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Cluster statistics in the lattice gas system were evaluated in three dimensions (d = 3) below the critical
point, and in two dimensions (d = 2) above T, using a Monte Carlo method. Defining clusters as sets of !
particles connected by nearest-neighbor bonds, we found remarkable deviation from semiphenomenologic
cluster probability formulas below T,. This deviation is attributed to the formation of spongelike
noncompact macroclusters near the percolation temperature T,< T,. Above T, the cluster probabilities in
two dimensions may be scaled in the variable [ =(1— T,/ T) 1° with o =0.53 below T,. In contrast to the
two-dimensional case of T< T, here the cluster formulas cannot explain the distribution up to clusters with
1< 2000 particles. For T—oo (d = 2) the cluster probability p, decays as p,~ exp(—constl*) with {=1 for
sufficiently large [. This supports recent arguments that the Griffiths singularity for dilute systems is an

essential one.

I. INTRODUCTION

Clustering of atoms is a well-known phenomenon in
many topics of phase transitions, !~ although few pre-
cise details are known. Metallurgical examples are
segregation and phase separation in alloys®="; other ex-
amples are condensation and evaporation in liquid-gas
systems'™* or magnetization reversal in ferromag-
nets, 12

Many aspects of these first-order transitions are
usually described by nucleation theory.%*® % A micro-
scopic foundation requires the definition of formation
probabilities for large clusters (e.g., liquid droplets
in the vapor phase). This probability is assumed to be
proportional to exp(— G,/%;T), where G, is a free en-
ergy for the formation of a cluster of / molecules. But
the correct values of G, as well as the pre-exponential
factor of proportionality have been the subject of con-
troversy for more than 20 years, %13

We have made Monte Carlo studies on cluster sta-
tistics by direct determination of the equilibrium prob-
abilities for the occurrence of clusters as a function of
their size instead of calculating droplet free energies.
It is then also irrelevant which of the thermodynamic
potentials should be used for G;, and we avoid the am-
biguity in the pre-exponential factor.

For practical purposes we should like to simulate,
for example, liquid droplets in coexistence with the va-
por. However, the distance-dependent interaction en-
ergies'® would make the calculations very time consum-
ing. We therefore studied the temperature dependence
of equilibrium cluster concentrations in the somewhat
simpler model of a lattice gas, '® which is also known
as Ising model, having properties very similar to a
liquid—-gas system or a binary alloy. Near the critical
temperature T,, for example, the lattice gas model
predicts the density difference between liquid and gas
to vanish as (T, - 7T')® along the coexistence curve with
B~0.31, while experiments!’ give 8=0.32. This Ising
model is obviously in better agreement with real fluids
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than, for example, the van der Waals equation’® where
B=0.5. Another advantageous property of the model is
its analogy to ferromagnetic systems. ‘“Vapor” then
corresponds to “up” magnetization direction, and “liq-
uid ” corresponds to “down” magnetization. The equi-
librium pressure in the fluid system corresponds to a
zero external field in the magnetic system. Therefore,
there is no additional parameter necessary to be ad-
justed to keep the system at the coexistence line. This
avoids inaccuracies in the determination of the “bulk
free energy ” of condensation, which could be quite im-
portant in other models.

In order to have good statistics for large clusters,
the Monte Carlo simulation was carried out for tem-
peratures near the critical point, -since at T, the sur-
face tension (nucleation barrier) of a cluster!® vanishes,
At our lowest temperature 7=0.87,, however, the
cluster concentration is very small,z‘l so that we expect
our results {o be meaningful for nucleation theory in
general, not merely for nucleation near critical points.
Of particular interest for the comparison with semi-
phenomenological droplet models are the temperatures
T~T.and T—-e, Itis found that near T, the cluster
statistics may be fitted with homogeneous functions of
appropriate scaling variables by introducing an addi-
tional critical exponent. This may account for different
degrees of compactness of clusters in different sys-
tems, At T=w, our data confirm recent ideas® on an
asymmetric behavior of randomly diluted ferromagnets
near the percolation threshold.

In Sec. II we give a description of the droplet models.
In Sec. II the results of the three-dimensional calcula-
tions are discussed. For the two-dimensional system
this is done in Sec. IV, while Sec. V contains conclud-
ing remarks.

