number of adatoms on the surface N,. The
intensive variable C=N,/N then is just the coverage.
Ny=N - N, is the number of vacant sites. The number
of adatom-adatom bonds is denoted by N,,, the number
of vacancy~vacancy bonds by Ny, and the number of
adatom-vacancy bonds by @. The latter corresponds to
the energy of the system and is also a measure for the
local roughness. These quantities are related by

NAA=%ZNA—éQy —%Q, (4.6)

where z is the configuration number of the lattice.

1
Nyy=32z Ny

The Hamiltonian equation (4. 5) then is rewritten in
terms of these macrovariables N, and @ as

H=J@-H'N,, (4.7)
where
H=z2J+Apu . (4.8)

The time dependence of the macrovariables @ and N,
is now the subject of the kinetic quasichemical (Bethe-
Peierls) approximation, QCA.

The two types of kinetic processes, relaxation (cor-
responding to adsorption and evaporation) and diffusion,
are now discussed in the following paragraphs.

1. Adsorption and evaporation

The adsorption is assumed to be determined by the
chemical potential difference Au or the external “field”
H and to be independent of the environment of the ad-
sorbing site. The adsorption rate of atoms onto a va-
cant site, surrounded by % vacant sites and z - %2 oc-
cupied sites, is given by*?

1 —
WR(NA,Q-NA+1,Q+2k—z)=-_—r—eL-NV, (4.9)
R

Stochastic models for crystai growth 1085

where 75 is a characteristic time constant and L is de-
fined in Eq. (2.8).

The effective number of vacant sites Ny (k) contains
the information about the configuration of the environ-
ment and is given by

SES)
<§ ZzN V)

in QC approximation.' Here the distribution of Ny, -
and @ bonds in the lattice is assumed to be random.

Ny= (4. 10)

Inversely, the evaporation rate depends on the local
configuration. When an adatom surroundedby kadatoms
and z — k vacancies is evaporated, the % bonds to the
neighboring atoms have to be broken at the cost of the
corresponding bond energy. The evaporation rate then
is defined as

K(z-Zk)m

WR(NA,Q-—NA—I,Q+2k—z):Ti-e (4.11)
R

with K from Eq. (2.86).

The factor N, correspondingly represents the number
of adatom sites with the appropriate configuration in QC
approximation:

o L9

Note that this choice of the transition probability equa-
tions (4. 9) and (4. 11) corresponds to the nonsymmetric
case being discussed in Sec. II, Egs. (2.8) and {2. 9).

(4.12)

Since the effective numbers N, and N, are of macro-
scopic order, the adsorption or evaporation rate is pro-
portional to the system size N, and we can use the rela-
tions of Sec. IV.A. The evolution of the coverage ¢
=N,/N is governed by the phenomenological equation
(4.4) as

de(f) <& .
—di’R—= ; {WR(C, q; 17 2k _Z) - WR(C’ qy; = 1’ 2k —Z)}

Hhet O
- 35 () B e}
_TLR{M - C[M%’izicéﬁ]} .

Here d/diy means the single-atom contribution to time

change. cy is the density of vacant sites

cy=Ny/N.

(4.13)

(4.14)

In deriving (4. 13), we have used the relations be-
tween the bond densities

4=Q/N,  N,u=Nsu/N=tzc-1igq,

NVVENVV/N=§ZCV-§(I- (4.15)

The evolution of the density of adatom—vapor bonds ¢,
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which is proportional to the exchange energy density e
=Jgq, is given by

(28 - 2)Wi(c,q; 7,2k —2)

dq_
Tin” 2 %

n7 1
_2 L[NzV‘ECI]
= cye T
R 22Cy

=K 1 Z [nT -K 1 L
+C[NAAe +2¢Iek] [NAAe —24¢ ]} (4.16)

1 - 1 b A
3 zC Nise*+35qe

The equilibrium solution of Eqs. (4. 13) and (4. 16) is
given by

4NAANVV: 42921( s

(ﬁ’.)rl_ L&VV)”Z
=e — B
4 AA

which is identical to the equilibrium solution in the
Bethe—Peierls approximation.?® The critical tempera-
ture is given by

K.=J/kyT.=In(z/2-2) and L=0.

(4.17)

(4.18)

2. Surface migration

In addition to the pure relaxation processes of evapor-
ation and adsorption we will now allow for surface dif-
fusion. There an adsorbed atom may hop to one of its
neighboring vacant sites. This exchange process then
depends on the environment of both sites involved. For
an adatom with % nearest neighbors which attempts to
hop to a neighboring place surrounded by ! vacant sites,
the exchange rate is given as

WoN,, Q@=N,, Q+2k+2]+2=22) =—Tl— HEFOG . (4.19)
D

7p here is a characteristic “diffusion” time and the
probabilistic factor § in QC approximation is given as

(e (22 () €3
— k -k-1 ) -1-1
vse D) Ny
z-1 z-1

Note that the exponential factor in Eq. (4.19) depends
only on the initial state of the adatom. Physically this
corresponds to a jump over an activation barrier, where
the jumping atom initially does not know the state be-
hind the barrier. In Eq. (4.20) we have included the
fact that after the jump the atom always sees its pre-

vious position as a vacancy. For the remaining 2z -1
bonds the probability distribution was taken as random.

