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Dynamic coarsening of crystal surfaces by formation of macrosteps is explained by an improved model
for impurity absorption. It is related to interface propagation in random media. Some unusual recursive
equations are encountered. The model is analyzed by various methods and exhibits some universal
features. We find coarsening to proceed logarithmically with time in agreement with experiments.

PACS numbers: 61.50.Cj, 02.30.+g, 68.35.—p

The growth of faceted crystals occurs by lateral propa-
gation of surface steps, which typically are part of a sur-
face spiral originating from a screw dislocation. Obser-
vations on nearly perfect surfaces show spirals with hun-
dreds or thousands of turns (“steps”).!=3 The distance of
a step from the spiral center is proportional to its average
speed of propagation and time. The ‘“unit height” of a
step corresponds to the Burgers vector of the screw dislo-
cation and is usually one or just a few lattice units. For
reasons not completely understood, these steps often tend
to form “bunches” by coalescing into macrosteps of
dozens or hundreds of unit step heights. Since the result-
ing macroscopic roughness of the crystal surface affects
the crystal quality, one looks for a better understanding
of this process.

In addition to this concrete application there is an
analogy to coarsening in *“spinodal decomposition” if one
regards the flat terraces as parts of phase 4 and the
macrosteps as parts of phase B. Furthermore, there is a
close relationship to the propagation of interfaces in ran-
dom media, as briefly discussed at the end.

Our basic assumption is that a small concentration of
impurities adsorbed on the “terraces” between surface
steps may play an essential role in many coarsening phe-
nomena, as supported by experiments.!=> Various models
were previously defined starting from very similar in-
gredients,*7 but they lack some important cooperative
effects. Some other models rely on rather arbitrary as-
sumptions. We now introduce our basic model, then
briefly discuss the linear stability analysis and present the
results of a mean-field analysis of the resulting functional
equation. Finally, we compare this with a computer
simulation and experiments.

We assume that the substrate material, forming the
growing crystal, impinges from the vapor or solution onto
the terraces between steps, quickly reaches quasiequilib-
rium (in relation with the vapor), and finally crystallizes

into a nearby step by surface diffusion. This advances
the step. Impurities also impinge onto the terraces,
where they remain immobile, also reaching quasi-
equilibrium exponentially with time,” but on a slower
scale than the substrate material.! These random impuri-
ties hamper the rate of advancement of steps to an extent
that depends on their concentration immediately in front
of a step.*"® As the step advances the impurities are in-
corporated, leaving an essentially “clean” surface directly
behind the step.

A particular position on the surface thus undergoes os-
cillations in impurity concentration as steps are passing
by. Consequently, the velocity v, of step n is basically a
function of the time 7, elapsed since the step ahead has
passed the same position y,(¢t). More precisely, this is
formulated as

y,,(t)==y,.+1(t—r,,), (1a)
v, (1) =V (7,(1)), (1b)

where n denotes a specific step and n +1 the step in front
of it. Because of the exponential saturation of impurities
with time, ¥V (z) asymptotically goes as Vo+6V
xexp(—At) for large 7. For small exposure times 7, the
velocity v, decreases with decreasing 7, because of the
lack of a supply of substrate material between densely
spaced steps. The step velocity ¥ (), therefore, first in-
creases with 7, goes through a maximum at 7,,, then de-
creases towards Vo This completes the basic one-
dimensional model.

Our model turns out to be closer to experiments in for-
mulation and results than previous theories,*"’ which
have not considered the collective effects produced by
this natural “exposure time’ formulation, and which lead
to quite different results.®

Despite its simplicity the model (1) shows surprising
features. Dynamics follow from our taking the time
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derivative of (la), using (1b) with dy,(t)/dt=v,
=V(1,):

dt,(t) -— V(t,(2))
dt V(T,,+](l"‘1'n)).

Innocent as it looks, this is a functional equation and, in
addition, it is recursive! It has only a first time derivative
but, in order to formulate initial conditions, one has to
know the solution.® For long times, however, the dis-
tances between steps vary slowly in comparison with the
typical exposure times, so that we may consistently re-
place 7,V +1 by dn =yn+1(t) —p,(¢). This then gives an
approximate set of differential equations for d,(z),’
tractable by computer or by other methods discussed
below.

Even for the full set (2) a linear stability analysis is
readily performed. A constant velocity V,, (Vp, >V,
> V) for all steps corresponds to two exposure times
7, <7Tm and 71> 1,. Making a small perturbation
around 1, 7,(t) =15 +eexp(ikn + Q1 ), one arrives at

Q =(0/1p)lexplik — Q1) — 11, )

(2)

with Q@ =d[InV (1)1/d(Int). Here k is the wave number
of the perturbation. The system is unstable for 7, > 1,
meaning Q <0, the maximal instability occurring at
k =r. If we start with a nearly equidistant step train
with 7==r1,, this means pairwise coalescence of steps. In
other words, this coarsening process starts if the typical
exposure times initially are around or larger than 7,,.
(The singularity produced by the kinematic wave theory®
for a continuum model depends sensitively on the initial
distribution of steps, as already noticed by Frank, and
hence differs substantially from the present result.) Note
further that V,, =const still allows for an enormous mul-
tiplicity of (dynamically) stationary states, as only the
two exposure times then are fixed but not the actual dis-
tribution of steps. As can easily be deduced, the pairwise
coalescence continues to hold also for macrosteps, i.e.,
bunches of steps (within which there is the short exposure
time 7,). This step doubling lives on the discrete nature
of (2) and is lost in continuum approximations.>®