II. CLUSTER MODELS IN THE LATTICE-GAS
SYSTEM

The lattice—gas or lattice model of a binary mixture’
is defined as a lattice of dimensionality 4 which may be

8
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FIG. 1. Equilibrium clusters in a two-dimensional (60X 60
sites) lattice—gas model. The circle surrounds an (I =5)-parti-
cle cluster.

partly filled with interacting particles either of type A
or B (binary mixture). The Hamiltonian of the system
is

ZC.:—J- Z C:Q‘HZC{’ (1)
{i,4) i

where J is the interaction parameter, c;={0,1} is the
concentration of particles “A” at site {, and u is the
chemical potential, the first sum going over all pairs
of sites. An alternative description is in terms of
“spin” variables s;=1-2¢;:

3C=—JZSiSJ‘A“ZSi: (2)
{$,4>

where J =J/4 and (A/2) is the chemical potential dif-
ference between the S;=+1 and S, = -1 states, being
zero at the coexistence line.

“Clusters” of particles are now easily defined as sets
of identically occupied sites, which are connected by at
least one nearest-neighbor bond, This is a rather un-
ambiguous definition in contrast to modeis!® with spa-
tially continuously varying interaction potential, where
a cutoff has to be introduced rather arbitrarily. An ex-
ample for such clusters in a two-dimensional 60X60
lattice model as obtained by Monte Carlo simulation is
shown in Fig. 1.

In the usual formulation of phenomenological mod-
els'™ 1 of noninteracting clusters it is now assumed
that the free energy of a cluster of one phase or compo-
nent within the other component consists of a bulk part
proportional to the number 7 of particles in the cluster,
and of a surface part, which is for compact clusters
proportional to 7 “"?/4 in a d-dimensional system.

A phenomenological ansatz'® for the Gibbs free energy
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of such a cluster is then, for example,
G,;/kpT==11In(p)+1°In(x)+ TInl+ C+ -+ . (3)

The x- and y-terms (corresponding to surface and bulk
free energy) contain constants which depend on the in-
teraction parameters between particles, on tempera-
ture, and on external forces. The exponent o repre-
sents the ratio of the exponents of the effective surface
free energy over volume free energy [o=(d ~ 1)/d in the
d-dimensional spherical case]. The coefficients 7 and
C arise from entropy corrections, their magnitude and
physical interpretation still being the subject of contro-
versy.'® The probability p, that a particular site of the
lattice is part of a cluster with /-connected particles
accordingly is written as

P~ exp(- G,/ksT) , (4)
or with Eq. (3)

pimad e (-AM I -t 1) (5)
kpT

where ¢q, is a constant, and A(T) is a temperature-de-
pendent function representing the surface free energy
of a cluster, 7 and ¢ being two exponents that allow the
static scaling relations near the critical point to be ful-
filled.

The expectation value for the concentration is then ob-
tained by the sum rule

<c>s%(1—<s>)=§zz>, . (6)

This now means that the partition function has been
parametrized in terms of noninteracting clusters, lead-
ing to an essential singularity at the coexistence line
Ap -0 [Eqgs. (5) and (8)] for ¢ <1, in accordance with
the exact proofaz that all thermodynamic derivatives ex-
ist at the coexistence line,

An explicit form for A(T) turns Eq. (7) in the droplet
model of Fisher!®:

A(T)=a(TeBJ—T -;;’T) , (7

[

where “a” is a constant. At T, this term vanishes,
while above it is no longer applicable owing to the ex-
ponent increasing with 7°. As already mentioned by
Fisher, this cluster model neglects the effects of ex-
cluded volume and the possibility of having noncompact
large clusters. In fact, it is highly probable that large
clusters of type-“A” atoms have smaller clusters of the
“B” atoms inside. They can, therefore, be in some
local equilibrium, and their contribution to the singular
part of the free energy would be reduced. Reatto®%
suggested including a multiplicative factor in the formu-
la, to be interpreted as the probability that the cluster
be compact, to give pi:

pi=pi{Bexp[-bA(T)I°]+ 1}, (8)

where b >1 is a constant, and B is independent of  but
could have an analytic dependence upon temperature.
Above T, we have A(T)<0, and therefore Eq. (8) is then
also convergent for large . There are several other
propositions®*+?® for modifications of the Fisher model,
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which do not, however, apply above T.. We shall there-
fore restrict ourselves to the simplest case at present.