(4. 20)

The evolution of the bond density g then is obtained
in analogy to Eq. (4.16) as

dq

£
. Z: (2k+21+2=22)Wy(c, q;0,2k+21+2 = 22)
dtp &1a

-1 T oKL R K _ Lo K & _L
-2 eK[NAAe +2qel(]r [NAAe 29€ +sz 2q ,

1 =
To 3 2c Naae™ +3qe 3 zcy

(4.21)

where dq/dt, is the contribution from the diffusion pro-
cess only. Of course, there is no direct contribution
to the relaxation of the coverage dc/dt.

Stochastic models for crystal growth

Tn=Tr Tp=5Tg Tp==

107 150
T K=0875 L=101L

(K¢ =0.693, Lc=0155)

(&)

05

FIG. 3. Two-dimensional Ising model in QC approximation.
The lifetime 7,4, of the metastable states outside the spinodal
regime (1L | > |L_|) decreases with decreasing diffusion
speed T3

Combining Egs. (4.21) and (4. 16), the total change of
correlations ¢ becomes
dg_dq  dq

dt dtg dt,’ (4.22)

Equations (4. 22) and (4. 13) now form a closed set for
the evolution of the system, which we have to study
simultaneously. For this purpose we used a numerical
integration technique.

3. Numerical results

We consider here the two-dimensional square lattice
(z=4). In contrast to the one-dimensional Ising chain
this two-dimensional Ising model has a phase transition
at a critical temperature 7,. We cannot expect behavior
significantly different from the case discussed in Sec.

II in the one-phase region above T,. Right at T, we
know from renormalization group treatments that the
dynamics are ultimately controlled by the relaxational
part only.?® The most interesting region therefore is
the low temperature range T<T,.

The static QC approximation is known to show a spin-
odal line as limit for the existence of metastable states
in the two-phase region. Of course this is an outcome
of the approximation used, while the real system (with-
out elastic forces) does not show a true spinodal line, 1873
The concept of the spinodal line, however, is useful as
an estimate for the practical range of the nucleation
regime. In our case the spinodal line is given by the
critical “field”

Lz=4)=2log{(e®* + 8)VezF =1+ (¥ —4)*/3} ~3In3 - 4K
(4.23)

if we start from an originally mostly vacant system.
For L= L, the system will remain almost vacant. For
L> L, the system will undergo a first order phase tran-
sition. 2830 This behavior is shown in Fig. 3 (K=0.875;
K.=1n2=0.693,L=1,01L_; L =0.155), where the time
dependence of the coverage c is plotted for various ratios
of the characteristic diffusion time 7, and the relaxa-
tion time 75 [Eqs. (4.9),(4.19)]. As the relative infiu-
ence of diffusion increases (or 7, becomes small), the
relaxation of the coverage towards equilibrium becomes
fast and the lifetime of the metastable region becomes
short. For infinitely fast migration (diffusion) rate, 7,
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FIG. 4. Inverse lifetime T_}, vs scaled field VI —L_ near the
spinodal field L,. The insert shows the dependence of the life-
time Ty, of metastable states upon diffusion time 7. (model
as in Fig. 4.)

-0, the surface configuration g takes on the “instanta-
neous” equilibrium form

V1+4(eX -1)C,C -
fF -1

for given C, as qualitatively discussed in Sec. II for
the one-dimensional correlations.

(4. 24)

=2
=3

A measure for the lifetime of the metastable states
can be written as® 3!

L 7 c(2) = el)
Tets = l c(0) - c(=)

Figure 4 shows the nonlinear relaxation time 7,4, as a
function of the square root of the field differences (L

Lc)”z. This corresponds to the usual scaling be-
havior in mean-field-like approximations. Neither the
values of the critical field L, nor the exponent of 7,
are influenced by the diffusion process. The amplitude
and hence the actual relaxation time, however, may
change by up to a factor of 2.

dt. (4.25)

Of course there remains the basic difference between
the metastable states produced by this mean-field-like
approximation and the nucleation regime of a real sys-
tem. In the latter the lifetime of metastable states is
inversely proportional to the nucleation rate. ¥ The
nucleation rate consists of an exponential which is in-
dependent of the time scales involved and a kinetic pre-
factor. It is the prefactor which depends on the kinetic
processes and in fact it increases with diffusion length
X, in the usual formulation. The nucleation process
thus becomes more probable with increasing diffusion
speed and, therefore, the nucleation regime becomes
narrower with increasing X,. The quasichemical ap-
proximation, therefore, gives quantitatively meaningful
results only for chemical potential differences sufficiently
larger than the “spinodal” value. This is studied in the
next section in comparison with computer simulations
of crystal growth. The limit of infinite diffusion speed
in nucleation theory will be discussed at the end of
Sec. V.

Stochastic models for crystal growth 1087

V. SOLID-ON-SOLID MODEL

A. Layerwise quasichemical approximation

In this section we investigate the SOS model*™® which

is frequently used as a model for the solid—vapor inter-
face, in an approximation, which can be applied on the
whole temperature range. Alternatively, we have in-
vestigated the similar discrete Gaussian model (Sec.
III) in a high-temperature expansion only.

The model is defined as a lattice which can be filled
with atoms, but only such that in a given “upward” dir-
ection from solid to vapor there are no filled sites above
a vacant site. This is the so-called solid-on-solid re-
striction (SOS), which excludes vacant sites inside the
solid part and overhangs at the solid-vapor interface.

The Hamiltonian of the system is written as

3==-2J ) C,C;- A#Z ¢+ v{C,D,

(i

(5.1)

where the first sum runs over all neighboring pairs of
sites in the lattice, C;={0, 1} indicates whether the site
is vacant or filled, and V{{C;}) is a potential which pro-
vides the SOS restriction. It is infinite for a forbidden
configuration and zero otherwise.

