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Directional Solidification: Transition from Cells to Dendrites
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The evolution of cells and dendrites on a solidification front is analyzed numerically by a ‘Green’s-
function method. We obtain a consistent picture of the pattern-forming processes in the whole experi-
mentally accessible range of the phase diagram of cell spacing versus growth rate. We find a smooth
transition from cells to free dendrites confirming suspected scaling relations. The selection of dendritic

spacings appears to occur through a rail instability.

PACS numbers: 61.50.Cj, 05.70.Fh, 68.70.+w, 81.30.Fb

The solidification of most alloys occurs under condi-
tions known as directional solidification:""* The solid-
liquid interface is forced by a wandering thermal field
into the liquid, thereby segregating impurities in a thin
layer in front of the interface. At sufficiently high speeds
v > v, this layer becomes effectively supersaturated and
the originally flat interface becomes wrinkled,? then cel-
lular, and finally an array of parallel growing dendrites is
formed. Even though the mathematical (Stefan) prob-
lem was formulated a long time ago? most of the in-
teresting questions still are unanswered: What is the
spacing of the primary cells or dendrites, is there a
discontinuous transition between them, how important
are the grooves between the cells, and what is the role of
crystalline anisotropy?

For experimental investigations3~® one typically uses a
flat vessel made of two thin glass plates which is moved
in a temperature field with a constant thermal gradient
along the growth direction. This should approximate
two-dimensional growth phenomena, but at high growth
rates the patterns usually become finer than the gap be-
tween the glass plates. Material parameters such as sur-
face tension, anisotropy, segregation, and diffusion coef-
ficients are only known with appreciable uncertainties,
such that, for example, the instability of an initially flat
front can only be matched with an error of about
(20~50)% relative to theoretical predictions.

Analytical calculations”® which were successful in
free dendritic growth®!? are still subject to discussion
concerning, for example, the boundary conditions deep in
the grooves or the range of Peclet numbers typical for
experiments. Numerical calculations!! so far have been
performed on stationary patterns only, not exploring the
dendritic region. As we have also found, the stationary
calculations sometimes give solutions which are unreach-
able dynamically.

Since both the experimental and the theoretical results
leave a wealth of open questions and do not seem to
agree very well with each other, we have made a sys-
tematic investigation by a time-dependent numerical
Green’s-function code!? based on the quasistationary ap-
proximation. This approximation still correctly identifies
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the occurrence of instabilities of a stationary growing
pattern if the bifurcation is not of Hopf type.

The well-known model %!! is defined as follows:
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Equation (1) is the diffusion equation in quasistation-
ary approximation in a frame of reference moving at ve-
locity v in the z direction, /=2D/v is the diffusion
length, and D is the diffusion constant. u is the normal-
ized field of impurity concentrations. Equation (2) is the
boundary condition for the diffusion field v; at the inter-
face; at infinity one has u# =0. Note that u;,=1 is a
necessary condition for a flat interface growing at con-
stant speed. d(0) =doll —ecos(40)] is the anisotropic
capillary length, K is the curvature, ¢ is the relative dis-
placement of the interface from a plane front moving at
constant speed, and /7 is the thermal length as a measure
of the (inverse) thermal gradient prescribed by the ex-
perimental setup. Equation (3) is the conservation law
for the solute or impurity at the interface; D; and D, are
the diffusion coefficients in the liquid and solid, u; and u;
are the concentrations at the interface in the liquid and
solid, and v, is the velocity of the interface in the normal
direction i. The segregation coefficient 0 < k influences
the type of bifurcation of the initially flat interface into a
corrugated structure: For small k the bifurcation is in-
verted; for k =1 it is normal. Both situations are en-
countered in typical experiments.

The numerical parameters of the model were represen-
tatively taken to correspond to stee/ with Cr and Ni in-
gredients, and in dimensionless units are Ir=1, D;=1,
D; =0, k =0.9, and do=2.95%10 ~*, the critical velocity
and wavelength for the plane-front instability resulting
as v, =1.136, A, =0.514. The anisotropy of the capillary
length is unknown and was taken as €=0.1 to allow for
comparison with our previous calculations on the free
dendritic case. A sinusoidal perturbation (with mirror
boundary conditions) was chosen as the starting condi-
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tion. Further details, concerning, for example, the com-
petition of several cells, will be given elsewhere.