The close similarity of the thermodynamic behavior
of two-phase systems such as gas-liquid mixtures,
binary alloys, and anisotropic ferromagnets is indi-
cated by their similar behavior around the critical
point.? It therefore appeared to be useful to evaluate
cluster statistics also close to T; in addition, we ex-
pect better statistics for large clusters due to decreas-
ing surface tension as T approaches T, and finally,
there are detailed predictions from scaling theory, *%
which should be fulfilled by phenomenological cluster
probability formulas, We therefore briefly summarize
the predictions for critical behavior which will be tested
by the Monte Carlo simulations,

The singular part of the free energy near the critical
point in scaled form is expressed by a homogeneous
function®

o~ [€ R
G- aG0<_i, TA) , (9)
where A is a free parameter, €=(T,-7)/T, is the rela-
tive temperature difference, 2=Apu/kyT, and @ and A
are “critical” exponents. The concentration {c)=%(1
—{s)) is then obtained by taking the derivative

(s)=9G/03h , (10)
=€, h=0: (s)=me B=2-A-a, (11a)
M=h, €=0; (s)=mh''% 8=4/8, (11b)

where m, and m, are constants, Eq. (11a) holds for the
coexistence line, and Eq. (11b) holds for the critical
isotherm., The above-mentioned exponents in the Fish-
er model, Eqs. (5) and (7), are

7=2+1/5, o=1/85. (12)

The prefactors gy and a are related to the proportionali-
ty constants wm, m, of Eqs. (11a) and (11b).

These exponents of the cluster model should hold for
clusters®® up to a size I~ %, where £ is the charac-
teristic length of correlation between particles in the
lattice. For much larger clusters /> £ fluctuations of
the surface are again of the order ~ ¢ and therefore be-
come unimportant. Then the clusters become spherical
and the surface exponent o will be o={(d -1)/d, as in
classical nucleation theory.'® For our model at a rela-
tive temperature €=0,1 we have £ =ty e~ 4,4 (with the
correlation-length exponent v~ 0, 64) and 7, ~ t*~ 80,
Scaling theory should therefore be applicable at least
in the region of clusters of this size. More detailed
statements concerning this changeover from fluctuation-
dominated to geometric regime can be found in Refs,
28-30.

ill. THREE-DIMENSIONAL SYSTEM

Monte Carlo calculations® were carried out on a 30
% 30% 30 site lattice with periodic boundary conditions
using standard procedures; the statistical averages
were taken over ~ 10* MC trials/site. A special pro-
cedure was developed®? to count clusters in the three-
dimensional system., The MC method was tested by
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FIG. 2. Ising model near the critical temperature (T <T,).
The full lines give the asymptotic scaling behavior for two- and
three-dimensional systems; the crosses + denote the Monte
Carlo results as a test.

comparing the computed order parameter (s) with the
results from scaling theory'® (Fig. 2), the statistical
errors were smaller than the dimension of the points
(+) in Fig. 2. The errors of the magnetization were
analyzed according to Ref. 31; unambiguous estimates
for the errors of the cluster distribution could not be
obtained owing to the time correlations involved. The
cluster counting method was tested in three ways: A
given set of clusters was analyzed; for arbitrary clus-
ter distributions the sum rule, Eq. (5), was checked;
and finally, 90° rotations of the system about its axes
were checked to give identical results.

In Fig. 2 the order parameter (m)=(s) is plotted ver-
sus relative temperature €=(T, - T)/T,, where T, was
taken from the results of high-temperature series ex-
pansions,*® The relative number of “A” atoms in the
“B”-rich phase is larger by a factor of more than 2
compared with the two-dimensional system at the same
relative temperature, leading to more and larger clus-
ters than observed in previous calculations!?® for the
two-dimensional system.

The cluster distribution as a function of cluster size
in the three-dimensional system®®'® is plotted in Fig.
3(a) for three different temperatures below 7, For
comparison, the droplet-model predictions Eqs. (6) and
(7) for h=Au=0 are given. The parameters 7, g, ¢,
and ¢ are obtained from the scaling relations Egs. (11)
and (12), together with the values 6§~ 5.0 and 8=0,3125
for the critical exponents, leading to 7=2.2 and o
=0,64, The different curves (a) and (b) in Fig. 3(a) are
due to different evaluations of the amplitudes g, and a.

For the coexistence curve we have, '? from Eq. (7)
(r=0)

%‘? = Bu.e*! =2q4a k;ITc ; I exp (— a kBJTc el ") ,

(13)
where the sum may be replaced by an integral for € -0
to give '

9 J )—ua-r)/al/ <2+ o— .,-) .
B-1=__‘IQ € (2+0=1)/0 .
Blee™ ==, (a P -

(14)
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FIG. 3. (a) Cluster distribution in the three-dimensional lat-
tice-gas (Ising) model below T, at three different relative tem-
peratures € = (1 —T/7T;). The Monte Carlo calculations (full
lines) are compared with predictions from scaled droplet mod-
el, Eqs. (6) and (7) (broken lines). Approaching T, there is
considerable deviation from the droplet-model predictions.