An interface originally introduced into the system
then persists at all temperatures. The inhomogeneity
of the system due to the interface suggests a layerwise
QCA to be used.®® There, one divides the system into
layers parallel*® to the interface. In the nth layer
there are N lattice sites, N{n) of which are occupied by
crystal atoms. Similarly to the preceding section, the
macrostate of each layer is described by the number of
crystal-atom-vacancy bonds Q(»). The numbers of
vacancies N,(n), crystal-crystal bonds N,(n), and
vacancy-vacancy bonds N, (») in the nth layer are deter-
mined from geometric considerations as

N,(n)=N-Nn),
N,o(n)=32N(n) - 1 @(n),
N, (n)=3zN,(n) -3Q(n).

Here z is the coordination number in the layer. Be-
cause of the SOS restriction, the number of various
bonds between adjacent layers are determined uniquely.
Assuming that a site in the nth layer is connected with
only a single site in the (# + 1)th layer, the numbers of
crystal-crystal bonds N, (n,n+1), crystal-vacancy
bonds N, (n,n+ 1), and vacancy-vacancy bonds N, (n,»
+1) between layers are given as

N.{n,n+1)=N(n+1),
N, (n,n+1)=Nxn) = N(n+1),
Nyfn,n+1)=N,(n).

(5.2)

(5.3)

Owing to the SOS restriction there are no vacancy~
crystal bonds between the nth and » + 1th layer: N, (n,n
+1)=0.

With these macrovariables {Mx), ()}, the Hamil-
tonian is rewritten as

5e=J ) Qu)-HY Nn), (5.4)
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where

H=Apu+2zJ. (5.5)

There is no direct coupling between nth and »+ 1th layer
in the Hamiltonian (5.4). The coupling enters by the
SOS restriction on the configuration.

When there is a difference of the chemical potentials
Ay (or H) the crystal grows or evaporates. The kinetic
processes occurring at the interface are adsorption,
evaporation, and interfacial migration of crystal atoms.
The SOS restriction allows the kinetic processes to oc-
cur only at the interface between the crystal and vapor
phase. As in the preceding section, we consider the
single-site process (adsorption and evaporation) and the
two-gite process (interfacial migration) separately.

1. Adsorption and evaporation

As in the preceding section, the adsorption rate is
assumed to be determined only by the difference of
chemical potentials or H.!%# Furthermore, we have
to take care of the SOS restriction, where the adsorbing
site in the nth layer must have an underlying crystal
atom in the (z = 1)th layer. With these considerations,
the adsorption rate of a vacant site in the »th layer,
surrounded by %k vapor atoms, is given by

1
Wr(N(n), Q(n) ~ N(n) + 1, Q(n) + 2k — 2) =— e N (n),

TR

(5.86)

where 75 is the characteristic relaxation time, and L
is given by Eg. (2.6). {Again we use the nonsymmetric
choice [Eq. (2.12)] of transition probabilities.} The
factor N,(») stands for the active number of interfacial
Using the same random

Stochastic models for crystal growth

N1 (z Qn)
< gé Z)Agfn-)-; ) ‘
Z

The adsorption rate of a single isolated vacant site is
given by (1/75)e", which corresponds to the rate % de-
fined in Ref. 19 [see Eg. (3.7)].

(5.7

N(n)=N,(n=1,%)

The evaporation process is described in analogy to
Eq. (4.12) by

Wr(N(#), Q(n) -~ N(n) = 1, @n) + 2k - 2)

=TL6-K(ZI¢-£). N(n) , (5. 8)

R

where % is the number of crystal atoms surrounding the
evaporating crystal atom in the xnth layer, and K is
given by Eq. (2.6).

The factor N(») represents the active number of in-
terfacial crystal atoms, which can evaporate and have
the appropriate neighboring configuration:

No(n)\ (z Qn)
Nn) =N, (n, n+1) ( ?;215(;52) . (5.9)

F4

The evaporation rate of a single isolated crystal atom
is given by (1/75)e"*, which corresponds to %, defined
in Ref. 19 [see Eq. (3.11)].

Since the transition probabilities given above are of
macroscopic order N and satisfy the condition (4. 2), we
can write down the phenomenological equation for the
average concentration c¢(»n) and bond density g(n):

vapor atoms in the nth layer. _ _
distribution assumption for the neighboring configura- cln) = N(n)/N, qln)=Qn)/N . (5.10)
tion as in the previous section we have The variation of concentration is given by
|
d
o) _ 5 {Walclon), alon)s 1, 2k = 2) = Wileln), an); = 1, 26— 2)}
R %
1 L N (n)e ® + %q(n)ex] g
== -1) - - -cln . 5.11
L Jtctn 1= cole? et - core )[Rl (5.1
Here we defined the crystal-crystal bond density N, (x) as
N (n)= N (n)/N, (5.12)
and used the relations Eq. (5. 3) together with the definitions
c,(m)=N,n)/N=1=cn),
N,n) =N, (n)/N=%zc,-34n) . (5.13)
The evolution of the crystal;vapor bond density g¢{») then is given by
dgln) _ )
-3 (2k - 2)Wileln), gln); 7, 2 - 2)
dtR r=21 &
X, T ~K , 1 X7} 8 A7 ~K 1 K
-2 1) L[Nun) -3 (n)] _ 1 [N (n)e ® +3q(n)e ] [Eﬂgn—)-e—r:rzq(—n)er] } .
= {ictor= - ctmler Mo Lo - e ) [ R0 [ S
(5.14)
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The equilibrium profile of concentration is given by