The numerical code discretizes the interface by linear
segments about + of the tip radius in length. The time
step is automatically adjusted to keep instantaneous
changes of local curve characteristics below 0.1. Com-
puting time for one parameter set until convergence
varied between 10 min and 20 h on a Cray XMP, from
low to high growth rates and anisotropies.

The program reproduces the neutral stability curve
(Fig. 1) of a linear stability analysis? by better than 2%,
for cases of normal and inverse bifurcation and for dif-
ferent ratios Ds/D;. In Fig. 1 we show the phase dia-
gram plotted here as logjo(velocity) versus logjo(wave-
length). In principle, v is the experimentally prescribed
quantity, but we plot it here on the y axis to emphasize
similarities and differences with hydrodynamic pattern
formation like in Rayleigh-Bénard systems. In that
sense our pulling rate v corresponds to the Rayleigh
number there. Not shown is the region of very large v,
where the neutral stability curve closes again, in contrast
to the hydrodynamic case. That region, however, is not
easily accessible experimentally and hence will not be
discussed here. The asterisks in Fig. 1 mark the series of
numerical experiments presented in the following.

In a very small region above the lower limit of stability
sinusoidal structures are formed. Keeping the wave-
length at A=0.36 and increasing the pulling rate to
v=4.0,7.65 fingerlike elongated cells are formed as
found similarly by other authors'' before. The patterns
do not yet resemble the parabolic and sidebranching
structures of dendrites.

At velocities v =12 and higher the fingers become
more and more parabolic at the tip while simultaneously
sidebranches appear in the grooves between the fingers.
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FIG. 1. Phase diagram of velocity vs wavelength in logio-

logio representation. Curve a is the curve of neutral stability of
a plane front, curve b is the location of the most rapidly grow-
ing mode, and along curve ¢ the wavelength equals the dif-
fusion length. The asterisks mark the parameters of the simu-
lations discussed here.
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In Fig. 2, lower part, we show three snapshots of a side-
branching structure moving from left to right. The left-
most corresponds to a stationary sidebranching dendritic
cell, moving at velocity v =20. Note that the fixed pri-
mary wavelength A =0.36 is a factor of 14 larger than
the wavelength at the left branch of the neutral stability
curve in Fig. 1. Even larger ratios can be obtained at
larger values of the anisotropy €. Thus, a splitting of the
primary spacing by a factor from 2 to 10 would still have
rendered structures safely inside the neutral curve. A
sudden increase of the pulling rate to v =40 gives the
evolution shown in Fig. 2. The third sidebranch from the
tip begins to grow out so far into the grooves as to be-
come a new primary branch. The original dendrite
maintains its identity; i.e., this is not a tip-splitting pro-
cess, but rather a tail instability. This observation is
quite in agreement with experiments,*® where the ad-
justment of dendritic spacings does not seem to occur by
a phase diffusion of the primary branches but by this
uprise of a new cell out of a sidebranch in the groove.
Hereby the spacing is reduced locally by a factor of 2; in
our simulation it is a factor of 3 because of imposed mir-
ror symmetry. This tail instability seems to depend sen-
sitively on the anisotropy ¢: For ¢=0.05 the instability
becomes so strong that it leads to a splitting of the tip,
while at € =0.2 the primary dendrites remain stable over
displacements of more than ten spacings A. If, as it now
looks, the wavelength selection in the dendritic region
occurs through this instability of a sidebranch, it will be
a rather difficult problem to handle analytically.