The different curves (a) and (b) correspond to different values
for the critical amplitudes (see text). (b) Comparison of the
classical droplet model (broken lines) with Monte Carlo data,
on the same scales as Fig. 3(a). The classical model was fit-
ted to the data at €=0.2, 20<}<60. Near T,, considerable de-
viation is observed for clusters with 10<7<100, For scaling
reasons, however, the classical model cannot be correct for
large clusters at T—T,.

For the critical isotherm, analogously, we have (¢=0)

sy _1 1/61_ _24, ( h )Fs
= =3 "k _——Q—kBTc PoT, rE3-1, (15)

and from Eqs. (14) and (15) it follows that the ampli-
tudes are ¢;=0, 105 and a=6. 73 for Curves (a). Curves
(b) are obtained in the same way, by choosing, instead
of Eq. (15), the relation for the susceptibility'? (com-
pressibility) to give g,=0.108 and a=6.26. An alterna-
tive method would be to assume that the cluster dis-
tribution Eq. (57) in Ref. 12 holds down to clusters of
I=1 particles.® This gives, at T=T,,
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g =2t(r-1), (16)

where ¢ is the Riemann ¢ function, leading to a smaller
value for g, The differences in the amplitude “a” re-
sult from small uncertainties in amplitudes m, and m,,
in Egs. (15) and (16) and in the susceptibility. They
are significantly smaller than the deviation of the Monte
Carlo data from either one of the curves. We also com-
pared the classical droplet formula Eq. (5) with o=(d
—1)/d with our data. Since the amplitudes qo and a are
then not defined by relations like Egs. (13)-(16), we
fitted the data at €=0, 2, giving ¢;=0.0029 and a=12.8
under the simplest assumption, 7=0, For the range [
of the available Monte Carlo data the approximation be-
comes systematically worse [see Fig. 3(b)] as T ap-
proaches T',. This deviation is still increased as the
exponent 7 according to Lothe and Pound®’ is assumed
tobe T=-4,

Comparing these results with previous Monte Carlo
calculations in the two-dimensional system,3 less
agreement is found for the three-dimensional case. In
particular, the region of small clusters, where the
cluster probability - ,log (p,l”) increases with increas-
ing 7, is larger than in the two-dimensional case be-
cause of the relatively larger contribution of the sur-
face in the three-dimensional case for /=10,

Another difference between the two- and three-dimen-
sional systems becomes important as T approaches
T,.% In order to have an order parameter (s)#0 in an
Ising lattice with Ay =0, an infinitely large cluster of A
or B atoins has to exist. Such a cluster, extending in
every direction over the whole system, is called a
percolating cluster. For a three-dimensional simple
cubic lattice®®™*% with noninteracting sites, there is a
critical percolation density of ~ 31% randomly dis-
tributed atoms of the same type to form a percolating
cluster. This means that both phases (A- or B-type)
percolate at the same time, if their relative density is
betweeh 31% and 69%. For an Ising system with inter-
action it was recently shown® that this range is even
increased so that both phases are percolating simul-
taneously at relative densities between ~ 20% and 80%.
This interval is reached for T >0.95T, i.e., below
the critical point. (The two phases of the system per-
colating each other are then similar to a water-satu-
rated sponge. )

This result indicates that the attractive interac-
tion®®376 petween particles of the same type leads to
assembling the single clusters onto the largest one,
while the interface between this cluster and the sur-
rounding phase remains very diffuse., Such a cluster,
of course, will affect the probability distribution of the
droplet model close to T,. For the thermodynamics
considered here, the appearance of such a cluster is
not necessarily connected with a singularity. Since the
cluster is very incompact, it could be broken into
pieces by substituting a relatively small number of
atoms which connect different regions of the cluster,
Similarly, leading to anincreasing percolation threshold,
we could propose to define clusters in such a way that
the only atoms that are counted are those connected and
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in addition surrounded by the full coordination number
of equal particles.

For the two-dimensional system the situation is much
simpler. Below T_, only the phase giving the order pa-
rameter can percolate,®® while the other phase just
forms isolated clusters, as is obvious from topological
considerations., The critical percolation density in the
two-dimensional system* is reached at T,, while above
T, neither component can form a percolating cluster.