4N, (n)N,(n) = F(n)e*® (5.15a)
and
cln=1)=cn)] _[N.An)e ¥ +1q(n)e*]*
L[C(n)—c(m 1)] - [ 3zc(n) ] - (5.150)
Equation (5. 15a) can be rewritten as
o) =2 \[1+4(e2K E Kl)cl(n)c =1 (5. 16)

If we make the instantaneous equilibrium approximation
for g(x) [i.e., Eq. (5.16)] and take the high tempera-
ture and long-range interaction limit (K- 0, z-« and
Kz =finite), then we obtain g{n) =z c(n)c,(») and Tem-
kin’s* mean field equation for the concentration c(n):

d;(tn) _Lm{c(n 1) - c(n)]e**

—[cln) = cln + 1)]e2Heetm} (5.17)
Now we consider the two-site process or the interfacial
migration of crystal atoms.

2. Interfacial migration (diffusion)

In the spirit of the layer-wise treatment interfacial
migration of crystal atoms has two aspects; an intra-
layer exchange process within each layer where the
number of crystal atoms in the layer is conserved, and
the inter-layer exchange process between layers where
the number of crystal atoms in each layer varies. In
both cases, of course, the total number of crystal atoms
in the whole system does not change. The intra-layer
process changes the configuration or roughness in a
single layer, and the inter-layer process affects the in-
terfacial configuration or profile. We want to find the
relation between the total growth of the crystalline sys-
tem and its configuration or roughness.

a. Intralayer migration. First we consider the ex-
change process in a single layer. This process has a
close similarity with the surface migration of the mono-
layer model of the preceding section. In the case when
the crystal atom surrounded by % crystal atoms hops to
one of the neighboring vacant site, which is surrounded

Stochastic models for crystal growth 1089
Wt (N(n), Q(n) - N(n), Q(n) + 2k + 21+ 2 — 22)
- ) (5.18)
Tp

Tiptr? is the appropriate time constant of intralayer ex-

change, and the energy factor takes only the energy
change due to the bond breaking of exchanging crystal
atoms into account. Because of the SOS restriction,
the vertical configuration of exchanging atoms should
have a certain arrangement. There should be a vapor
atom above the exchanging crystal atom, and a crystal
atom under the exchanging vapor site. So the effective
number of crystal-vapor bonds Q(») with certain neigh-
boring configurations is given by

]V;v(nd n+ 1)
N (n,n+ 1)+ N (n,n+1)

N, (n=1,%)
(n—l n)+Nw(n—l n)

£ £ g

ST W)
(5.19)

Here we have used the same random distribution approx-
imation for the surrounding configurations as was used
in the preceding section or Eq. (4.20). The exchange
rate of a single isolated crystal atom is given by (1/
Tintr3). oK% 2 which corresponds to the rate kg, defined
in Ref. 19:

Ko 2= koo -

Qn)=Q(n)

1
Tt € (5.20)
D
The diffusion length of an isolated atom'® on a smooth

interface is given by using Egs. (3. 11) and (5. 20) as
Xy =Vk/ky= VaTp/TP™?, (5.21)

which measures the relative significance of the exchange
process relative to the single-site process. Here the
lattice constant is set equal to unity.

Since the transition probability is of a macroscopic
order N, we can write down the phenomenological equa-
tions for the averaged concentration ¢(n) and bond den-
sity ¢(n) as

intra _
by [ vapor atoms, the change of the crystal—vapor bond de(n)/dtp*r*=0 (5.22)
number is 2k+ 21+ 2 -2z, and the rate is given by and
|
A40n) S S (2t 204 2= 22)WEcln), gln); 0, 2k + 21+ 2 - 22)
Citz; ra :i: : D ’ Vs
_z=1 c(n) = cln+1) cln=1) = c(n) [Eu(n)e"%%q(n)e ]"1 [N N (n)e® - 1q(n)e N, (n) —%q(n)]
7t e"qln) c(n) X)) 1zcln) N, (n)e™® +2q(n)e %zc,,(n) '(5.23)

Because of the SOS restriction, Eq. (5.23) has an ad-
ditional probabilistic factor in comparison with Eq.
(4.20). When the intralayer diffusion is infinitely fast
(7irt**~ 0), the local equilibrium for the bond density
g(n) [Eq. (5.18)] is attained.

b. Interlayer migration. Next we consider the ex-

r

change process of a crystal atom with a vacancy in dif-
ferent layers. This produces a change in the interfacial
profile.