In order to study the long-time behavior of this process
we consider the distribution function S (z,r) for exposure
times 7 at observation time ¢. Initially it may start as a
unimodal function at ¢ =0. It is then quickly split into a
bimodal structure, peaked around two values 7,(t) < 7,,
and 7,(¢) > t,. Here t, corresponds to bunching of
steps into macrosteps, while 7, corresponds to the large
terraces between macrosteps. According to the stability
analysis (3) the distribution S(z,¢) is stable (contract-
ing) around 7,. This peak, therefore, serves as a “sink”
for exposure times 7,. Alternatively, the peak around 7,
represents the “source” and is decreasing during the
coarsening process. The latter peak thus dominates the
systems dynamics and accordingly can be viewed as a
unimodal distribution. More pictorially, the dynamics of
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a macrostep is governed by the leading step of the bunch.
The peak around 7, then merely serves to maintain glo-
bal conservation of steps.

This conservation law locally can be written as

9,S(r,t)=—0.lu(z,t)S(z,1)], 4)

where u is the (drift) rate of change of 7 values. Defin-
ing step distances d, =1,V (1,+) as above, we obtain

V(T,,-H)_ V(l',,) =(a;T,,)V(T,,+1)

+ 7,0,V (t,4,(2)).  (5)
We define a mean-field approximation by

V(ty+1)— V()
EW(t)‘—‘fdr V(1)S (1, )/fdrS(r,t ), (6)

stating that the velocity of step n +1 in front of step n be
replaced by the average velocity W (t) over all steps. In-
serting (6) into (5) and identifying now 9,7,(t) =u (z,t),
we obtain

ule,))=1=v@)/WwWk)—9,WwQ)/wQ). @)

The set of equations (4), (6), and (7) defines the func-
tional mean-field equation for the dynamics of the distri-
bution function S(z,r). To be precise, it only describes
the dynamics of the peak near 7> z,,. But for long times
we shall observe 0 < 7, < 7,, < 75, and so we may assume
(4) to hold in the full range t>0. The leakage out of
S (t,1) at =0 then contributes to the peak at 7, (global
conservation) which then need not be considered further.

A detailed analysis of this equation is obviously not an
easy task. It turns out, however, that we may approxi-
mate S (r,z) in the long-time limit by a Gaussian:

S(1,t)=m()expl— [t —10(1)1%/20(1)3, (8)

keeping amplitude m (¢), peak position 70(z), and width
o(z) time dependent. The results are consistent to this
order.’

With this approximation we can now derive®'? a set of
three coupled ordinary nonlinear differential equations
for m, 19, and o, through use of the asymptotic V' () as
given after (l1a) and (1b). The width o of the large-t
peak is predicted to go to a finite value, the amplitude to
decay by a power law, and the peak position and thus the
width of the large terraces to increase logarithmically
with time:

Ato=Int. )

Because of this logarithm, the single experimental con-
stant A determines the results. It is the ratio of impurity
atoms impinging on the surface per area and time to the
equilibrium concentration at a flat surface. This scaling
result is essentially a consequence of the exponential de-
cay of V(7). Thus it could be derived in a simpler way,’
if one were to start with o(r)/79(z) =0 for long times as
an assumption.
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FIG. 1. Comparison of the prediced scaling relation (9) with
computer simulations (Ref. 9) and experiments (Ref. 1). Since
no experimental values for time scales T were available we have
taken experimental data for step spacing d and distance D from
the spiral center. For long times all data converge towards the
scaling relation.

A comparison [Fig. (1)] with direct computer simula-
tions® shows agreement with the predicted asymptotic
scaling (9) and with an analysis® of recent experimental
data.! For small values of A the convergence of the nu-
merical data towards (9) of course is faster than for large
ones. Other parameters like Vy, 6V, 7, etc., affect the
short-time behavior only. The agreement with experi-
mental results' is also obvious. The plot shows d, the
spacing between macrosteps, and D, the distance from
the spiral center, both in arbitrary units. Previous at-
tempts® suggesting a /2 law on a more phenomenologi-
cal basis, not explicitly considering impurities, are incon-
sistent with these experiments. However, we do not
claim that the formation of macrosteps is always a conse-
quence of the mechanism described here. The combined
action of diffusion and kinetic coefficients was taken into
account in an averaged way only, but in any case impuri-

ties even at small concentrations seem to play a central
role in the kinetics of step movement. Furthermore, we
have ignored fluctuations along the steps. As in the gen-
eral problem of an interface moving in a random medi-
um,!! they presumably are significant in crystals with
small anisotropy of the step free energy. A simple ap-
proximation can be made® to account for such fluctua-
tions by the addition of a diffusion current into (4) in ad-
dition to the drift.
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