If one is below the above-mentioned percolation tem-
perature in the three-dimensional system one may con-
sider the clusters as noninteracting fluctuations (in
static approximation). Since the magnetization fulfills
the scaling condition as shown in Fig. 2, the cluster
distribution p, must also show a scaling behavior ac-
cording to the sum rule Eq. (6) together with Eqgs. (9)
and (10). The Fisher model, Eq. (7), and Reatto’s gen-
eralization, Eq. (8), predict the scaling variable I tobe

- J J
r=l (kBT _kBTc> ’
The cluster distribution p, can then be written as a

homogeneous function in the relative temperature (J/
kpT){1-T/T,) and the cluster size [ as
pgT) =7 TZ)(Z) 3

As is already clear from Fig. 3(a), this is not a good
choice in the three-dimensional system, although it
gave good agreement with scaling theory in the two-di-
mensional system below T, As long as the cluster
size [ is the most relevant parameter for the properties
of a single cluster (in comparison with, for example,
the possibly different shapes of clusters of the same
size) the scaling form Eq. (17) should hold. Near the
percolation threshold, however, several relatively com-
pact clusters may be connected by thin bridges consist-
ing of relatively few particles forming a giant but rela-
tively diffuse cluster. Small changes in shape of these
connected clusters may break them apart, leaving sev-
eral smaller clusters instead of a large one at the cost
of very few broken bonds., In this case, therefore, one
should expect a formula for the cluster statistics also
to consider fluctuations in the cluster shape. This ad-
ditional degree of freedom may formally be taken into
account by additional critical exponents, if we write the
cluster probability in the form of a generalized homo-
geneous function

P, s¥=1""8p(el ?, Hl®, sI™), (18)

where [ is the cluster size, s is the number of nearest-
neighbor bonds between the cluster and the surrounding
phase, and {To, z, y, x} are the critical exponents which
may be related to those of the macroscopic thermody-
namic quantities.,

(17a)

(17b)

This scaling form is based on the assumption that the
next relevant variable is the cluster surface s, From
the scaling relations for the internal energy of the sys-
tem U~s, one then obtains expressions for the present
exponents in terms of the original exponents «, B, v,

5, etc. These relations were recently derived by Bind-
er.

H. Maller-Krumbhaar and E. P. Stoll: Statistics of the lattice gas model

With the help of Eq. (6) and replacing the sum by an
integral analogous to the procedure used around Egs.
(13)-(15), one obtains from Eq. (18) for the coexistence
line (7=0)

_2-T+y

) (19)
r4

_B_(_S_) ~ 6-(2-”}')/2"
ah
for the critical isotherm (e=0)

3;;) - h-(2-1+y)/y_’ 85 = y/z s (20)

and for the specific heat at the coexistence line

8u~€_a 1-T+z+x

de z ° (1)

Since the cross derivatives of the free energy are sym-
metric,

2%G¢ _a%G

o€dh  Ohde’ (22)
one has

311~8<s>~ a1 1-T+y+z

3 e € B 1-————z . (23)

This implies that the scaling relation 2 - a=8(5+ 1)
holds and x can now be related to the exponents y and z,

x=z—-y+1=1-2(B5-1) . (24)

For the present investigation we shall not consider the
coordinate s explicitly, i.e,, we shall not make an as-
sumption what the next relevant variable in addition to
the cluster size should be, but we shall only discuss a
possible scaling form,

pi=1"0p(el?, K1), (25)

where the restriction y=1 of previous cluster distribu-
tion formulas Eqgs. (7) and (8) is no longer maintained.

Involving again the scaling relations Egs. (9)—(11) to-
gether with the sum rule Eq. (6), we can write more
explicitly

p,=l"2”/5’f>(el y/BB’ nl y) . (26)

This is also obtained from previous scaling forms Egs.
(7) and (8) by replacing the coordinate ! by a general-
ized cluster-size coordinate I’ =7% requiring that Eq.
(6) be fulfilled. For convergence reasons y has to be
within the limits 0<y<p5/[d (86 - 1)].

The physical meaning of this generalized coordinate
can be understood in the following way. Close to T,
local deviations in the concentration from the expecta-
tion value (s) have a characteristic linear extension of
the order of the correlation length £~ €. In the clus-
ter picture given above, these fluctuations correspond
to the “relatively compact” parts of a cluster, which
are connected by thin bridges of relatively few particles.

The total number ! of particles in the cluster there-
fore must be at least of the order I > % Since the size
of a typical cluster contributing to the singular part of
the free energy is €1¥ # = const—according to Eq. (26)
in the concept of scaling theory--one has a restriction
for the new exponent y:
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FIG. 4. Scaled cluster concentration wlog(p,l(z”/ ®) in three
dimensions plotted versus the scaled cluster-size variable ]
=€P¥/%, involving a new exponent y. For the two lower tem-
peratures € ={0.15, 0.2}, the cluster probabilities scale with
y=0,5, while for €=0,1, the statistics are no longer good
enough to decide whether scaling can be achieved.

y=(1+1/8)". (27
This inequality takes into account that clusters in gen-
eral are not necessarily “compact” structures but may
consist of diffuse agglomerations of relatively compact
regions. The coordinate !’ =1 then describes the total
excess concentration produced by a cluster of [ parti-
cles; the associated free energy is accordingly the ex-
cess free energy of a cluster.