When the crystal atom in the nth layer, surrounded by
k crystal atoms, exchanges sites with a vacancy in the
n'th layer with ! surrounding vapor atoms, the exchange
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probability is given by

Wit (N(n), N(n’), Q(n), @(n') = N(n) = 1, N(w') + 1, Q(n) + 2k

-2, Q')+ 2l —2) ==z ¥ B O N (n,n").  (5.24)

inter

The effective number of crystal-vacancy pairs is ob-
tained by considering the SOS restriction and the random
distribution approximation of the neighboring configura-
tions:

—— _ (z2N{»)N (»") N (n,n+1)
ch(n,n )— ( N ) ch(n,"+ 1)+Ncc(nsn+ 1)

N, (n' =1,n)
N n' =1,n'}+ N, (0 —1,n')

dc(n)
dtinter

r=¢l R ! (#n)

- {[c(n ~ 1)l = Len) = ol 1)][ a2l 2alo” | } ,
D

zzc(n)

where the self-consistent field L, is given by

= N (n)e* + lq(n)e’{] ‘
Lo = - c 2
Deriving the above equation (5. 26), we have used the
SOS boundary condition

(5.27)

cf-=)=1, and c(=)=0, (5.28)

dq(n)

tinter

E2R2R20>

zzc,(n)

—— {[c(n ~ 1) - ][R balnd ] o1y e - e 1) [Batrle s alrse”
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) (ch(r:)‘) (%263(:;)) (Nwl(l”')> (%ZQ_(r;’));
e

This expression is very similar to Eq. (5.19), but in-
stead of the correlation @(») we here have the firstterm
in parentheses on the rhs of Eq. (5.25). In this expres-
sion we allow for diffusional jumps between the topmost
sites of neighboring solid columns. Since our QC ap-
proximation only considers correlations between direct-
ly neighboring sites explicitly we have to consider these
exchanges between the topmost sites of various levels
(n##x') in the above mean-field-like approximation. The
remaining terms in Eq. (5.25) of course take care of
the correlations between the various solid columns in QC.

n#n’ . (5.25)

The evolution equation for the concentration c(#) due
to interlayer diffusion then is written as

=2 2 2; nE rWpte(cln), c(n’), g(n), gn'); v, — v, 2k — 2,21 - 2)

(5.26)

r

which means that the system is completely crystallized
far below the interface, and completely noncrystalline
far above the interface. From Egs. (5.26), (5.27),
and (5. 28), it is evident that the total concentration,

S -« C{n), does not changefrom thisinterlayer exchange
process.

The density g(n) of crystal-vacancy bonds is also
governed by the phenomenological equation

(Zk = 2)We(c(n), cln’), gn), qn’); 7, - v, 2k - 2,21~ 2)

Rl e ) (Lt =i

szc(n) N.(n)e™ + 3g(n)e

sq(n)e”

_}%[C(n -1) - c(n)][c(n) —cln+ 1)] [Nm(n)le‘x + %q(”)e’f] £ [Me-lf -
D

szc(n)

N, (n) - %q(n)] .

Toeln) (5.29)

N. e F +3qln)e®

The second term on the right hand side of Eq. (5. 29) takes care of the overcounted layer »’ =

Equations (5. 11), (5.14), (5.22), (5.23), (5.26), and
(5. 29) are our fundamental evolution equations. When
all processes, adsorption, evaporation, intra- and in-
terlayer exchange processes, coexist, then the total
variations of the concentration or bond density are de-
scribed by

de _ dc dc
Nk

dq_dq _dq dq

At dty T it gghter: (5. 30)

I

Of course the equilibrium structure (5. 15) is not modi-
fied by the diffusional effect.

In order to investigate the dynamical properties, we
have to solve the coupled nonlinear equations. Because
of their complexity we resort to numerical integration.

3. Crystal growth: Numerical results

The growth rate of the crystal in our model is defined
as

d
R ‘—‘E Zc(n) .

(5.31)
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There is no direct contribution from the diffusion pro-
cesses equations (5.22) and (5. 26). These effects are
contained in the correlations g{x) within each layer and
in the inhomogeneity, i.e., the concentration profile,
across the interface.

The Wilson-Frenkel expression for the growth rate
[Eq. (3.20)]

R F=TLR(eL—1)=k5(1—e‘L) (5.32)
as before follows from the approximation that the in-
terface profile and the correlations remain at their
equilibrium value during the growth process. In reality
the interfacial structure in the nonequilibrium steady
state of growth is different from the equilibrium struc-
ture and even depends periodically*'® upon the position
of the interface in the lattice, at least for temperatures
below the roughening temperature 7;. The high tem-
perature expansion of Sec. III takes into account the
modifications of interfacial structures due to the ex-
ternal driving force Au (or H or L), but neglects the
periodic position dependence of the structures during
growth. It therefore holds only sufficiently above Tjy.

We have studied the case of a simple cubic system,
the interface being oriented in the {100) direction. The
coordination numbeyr z in a layer is z =4 and the critical
temperature for a two-dimensional layer in QC approx-
imation T#% is given by

K@ =g /kp T =1n2=0. 693 -+ . . (5.33)

For the numerical integration of Eq. (5. 31) it turned
out to be sufficient to consider some 20 coupled equa-
tions simultaneously (Fig. 5). The first layer was fixed
to be completely crystalline, ¢(1)=1, the last layer
being completely vacant ¢(22)=0. Figure 5 shows the
propagation of the interface at a temperature slightly
above T¢® with a “field” L=0.5 without diffusion. The
width of the interface is small compared to the size of
the system normal to the interface. The growth rate

R shows an oscillation due to the localization of the in-
terface at discrete positions normal to the growth direc-
tion (Fig. 6). One does not have full translational in-

t:O t=107Tx t=201x t=30Tr t=0Tr t=50Tr
: 38" R 0.238 R 0232 R 0232 -(1232 R 005
10
cin) \\\\\X\\
00
1
FIG. 5. SOS model interface in CC approximation, propagating

over some 20 layers. The parameters for particle interaction
and field were K =0.623, L =0.5; diffusion was not allowed.