Note that the diffusion length at these velocities is
smaller than the spacing between the individual den-
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FIG. 2. Lower part: Three stroboscopic plots of a side-
branching structure moving from left to right, with solid on the
left and liquid on the right. The leftmost dendrite running at
velocity v =20 has reached a stationary sidebranching state.
Then v was suddenly increased to 40. The following two plots
show the evolution of the tail instability such that a new pri-
mary cell (plus its mirror image) is formed out of a sidebranch.
Upper part: Short-wavelength limit of a cell at v =7.65 form-
ing relatively wide grooves in accordance with the Saffman-
Taylor scaling (axes in units of /7).
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drites. As the tips of the cells interact with each other
through the diffusion field, this interaction has become
exponentially weak. One therefore expects that the pre-
viously confirmed scaling relations for free dendrites'®
should hold just as well in the present case. This is
demonstrated in Fig. 3. There we compare the actually
measured tip radius with the radius R; obtained from
the scaling relation 2D;do/vRZ2=const(¢) [Fig. 9 and
Eq. (41) of Ref. 10] and alternatively with the Ivantsov
radius Ry, =pl, where the Peclet number p is taken as a
measure of the supersaturation,

u(tip) =A=(zp) ?ePerfc(/p) .

This latter relation comes from the solution of the dif-
fusion equation [(1)-(3)] around a parabolic boundary
with tip radius R}, and represents basically a global con-
servation law for an isolated parabolic cell. Apparently
this ceases to be applicable at velocities close to the
threshold v. where several cells compete for the same
diffusion field. On the other hand, the scaling relation
R =R, seems to be very robust as it already holds (with
an error of about 10% due to numerical fluctuations) for
velocities as low as v=4. We also checked that the
wavelength of the sidebranches scales like the stability
length 27 (ldo) '/? with a prefactor of about 2.5 indepen-
dent of € as in the case of free dendritic growth (Fig. 10
of Ref. 10). This holds as soon as sidebranches become
visible.

The other interesting limit is the region of small cell
spacings A such that the diffusion length becomes much
larger than A. This should be analogous to the Saffman-
Taylor viscous fingering’ in a channel. A result is shown
in Fig. 2, the small pattern in the upper part of the
figure, with scale identical to the dendritic case. The cell
spacing is now A =0.06 corresponding to the leftmost as-
terisk of Fig. 1 at v=7.65. The pattern is significantly
different from patterns at larger spacings as the grooves
between the fingers are now rather wide. Measuring the
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FIG. 3. Ratios of actual tip radius over Ivantsov radius (cir-
cles) and over the radius predicted from free dendritic scaling
(Ref. 10) (asterisks) plotted vs growth rate.

width of the finger A, at about one wavelength behind
the tip one recovers the predicted Saffman-Taylor scal-
ing” (A=A, etc.) within a few percent. Of course the
diffusion length and the thermal length are not really
infinite so that the grooves become narrower towards the
bottom.

In summary, we have identified a typical scenario for
pattern formation in directional solidification consistent
with various scaling assumptions. The interface forms
dendritic patterns if both the diffusion length and the tip
radius calculated from the free dendrite scaling'® be-
come smaller than the spacing A of the cells. The transi-
tion from cells at low velocities to dendrites at high ve-
locities is a very gradual process. So far we have found
no indication for an oscillatory instability® during this
transition which, however, may be suppressed by our
quasistationary approximation. Furthermore, we have
no explanation for the change in wavelengths reported>-®
from experiments for this transition. Note, however,
that in these experiments there occurs a transition from
two- to three-dimensional cells as the tip radii become
smaller than the gap between the glass plates. This hap-
pens typically in the same parameter range.

These dendritic patterns fulfill the scaling relations for
free dendrites including the sidebranching wavelength.
The dendrites can apparently maintain large spacings at
high velocities, as they operate as almost independent
structures. This is in agreement with recent experi-
ments.> A reduction of these spacings seems to occur
typically through a tail instability such that a sidebranch
serves as the origin of a new primary dendrite.

At small velocities and short wavelengths such that the
diffusion length becomes much larger than the wave-
length or spacing of the cells one reaches a limit, where
the cells are separated by wide grooves and the tip radius
scales with the width. This is in quantitative agreement
with the analytical results for the Saffman-Taylor prob-
lem.”

Since it is not obvious how to perform conclusive ex-
periments for questions such as what happens in the limit
of ¢e— 0, and what controls the tail instability, we hope
to report on numerical simulations on some of these as-
pects in the near future.
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