We have tried to find best fits of the scaling formula
Eq. (26) to the Monte Carlo data at the three tempera-
tures €=0.2, 0.15, 0.1, As plotted in Fig. 4, the
cluster statistics for the two lower temperatures scale
rather well with an exponent y=0.5, while the data for
€=0.1 closest to T, are somewhat inconclusive owing to
the limited cluster size 7<100. Comparing this value
of y with the original Fisher model'® y=1 [Eq. (7)], one
finds a remarkable deviation. This indicates that ag-
glomeration of “compact” clusters to larger cluster net-
works takes place as T, is approached, in agreement
with the observation of percolating (infinite) clusters
close to the critical point. In the immediate neighbor-
hood of T, the extent of a cluster, which is defined as
particles connected by nearest-neighbor bonds, is
therefore no longer a direct measure of the correlation
length. A formal relation between these two quantities
was given here, introducing the generalized cluster co-
ordinate I’ =1° The value of this exponent y depends
then upon other degrees of freedom for the clusters
such as total surface and shape. Verification of these
details would require additional computer simulations
which use an exorbitant amount of computer time for
three-dimensional systems.

In the following instead we investigate the scaling be-
havior of the two-dimensional Ising model above the
percolation temperature, which coincides in that case
with the critical point, *48

IV. TWO-DIMENSIONAL SYSTEM ABOVE T,

The usual cluster models such as Egs. (4), (5), and
(7) are clearly constructed for the two-phase region,

where the component of relatively lower concentration
is described by the cluster concept, while the compo-
nent of relatively higher concentration is taken as sur-
rounding medium. Above T, this natural bias of course
no longer exists. The usual cluster formulas Egs. (5)
and (7) clearly cannot hold in the case of zero field
(chemical potential difference) Au =0, since the surface
free-energy term A(7T) changes sign at T,. The multi-
plicative correction suggested by Reatto? [Eq. (8)] was
assumed to account for the noncompactness of clusters
near and above T, since only the compact clusters
were assumed to contribute to the singular part of the
free energy. For scaling reasons the two variables,
relative temperature € and cluster coordinate /, have
to occur in the same combination as in the exponential
Eq. (5). But as we have seen in the three-dimensional
case the cluster distribution p, does not scale in that
simple form of Eq. (7) or Eq. (8) but requires a more
severe modification such as, for example, Eq. (25).

In the two-dimensional system below T, the simple
Fisher model Eq. (7) [or more general Eq. (25) with
y=1] gave very satisfactory agreement with Monte Carlo
data, Our present investigations on a 110%X110 site lat-
tice above T, also support the scaling behavior as
plotted in Figs. 5(a) and (b). In Fig. 5(a) the unscaled
plot for three temperatures above T, is given in the
same way as in Fig. 3. The remarkable difference is
the continuing increase with [ of the renormalized clus-

0.5

T ~log(p 27)
10 ¢ TWO - DIM

e e

20 | | | L

[o] 50 100 150 200 250

1 B EWL
A v e 284
) —
2.0 ! 1 1 l | ! l
o} 1 2 3 4 5 6 7 8

FIG. 5. (a) Cluster distribution in two dimensions above T,
for three temperatures as obtained from Monte Carlo calcula—
tions. Circles denote the data of Dean and Bird at infinite tem-
peratures (Ref. 41). (b) The same data as in Fig. 5(a), but
now plotted versus the scaled variable [Eq. (17a)]. (Erratum:
the exponent should be o instead of 7.) Near T, (T<1.3 T,)

the data scale up to a cluster size of I ~500,
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ter distribution - ,;log(p,!"), indicating that one is not
yet in the asymptotic region of exponential decay [ac-
cording to Eqs. (5) and (9)]. More precisely: while [
is large, the scaled [ of Eq. (17a) is still of order unity,
Contrary to the simpler ferromagnetic side, therefore,
one does not have?® a simple exponential law like
exp(~al) for all scaled [ but at best for large I, and
this latter asymptotic region has not yet been reached
closely above T,. In Fig. 5(b) the same data are
plotted, but now versus the scaled variable Eq. (17a).
The data at 7/7,=1.101 and 1. 3 fall almost onto the
same curve up to a cluster size of I~ 500, The devia-
tions for larger clusters may be due to statistical er-
rors caused by long-time memory effects of these large
clusters, even though the total computing time was
rather long: 2500 MC steps/site at T'=«, 30000 steps
at T/T,=1.3, and 40000 at T/T,=1,101, We have
compared the cluster formula of Reatto, %%