The small influence from the boundaries indicates that 20 layers
are sufficient for the present analysis of dynamic properties.
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0.31 0.31
Lo [Raelkg . L [Ruelkg
i3 1 X
o &
0.2 0.2 4
v /
014 0117
Vv
K=0625 K=0875
L=03 L=03
% ; B % 3
Xg et Xg oot
(a) (b)
FIG. 6. SOS model. Dependence of the average growth rate

R upon the diffusion length X attwo temperatures a) K =0. 625,
b) K =0.875. The bars denote the maxima and minima of the
oscillation of the growth rate.

variance normal to the interface and therefore does not
observe a roughening transition in this approximation.

The averaged growth rate R divided by the adsorption
k; is shown in Fig. 7 as a function of the field L at a
temperature (K= 0. 625) above T'*), Curve a repre-
sents the growth rate without the diffusion process. It
is significantly below the Wilson—-Frenkel value Ryy/kj.
When the intra- and interlayer diffusion process (7)te*
=7 =7.) is included, the growth rate is enhanced.
Curves b and c represent the growth rate with diffusion,
where the diffusion length X =v2T¢/7T; is 1 and 2 lattice
units, respectively. The curves A, B, and C are the
corresponding growth rates obtained from Monte Carlo
simulations (from Ref. 19). The agreement is very
good down to fields L =0, 02,

K=0625
0.4 - Quasi-chemical approx. N
a—+—Xs=0 Rwe/ke
bmmo--Xe = 1 we/Ko
tgtD C---g=-- Xs: 2 A o E
2034 Monte Carlo Simul. B
A—x— X5=0 b
B—e— XS =1 V. /
C—o—Xg=2 é

04 @S

L——

02 03
FIG. 7. Average growth rate R vs field L at a temperature
K =0.625 (above the two-dimensional critical temperature
K,=0.693, in QCA). The agreement between our QCA and
previous MC results is very good. There is no adjustable
parameter in the calculation.
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0.7«| 0.4+
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{a) (b)
FIG. 8. Decrease of local roughness q= L, q{n) with increas-

ing diffusion length X at a) K =0.625, and b) K =0.875. The
bars denote the maxima and minima of the oscillating roughness
during growth.

The internal energy or the local roughness q=75,q(n)
is shown in Fig. 8 as a function of the diffusion length
X, for the field L =0.3, where the calculated growth
rate agrees well with the MC simulations. Parallel to
the periodic oscillation of the growth rate the local
roughness also varies. Surface diffusion enhances the
relative amplitude of oscillation, g..,/gqni, Ut de-
creases the maximum and the averaged values. The
surface in the average becomes smoother.

At temperatures below the critical temperature

TE (K=0. 875, see Fig. 9) the existence of metastable
regions with infinite lifetime at small fields becomes
obvious. This is a nonphysical result of the QC approx-
imation and also persists inthe high temperature range. *
But there the critical field L, is so small (Fig. 7) that
it is numerically hard to detect. At the lower tempera-
ture K=0.875 (Fig. 9) the critical “spinodal” field is

K=0875
0.4 Quasi—chemi%al approx. +
0—'+—Xs: R /k‘
bmmo==Xc= 1 wHRe
‘o Ce--0---Xg= 2 +
X .
Z03- Monte Carlo Simul.
' A x Xs=0
B o Xg=1 sC
c e Xs =2 ’//
02 /ul’ B8
< ,” /sb
s //
o o A
/ // x a
I‘w o/ -f-/
014 / / /
d /7 A
Iy 'd
°
. §f/
x
0 X T T .0 T T T
0 01 {02 03 04 05
Lc L —

FIG. 9. Average growth rate R vs field L for K =0.875 (below
the roughening temperature). For fields outside the spinodal
regime (L > 1.5 L) the calculation agrees well with the MC
simulations.
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K=0625

+
L C

034 Contlnuous MF upp7 o
cl .............. ]

£

O.LJ Quasi-chemical approx.
a—+—Xg=0

WA T t{nim =0

R/kS

0.2

014

0 01 02 03 04 05

L —

FIG. 10. Growth rate calculated in ‘‘continuous’’ mean-field
approximation (K =0.625). Curve x represents the result of
QCA with infinitely fast intra-layer diffusion and lies very
close to the MC results (Fig. 7, curve B) for both inter- and
intralayer diffusion at X ;=1. The agreement between the ap-
proximate formula equation (5. 49) and the computer simulations
is good for X ;> 2.

already almost equal to the critical field L% of the
two-dimensional system [Eq. (4.23)].

For larger driving forces L> L the influence of the
diffusion upon the growth rate is qualitatively equivalent
to the case at higher temperature. For values L>1.5
L. the Monte Carlo simulations again are very well re-
produced.

The growth rate again varies periodically as the in-
terface proceeds layer by layer. In Fig. 6(b) the max-
imum and minimum values of R as well as the averaged
rate are plotted as a function of the diffusion length X.
The enhancement of the growth rate due to surface dif-
fusion is mainly contained in the maximum value of the
instantaneous growth rate. The local roughness also
oscillated with time. The extremal values are shown in
Fig. 8(b) as a function of the diffusion length.

We will now turn to the question whether one can give
an analytic formula that approximately describes the
influence of surface diffusion upon the growth rate in
closed form. For this purpose we first discuss the
question whether the diffusion within a layer or the mo-
lecular exchange between different layers gives the main
contribution from the diffusion to the growth rate. In
our QCA formulas, Eq. (5. 30), it is easy to suppress
any particular process separately. Excluding inter-
layer diffusion (7}****=) and letting the intralayer dif-
fusion speed go to infinity (7}f'**=0) (i. e., instantaneous
equilibrium within a layer), we only find a moderate
enhancement of the growth rate as compared to the case
with no diffusion (Figs. 10,11). The remaining differ-
ence to the Wilson-Frenkel rate therefore has to be at-
tributed to interlayer diffusion or to the adjustment of
the interface profile.
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014
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FIG. 11. The same as Fig. 10, but now at K =0.875. As is

clear from the setup of Eq. (5.49), the continuous mean-field
approximation ceases to be good below the roughening tempera-
ture, where nucleation becomes important.

This behavior suggests the approximation to treat
each layer in a homogeneous mean-field approximation,
which by definition always represents a kind of instan-
taneous equilibrium. Then we allow for diffusion be-
tween the layers and give an analytic approximation for
the interface profile. This is explained in the following
subsection.

B. Continuous mean-field approximation

Assuming infinite intralayer diffusion speed we can
make an “instantaneous-equilibrium” approximation
for the pair correlations g(n) in the nth layer. Similar
to Eq. (5.17) we use the mean-field limit ¢{n)
=z+ c(n) c,(n). Our previous system of equations (5. 30)
with Egs. (5.11), (5.14), (5.22), (5.23), (5.26), and
(5. 29) can then be reduced to a single equation of the
Temkin type‘:

dC(n) {[ (n = 1) = c(n)](e* + X5 e"0)
[c(n) —cln+ 1)]eXatl-zetmi(q , x2)} (5.34)
where the diffusion length is defined here by
X2 = zTg/Tinter (5. 35)
and the self-consistent field L, reduces to
elo= Z [c(n) = eln + 1)]ek 1-2etm1 (5. 36)
7

In order to integrate this in closed form we assume the
concentration profile to vary smoothly across the inter-
face. This corresponds to sufficiently high tempera-
tures above T;. Then we can expand the difference of
concentrations in differential form®:

9

1 82
c(n) =cln+1)= [—%;—5 a_x"] e(x).
In the steady state with the growth rate R

(5.37)

Stochastic models for crystal growth
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d (~ 1, ., 5
= — = — - 1] .

7 [w clx)dx - (et = eto), (5.38)
the system moves with éonstant velocity R or the con-
centration is only a function of®!

n=X-R¢t. (5.39)

Using these continuous and steady state approximation,
(5. 37) and (5. 39), to the mean field equation (5. 34), we
obtain the following differential equation for the con-
centration c(n):

- ic::_l_[( de ldec>( L + X2et0)
dn Tg d’n 2 dr,
de .1 dz(') Kell-2c) ]
(dn 2ar (1+x3). (5.40)
This equation is rearranged as
dc 2 —RTR+(e +X2 Ln) Kz(1-2¢:)(1+X2) dC 5.41)
" (eF+ R el0)+ K12 20 an :

and integrated to be
dc R - RTR )
ac . —_— 2
dn fo+ 2<ez +Xzer0Jr 1) c(n)+ Kz (ez+ Xelo "

x log{(e” + X2e"0) + (1 + x2)e* <1 20)], (5.42)

The integration constant I, and the growth rate R are
determined from the SOS boundary condition:

{c =1, de/dn=0

c=0, de/dn=0

The results are

as p—-—

N (5.43)

1 R7g L Ly 2y K
Io KZ( Z+X2620 2) log[(e +Xi-e )+(1+Xs)e ]

(5. 44)
and

Rrg—(ef+X%%0) 1
Rrp-2(e” +X2e1'0) 2Kz °

(e + X%eM0) + (1+ X2)e**
BleL +X2eL0)+(1+X2)e'K‘ ’
(5. 45)

where R7y and elo satisfy the relation (5. 38). From
Eqgs. (5.45) and (5. 38), the growth rate R is determined
implicitly.

We obtain the limiting values of the growth rate for
X2—~0or X2~. For X%=0 the growth rate reduces to
the known mean field value®®

R 1

a 2-1Z (1/2Kz) log(e™ + *%) /(e* + e%%)

For infinitely fast diffusion (X%>> 1) the growth rate is

given as
Eeomoofid i) o)) o

which converges for X2 -« to the Wilson—Frenkel law
from below. Note that metastable states here are ex-
cluded by the approximation equation (5. 37).

(5.46)

For intermediate values of X2, we have to evaluate
Eqs. (5.45) and (5. 38) numerically. Because we have
used the approximation of infinitely fast intralayer dif-
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fusion, the rates obtained in this subsection are always
larger than the quasichemical values (Figs. 10 and 11).

At low temperatures the approximationequation (5. 37)
of course is not good owing to the neglect of a nucleation
regime. But with increasing temperature (Fig. 10),
i.e., above the roughening temperature, this approx-
imation becomes systematically better.

C. Two-dimensional nucleation with infinite diffusion
speed

For completeness we summarize here arguments
about the asymptotic growth rate in the limit of infinite
diffusion speed (X~ =) for temperatures below Tp.
(For references see the review article by Venables,
Ref. 35).

In QC approximation the growth rate R vanishes for
driving forces L below the spinodal value L,. For suf-
ficiently strong fields the Wilson-Frenkel rate Ryy is
reached asymptotically (L > L,, Fig. 9). In reality,
however, the nucleation mechanism allows for nonvan-
ishing growth rates for arbitrarily small values of L.