. exp(~al)
Pil"= a0 [Bexp(-bal)+1]

! from Eq. (17a) , (28)

with the data on Fig. 5(b). A least-squares fit to the
two curves suggests ¢;~0.06, a=0,1, B=3, and b

~ =8, These values are completely incompatible with
values gy~ 0,02, g~ 5 obtained from fitting Eqs. (5) and
(7) to the MC data below T,, or with values b~ 2.5, B
0, 05 of Reatto and Rastelli’s® comparison with series-
expansion results, In fact, the negative sign of 5< 0
would lead to a divergence of Eq. (28) for large [ ~x,

It is clear that the probability p, must asymptotically

(I ~=) decrease exponentially at any finite temperature
T+#T, The Monte Carlo data up to /< 2000 are clearly
not yet in this asymptotic region. Although they exhibit
scaling behavior, they cannot be fitted by a reasonable
set of the parameters entering Eq. (28). We therefore
conclude that neither can this formula describe the sta-
tistics of nearest-neighbor-bond clusters above T,. In
fact, the formula seems to be much more appropriate
to describe cluster statistics around the percolation
threshold*® since the latter transition explicitly relies
on the geometric definition of clusters.

For infinite temperatures T =, scaling theory is ob-
viously no longer expected to hold, since the system is
equivalent to a random distribution of interaction-free
particles at arbitrary temperature. This case®!s39—13,46-53
is now of particular interest for the theories of percola-
tion and of dilute (magnetic) systems. Early simula-
tions were already carried out ten years ago by Dean
and Bird*!' (data are plotted in Figs. 5 and 6). Unfor-
tunately, they gave only cumulative data for cluster
sizes [ > 10, namely, sums over p, for [=11-20, 21-50,
51-100, 101-1000, 1001-10000. We therefore used
our data, which have better statistics by a factor of 25
than in Ref. 41, to check on recent theories of dilute
magnets, Above T, neither component in the two-di-
mensional two-component system can percolate, at T
= the (“site”) percolation density is = 59% for one
component, while in our case for Ap/ksT =0 we have
50% for both, thus being below the percolation thresh-
old.

Griffiths®® showed that the equation of state M(q, H,
T) for a randomly dilute ferromagnet cannot be analytic,

H. Muller-Krumbhaar and E. P. Stoll: Statistics of the lattice gas model

where ¢ is the fraction of lattice sites occupied by spin
variables o;=+1, H is the magnetic field, T is the tem-
perature, and M is the magnetization. In our lattice
gas model these sites with o, =+ 1 would correspond to
the sites occupied by atoms; in the terminology of an
A-B binary mixture they would correspond to the sites
occupied by, for example, A atoms, while the empty
spaces are characterized by the B atoms. (The addi~
tional degree of freedom of the spin variables o;=+1 is
not of importance in this context.) Domb,** Brooks,
and Harris®® and Bakri and Stauffer ®! discussed the na-
ture of this nonanalyticity for H—~0, which is very
probably an essential one. The magnetization in a field
can be represented by a sum over the clusters

= 1H
M 1}_; Ip, tanh(ZkBT> ,

where the temperature is assumed to be so low that all

(29)

spin variables within one cluster have equal sign. It is
now argued that the probability for these clusters
asymptotically [see Eq. (28)] behaves as

p;~ expl—const(Z¥}] ¢ >0, (30)

For the Bethe lattice®® it was shown that ¢ = 1 both for
q<gq,and ¢ >gq.. For real lattices, Bakri and Stauffer
argue that £~ 0.4 for ¢ > ¢, but again give {=1 for ¢
<gq,, while Reatto® suggested £=1/(8+y)<1 both for ¢
Z ¢,. Our Monte Carlo calculations at zero interaction
energy (or infinite temperature) can provide information
on the behavior for g<gq,.

At T=» we are far away from the Curie tempera-
ture, But a scaling hypothesis has been proposed also
for the percolation transition at ¢=g¢,, based on a vari-
ant of Fisher’s droplet model.*® Right at g=q, one ex-
pects a decay of the cluster-size distribution as p,~1".
For percolation, the critical exponents like 7, 8, etc.
are different from the Ising model at the Curie tem-
perature®® and also the exponents 7 (and thus A) are no
exceptions. ® However, for d=2 one has*®®" 5 near 18
and thus 7 is very close to its value at the Curie tem-~
perature.