A semiphenomenological expression used by Gilmer and
Bennema'? describes the influence of diffusion for small
diffusion lengths. The formula, however, has to be
fitted to the X =0 case and predicts infinite growth rate
for infinite surface diffusion speed which is clearly un-
physical,

This problem arises owing to the implicit assumption
that a two-dimensional “nucleation rate” is well defined
even in this limit. Denoting the number of critical
nuclei in a system of N sites by », we may write down
an evolution equation for the number of nuclei (see,
e.g., Refs. 35-38):
an

—=N[1-g]-[%(1+ o X2)]+ exp(=Yc,/L), ...,

yT (5. 48)

where we assumed the radius of the critical nucleus to
be small compared with X,;. Here the last {exponential)
term represents the nucleation barrier, the second
term is the kinetic prefactor or the frequency of attach-
ment of atoms to the surface of a supercritical cluster,
and the first term accounts for the excluded area, which
is already covered by supercritical clusters. This is
single-layer representation for the moment. The con-
stants ¢q, ¢; are some positive system dependent quan-
tities; A is the net impingement frequency of atoms on-
to the surface; and y is the edge free energy of a sur-
face step. The excluded volume factor (1 - ¢) has been
discussed in various papers; here we need only the
simplest approximation, which gives a lower limit on
the rate of change dn/df. We therefore set for X > 1

q=Xin/N, (5.49)

which assumes that there is only one cluster generated

within an area X2 on a surface of N sites. Equations

(5. 48) and (5. 49) are readily integrated to give

n(t) =2 {1 - expl— K1+ cuXe 1/ Xlpeee . (5.50)
L]

Taking now the limit X ,~ J§~~, Eq. (5.50) reduces to

a step function, i.e., immediately after the potential

Stochastic models for crystal growth

difference L has been switched on, a finite number »n

= N/X% of supercritical clusters has appeared in the
(infinite) system. The nucleationrate dn/dtimmediately
drops to zero and the few isolated nuclei serve as ideal
sinks for all excess atoms on the surface in the limit of
infinite diffusion speed (X ,~«). The surface then has
equilibrium structure everywhere except near the pe-
rimeter of the nuclei: This latter effect gives no con-
tribution to the macroscopic thermodynamics of the sys-
tem and, therefore, the Wilson—Frenkel rate holds also
below T for X ~.

Vi. CONCLUSION

We have compared the influence of diffusion on the re-
laxation of the order parameter in various kinetic
models. In the particular application of these models
to crys'tal growth, the relaxation of the order parameter
corresponds to the growth rate.

We have found that the diffusion leads to a faster re-
sponse of the systems (a higher growth rate) in prac-
tically all cases considered here. An exception is the
one-dimensional Ising chain with “symmetric” transi-
tion probabilities. If both the adsorption and evapora-
tion of atoms depend on the local environment of the re-
spective site, the correlations in the system are always
closer to their equilibrium values than in the case of
nonsymmetric transitionprobabilities, where the adsorp-
tion is assumed to be independent of the local environ-
ment in the lattice. In the second case, therefore,
diffusion has a significantly more pronounced effect
than in the first case, since it tends to bring the corre-
lations closer to their equilibrium value at given order
parameter.

For the other systems, higher-dimensional Ising
model,. discrete Gaussian and SOS model, we have re-
stricted our attention to the nonsymmetric transition
probabilities. In the Ising model below the critical tem-
perature quasichemical approximation produces an (un-
physical) regime of metastable states with infinite life-
time. Outside this region we find a reduction of the re-
laxation time due to diffusion by up to a factor of 2.

The Ising-type models always converge to thermody-
namic equilibrium for sufficiently long times. Since
both the initial relaxation of the order parameter and the
final relaxation in linear response theory become in-
dependent of the diffusion process the diffusion is im-
portant in the intermediate nonlinear regime only. Dif-
fusion therefore is very important in the nucleation re-
gime which we did not consider explicitly, since the QC
approximation does not work there.

In the discrete Gaussian and SOS model, on the other
hand, one can maintain a nonequilibrium situation for
arbitrary times, which corresponds to continuous growth
of a crystal. The diffusion process there leads to an
enhancement of the growth rate, since clustering of
isolated impinging atoms then is supported and reevap-
oration is reduced. The results of the QCA are in very
satisfactory agreement with previous computer simula-
tions of combined relaxation and diffusion. In the high
temperature expansion of the discrete Gaussian model,
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being appropriate for the “rough” surfacephase (7> T5),
we obtain the Wilson~Frenkel growth rate as an upper
limit at infinite diffusion speed. In the QC approxima-
tion for the SOS model we obtain this rate as a limit for
infinite diffusion speed and for driving forces (chemical
potential differences) Au large compared to the spinodal
value Au_ below which the system is inmetastable states
of infinite lifetime. The above mentioned clustering of
adsorbed atoms due to diffusion is seen in the reduction
of the (interface-) energy of the system (SOS model).

A mean-field type approximation within the layersparal-
lel to the interface and continuum approximation normal
to the interface finally allows us to give an analytic ex~
pression for the growth rate as a function of the diffu-
sion length in closed form, which agrees quantitatively
with the computer simulations above T, within about
20%.

We have thus obtained a fairly clear picture for the
influence of surface diffusion upon growth rates of dis-
location-free crystals, starting from a microscopic
description. The remaining uncertainty for small
growth rates below and around the roughening point due
to the breakdown of the QC approximation may eventually
be overcome by using an appropriately adjusted cluster~
reaction theory, which also works in the nucleation re-
gime.
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