For two dimensions, therefore, we can take the same
7 as before even at T =« without introducing noticeable
errors. Monte Carlo data as plotted in Fig. 5 (T =)
first show an increase in the renormalized cluster sta-
tistics, and above ! > 60 the exponential decay takes
over. Equation (30) is expected to hold asymptotically
only. We therefore drop the initial data with /<60 by
renormalizing all data with respect to the maximum of
-~ olog(p,I") at I~ 60, This leads to

pllT ~ e-comst(l-t,mx)c 1 =60
(,t'zl T)ma.x ’ max s
which is asymptotically completely equivalent to Eq.
(30), or alternatively,

pl”
(P4 max
Plotting the data in the variables of Eq. (32) we expect

asymptotically a straight line with slope ¢. This can be
seen in Fig. 6, where we do indeed find a slope of ¢

(31)

In|ln ~ £ In(! = Ipnay) + cOnst . (32)
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=1,1+0.1 up to our largest clusters counted with !
~800. This confirms the analyses of Refs. 21 and 50
predicting a simple exponential decay [Eq. (30)] of the
cluster probability in a random dilute ferromagnet be-
low the percolation density. On the other hand, the
strong maximum in p,/ " as a function of / is also seen,
as predicted first by Rea.tto,""3 proving that the para-
magnetic cluster-size distribution (in the percolation
problem) is not a simple exponential, in contrast to the
simpler ferromagnetic case.

We finally show in Fig. 7 a fit of the extended cluster
distribution formulas given by Stauffer,3®

PpilT=poexp(+ Al+BLY) , (33)

using the percolation exponents o =0, 39, 7= 2, 056.
The parameters p,, 4,, and B were fitted. We find re-
markable agreement over the whole range of cluster
sizes between 50 =7 = 750, the behavior for large [ be-
ing dominated by the linear behavior as seen in Fig. 6.

V. CONCLUSION

We have investigated cluster statistics on lattice sys-
tems which allow for an unambiguous definition of clus-
ters. They are defined as sets of particles which are
connected by at least one-nearest-neighbor bond.

Of particular interest—with respect to thermodynamic
properties of the system—is the neighborhood of the
critical temperature. In the three-dimensional system
the cluster statistics are very much influenced by the
appearance of a percolating cluster even slightly below
T..%® The expected scaling behavior therefore is not
observed for these clusters, but presumably holds only
for the relatively compact parts of these “sponge”-like
clusters. Formally, one may account for these devia-

(n {t-Umax)

-2 e | 1 1
4 5 6 7
FIG. 6. Asymptotic behavior (I >1,,,, see text) of the cluster
distribution in a two-dimensional system of noninteracting
particles below the percolation threshold. The slope £ =1.1
=0.1 confirms previous predictions (Refs. 21 and50) ona sim-
ple exponential decay of the cluster probabilities in a randomly
dilute ferromagnet.

A —ln(pz{’,r) —_— T=2

- (lnp,+ At +BE%) —— A = -0.0164

6

0 100 200 300 400 500
FIG. 7. Cluster distribution as in Fig. 6, but fitted to the
formula Eq. (33) (Ref. 58). For the fitted paramecters lnp,
=-3.35, A=-0.0164, B=0.522, we obtained very good agree-
ment over the whole range of cluster sizes 50 =7 =500,

tions from a “compact” shape by a transformation of the
cluster-size variable 7 to I’ =7” with an additional criti-
cal exponent y. In Fisher’s droplet model'® and several
modifications, #~%8 the value is implicitly assumed to be
y=1. For the three-dimensional model at 10% below
T,, a value of y=0,5 gives a considerably better fit to
the data.

Since percolation is present in the whole range of T
> T, for the three-dimensional system, we investigated
instead a two-dimensional system to check predictions
of cluster-probability formulas above 7,. We found
that the cluster distributions for T > T, can be repre-
sented essentially by a single curve, which supports the
scaling assumptions in a similar way as obtained below
T, in two dimensions. On the other hand, no agree-
ment with explicit cluster-distribution formulas was
found above T,. Fitting Reatto’s?®2 formulas led to in-
consistencies with the values for 7'<7,. This might be
due to the fact that our statistics may not yet be in the
asymptotic regime of sufficiently large clusters. But
since the largest clusters counted (up to I~ 2000) are
already of macroscopic size, the range of applicability
of these cluster formulas above T, at best appears to be
rather limited.

For T -« or, equivalent, for vanishing interaction
energy between particles, we could show that the prob-
ability for clusters in a dilute system (below the perco-
lation threshold) decays asymptotically ~ exp(- const!*)
with £~ 1, This confirms the previous analysis®! of
Dean and Bird’s* data. Accordingly, the existence of
an essential singula.rity51 at zero magnetic field in the
equation of state for randomly dilute low-temperature
ferromagnets is supported, following the arguments of
Bakri and Stauffer, #
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